DOI: https://doi.org/10.1038/s41467-024-45314-y
PMID: https://pubmed.ncbi.nlm.nih.gov/38316787
تاريخ النشر: 2024-02-05
استكشاف إمكانيات الانبعاثات السلبية للفحم الحيوي لتحقيق هدف الحياد الكربوني في الصين
تاريخ القبول: 19 يناير 2024
تاريخ النشر على الإنترنت: 05 فبراير 2024
(أ) تحقق من التحديثات
الملخص
تقييد الاحترار العالمي ضمن
(التكلفة المستوية لكل طن من
أنواع الكتلة الحيوية والتوزيع المكاني، معالجًا التقدير المنخفض السائد لإمكانات البيوتشار ويوفر إطار عمل تفصيلي وقابل للتنفيذ لصانعي السياسات لتوجيه نشر البيوتشار.
النتائج
إمكانات الانبعاثات السلبية للبيوتشار
السيناريوهات | الإمكانات النظرية القصوى | الإمكانات التقنية المستدامة | الإمكانات التقنية الحالية | |||
الوصف | الحد الأقصى من كمية المواد الخام المتاحة من الكتلة الحيوية | الإمكانات النظرية مطروحًا منها الاستخدام لعلف الماشية، وما إلى ذلك، مع الحفاظ على البيئة | المواد الخام المتاحة من الكتلة الحيوية محدودة بالتكنولوجيا والممارسات الحالية | |||
المخلفات الزراعية |
|
|
|
|||
100% من 16 نوعًا من مخلفات المحاصيل | 95% من مخلفات المحاصيل التي لا تُستخدم كعلف، أو مادة خام | 88% من المخلفات التي لا تُستخدم كعلف، أو مادة خام | ||||
مخلفات الغابات |
|
|
|
|||
100% من 10 أنواع من مخلفات الغابات | 80% من 10 أنواع من مخلفات الغابات | 28% من 10 أنواع من مخلفات الغابات | ||||
مخلفات العشب |
|
|
|
|||
100% من إنتاج التبن في المراعي الطبيعية | إنتاج التبن في المراعي الطبيعية غير المستخدم كعلف | غير متاح تحت التكنولوجيا الحالية | ||||
محاصيل الطاقة |
|
|
|
|||
|
|
غير متاح تحت التكنولوجيا الحالية | ||||
إجمالي المواد الخام من الكتلة الحيوية |
|
|
|

إمكانات الفحم الحيوي المنتج من أنواع مختلفة من المواد الخام. لاحظ أن ‘المخلفات الزراعية الأخرى’ تشير إلى مخلفات 13 نوعًا آخر من المحاصيل باستثناء الأرز، والقمح، والذرة. ج مقارنة بين متطلبات الانبعاث السلبي في مسارات التخفيف من الدراسات السابقة، وإمكانات الانبعاث السلبي للفحم الحيوي المقدرة في هذه الدراسة. يتم توفير بيانات المصدر كملف بيانات مصدر.
محاصيل الطاقة على الأراضي الهامشية، ومعدل حصاد المخلفات الأكثر كفاءة الناتج عن التقدم التكنولوجي والسياسي، مع الحفاظ على أنماط استخدام الكتلة الحيوية الحالية. لذلك، يقدم سيناريو ‘التقنية الحالية’ و’التقنية المستدامة’ حدودًا قصوى قريبة الأجل ومستدامة لإمكانات الانبعاث السلبي للفحم الحيوي دون المساس بالأمن الغذائي أو المواطن. ومع ذلك، من الضروري ملاحظة أن كلا السيناريوهين يتطلبان اتخاذ إجراءات سياسية تقدمية لتعزيز توفر الكتلة الحيوية بما يتجاوز الممارسات الحالية. نطاق إمكانات الانبعاث السلبي المبلغ عنها في هذه الورقة يتعلق فقط بالسيناريوهات المدروسة ولا يعكس القيود المفروضة من السياسات الواقعية.
إجمالي المواد الخام، ما يعادل
من الزراعة والغابات لإنتاج الفحم الحيوي عند
اقتصاديات الانبعاثات السلبية من الفحم الحيوي
التحليل المكاني لإمكانات الفحم الحيوي

منحنى التكلفة (
أنماط التوزيع لأنها أكثر مصادر الكتلة الحيوية وفرة. يتم توزيع المخلفات الزراعية بشكل أساسي في وسط وجنوب الصين.
متوسط التكاليف 77.8 و

التربة الحمضية (البكسلات البنية في الشكل التوضيحي 6) توفر فوائد أكبر من التربة القلوية
نقاش
وإمكانات الانبعاثات السلبية التقنية المستدامة تبلغ 0.43 و
أ. التكاليف الصافية للانبعاثات السلبية

سيناريو ‘الإمكانات التقنية’. أ-ج التكلفة الصافية للانبعاثات السلبية على
انبعاثات التربة من الميثان وأكسيد النيتروز. كلاهما مختلفان من الناحية المفاهيمية عن إمكانات الانبعاثات السلبية ولكنهما عوامل مهمة يجب أخذها في الاعتبار عند تقييم انبعاثات دورة حياة الفحم الحيوي. تشير النتائج إلى أن إمكانات التخفيف أكبر بمقدار 1.5 مرة من إمكانات الانبعاثات السلبية، والتي تم عرضها في الملاحظات التكميلية 4 و 6. على وجه الخصوص، فإن إمكانات الانبعاثات السلبية وإمكانات التخفيف من بقايا الزراعة تحت السيناريو الفني المستدام تصل إلى
طرق
النهج العام
المخلفات الزراعية
التوزيع المكاني للمحاصيل، الذي تضمن استخدام بيانات مكانية عن أنواع المحاصيل، ونسبة المخلفات إلى المنتج الخاصة بكل محصول، ومعايرة النتيجة بناءً على الإحصائيات الوطنية. هنا، تم اعتبار مخلفات 16 نوعًا من المحاصيل الزراعية. تم الحصول على بيانات مكانية عن أنواع مختلفة من المحاصيل من Harvard Dataverse 2010 مع
مخلفات الغابات
بقايا العشب
محاصيل الطاقة
تطوير السيناريوهات على مصادر الكتلة الحيوية المتاحة
يمكن جمع المخلفات الزراعية والغابية – على وجه التحديد، 88% من المخلفات الزراعية
التحلل الحراري البطيء
إمكانات الانبعاثات السلبية
زيادة العائد
التحليل الاقتصادي
تم حصاد المواد الخام. أولاً، تم حساب القيمة الحالية الصافية (NPV) لمشروع مصنع التحلل الحراري الذي يمتد لعشرين عامًا. تشمل القيمة الحالية الصافية الاستثمار الأولي، والتدفقات النقدية السنوية الداخلة والخارجة. كانت التدفقات النقدية السنوية الداخلة تتكون من زيادة دخل العائد ودخل الغاز الاصطناعي المحسوب بناءً على السعر والإنتاج. بينما كانت التدفقات النقدية السنوية الخارجة تتكون من تكلفة شراء المواد الخام، وتخزين المواد الخام، والتشغيل والصيانة، ونقل الكتلة الحيوية والفحم الحيوي، وتطبيق الفحم الحيوي. بعد ذلك، يمكن تعريف تكلفة الانبعاثات السلبية على أنها الاستثمار الأولي والتدفقات النقدية الخارجة الموزعة على كل وحدة من
تحليل مكاني محدد
تحليل عدم اليقين
ملخص التقرير
توفر البيانات
توفر الشيفرة
References
- Gillett, N. P. et al. Constraining human contributions to observed warming since the pre-industrial period. Nat. Clim. Chang 11, 207-212 (2021).
- IPCC. Climate Change 2014: Mitigation of Climate Change (Cambridge University Press, 2014).
- IPCC. Global Warming of
. An IPCC Special Report on the Impacts of Global Warming of above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate
4. Muratori, M. et al. EMF-33 insights on bioenergy with carbon capture and storage (BECCS). Clim. Change 163, 1621-1637 (2020).
5. Huang, X., Chang, S., Zheng, D. & Zhang, X. The role of BECCS in deep decarbonization of China’s economy: a computable general equilibrium analysis. Energy Econ. 92, 104968 (2020).
6. Jiang, K., He, C., Dai, H., Liu, J. & Xu, X. Emission scenario analysis for China under the global
7. Pan, X., Chen, W., Wang, L., Lin, L. & Li, N. The role of biomass in China’s long-term mitigation toward the Paris climate goals. Environ. Res. Lett. 13, 124028 (2018).
8. Weng, Y., Cai, W. & Wang, C. Evaluating the use of BECCS and afforestation under China’s carbon-neutral target for 2060. Appl. Energy 299, 117263 (2021).
9. Cai, B., Li, Q. & Zhang, X. China Carbon Dioxide Capture Utilization and Storage (CCUS) Annual Report (2021) – China CCUS Pathway Study (Chinese Academy of Environmental Planning, 2021).
10. Galik, C. S. A continuing need to revisit BECCS and its potential. Nat. Clim. Chang. 10, 2-3 (2020).
11. Babin, A., Vaneeckhaute, C. & Iliuta, M. C. Potential and challenges of bioenergy with carbon capture and storage as a carbon-negative energy source: a review. Biomass Bioenergy 146, 105968 (2021).
12. Fuss, S. et al. Negative emissions-Part 2: Costs, potentials and side effects. Environ. Res. Lett. 13, 063002 (2018).
13. Hepburn, C. et al. The technological and economic prospects for
14. Keith, D. W., Holmes, G., Angelo, D. S. & Heidel, K. A process for capturing
15. Lane, J., Greig, C. & Garnett, A. Uncertain storage prospects create a conundrum for carbon capture and storage ambitions. Nat. Clim. Chang 11, 925-936 (2021).
16. Popp, A. et al. Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options. Clim. Change 123, 495-509 (2014).
17. Anderson, K. & Peters, G. The trouble with negative emissions. Science 354, 182-183 (2016).
18. Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. & Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 1, 56 (2010).
19. Cernansky, R. Agriculture: state-of-the-art soil. Nature 517, 258-260 (2015).
20. Sohi, S. P. Carbon storage with benefits. Science 338, 1034-1035 (2012).
21. Wu, P. et al. A scientometric review of biochar research in the past 20 years (1998-2018). Biochar 1, 23-43 (2019).
22. Kurniawan, T. A. et al. Challenges and opportunities for biochar to promote circular economy and carbon neutrality. J. Environ. Manag. 332, 117429 (2023).
23. Peters, J. F., Iribarren, D. & Dufour, J. Biomass pyrolysis for biochar or energy applications? A life cycle assessment. Environ. Sci. Technol. 49, 5195-5202 (2015).
24. Lehmann, J. et al. Biochar in climate change mitigation. Nat. Geosci. 14, 883-892 (2021).
25. Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Notice of the General Office of the Ministry of Agriculture on the Promotion and Release of the Top Ten Patterns of Straw for Agricultural Use (Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2017).
26. Meng, J. et al. Development of the straw biochar returning concept in China. Biochar 1, 139-149 (2019).
27. Roe, S. et al. Contribution of the land sector to a
28. Werner, C., Lucht, W., Gerten, D. & Kammann, C. Potential of landneutral negative emissions through biochar sequestration. Earth’s Future 10, e2021EF002583 (2022).
29. Ippolito, J. A. et al. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar 2, 421-438 (2020).
30. Hassan, M. et al. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: a meta-analysis. Sci. Total Environ. 744, 140714 (2020).
31. Xia, L. et al. Integrated biochar solutions can achieve carbon-neutral staple crop production. Nat. Food 4, 236-246 (2023).
32. Yang, Q. et al. Country-level potential of carbon sequestration and environmental benefits by utilizing crop residues for biochar implementation. Appl. Energy 282, 116275 (2021).
33. Yang, Q. et al. Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and renewable energy goals. Nat. Commun. 12, 1698 (2021).
34. Wang, Y., Hu, Y., Zhao, X., Wang, S. & Xing, G. Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times. Energy Fuels 27, 5890-5899 (2013).
35. He, X. et al. Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues. Energy 143, 746-756 (2018).
36. Singh, H., Northup, B. K., Rice, C. W. & Prasad, P. V. V. Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis. Biochar 4, 8 (2022).
37. Wang, Y., Villamil, M. B., Davidson, P. C. & Akdeniz, N. A quantitative understanding of the role of co-composted biochar in plant growth using meta-analysis. Sci. Total Environ. 685, 741-752 (2019).
38. Joseph, S. et al. How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy 13, 1731-1764 (2021).
39. Woolf, D. et al. Greenhouse gas inventory model for biochar additions to soil. Environ. Sci. Technol. 55, 14795-14805 (2021).
40. Nie, Y. et al. Spatial distribution of usable biomass feedstock and technical bioenergy potential in China. GCB Bioenergy 12, 54-70 (2020).
41. Xing, X. et al. Spatially explicit analysis identifies significant potential for bioenergy with carbon capture and storage in China. Nat. Commun. 12, 3159 (2021).
42. Qaseem, M. F. & Wu, A.-M. Marginal lands for bioenergy in China; an outlook in status, potential and management. GCB Bioenergy 13, 21-44 (2021).
43. Qin, Z. et al. Biomass and biofuels in China: toward bioenergy resource potentials and their impacts on the environment. Renew. Sustain. Energy Rev. 82, 2387-2400 (2018).
44. Zhang, B., Hastings, A., Clifton-Brown, J. C., Jiang, D. & Faaij, A. P. C. Modeled spatial assessment of biomass productivity and technical potential of Miscanthus
45. Jiang, D., Hao, M., Fu, J., Liu, K. & Yan, X. Potential bioethanol production from sweet sorghum on marginal land in China. J. Clean. Prod. 220, 225-234 (2019).
46. Nie, Y. et al. Assessment of the potential and distribution of an energy crop at
47. Xue, S., Lewandowski, I., Wang, X. & Yi, Z. Assessment of the production potentials of Miscanthus on marginal land in China. Renew. Sustain. Energy Rev. 54, 932-943 (2016).
48. Lu, N. et al. Biophysical and economic constraints on China’s natural climate solutions. Nat. Clim. Chang. 12, 847-853 (2022).
49. Jin, J. et al. Stand carbon storage and net primary production in China’s subtropical secondary forests are predicted to increase by 2060. Carbon Balance Manag. 17, 6 (2022).
50. Zhou, L. et al. Carbon dynamics in woody biomass of forest ecosystem in China with forest management practices under future climate change and rising
51. Lauri, P. et al. Global woody biomass harvest volumes and forest area use under different SSP-RCP scenarios. JFE 34, 285-309 (2019).
52. Fawzy, S., Osman, A. I., Yang, H., Doran, J. & Rooney, D. W. Industrial biochar systems for atmospheric carbon removal: a review. Environ. Chem. Lett. 19, 3023-3055 (2021).
53. IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2019).
54. Woolf, D., Lehmann, J., Fisher, E. M. & Angenent, L. T. Biofuels from pyrolysis in perspective: trade-offs between energy yields and soilcarbon additions. Environ. Sci. Technol. 48, 6492-6499 (2014).
55. Heck, V., Gerten, D., Lucht, W. & Popp, A. Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nat. Clim. Chang 8, 151-155 (2018).
56. Smith, P. et al. Which practices co-deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification? Glob. Change Biol. 26, 1532-1575 (2020).
57. Frank, S. et al. Reducing greenhouse gas emissions in agriculture without compromising food security? Environ. Res. Lett. 12, 105004 (2017).
58. Zhang, B., Xu, J., Lin, Z., Lin, T. & Faaij, A. P. C. Spatially explicit analyses of sustainable agricultural residue potential for bioenergy in China under various soil and land management scenarios. Renew. Sustain. Energy Rev. 137, 110614 (2021).
59. International Food Policy Research Institute. Global SpatiallyDisaggregated Crop Production Statistics Data for 2010 Version 2.0. Harvard Dataverse. https://doi.org/10.7910/DVN/ PRFF8V (2020).
60. National Forestry and Grassland Administration. China Forest Resources Report 2014-2018 (China Forestry Publishing House, 2019).
61. Ministry of Agriculture and Rural Affairs of the People’s Republic of China. 2018 China Agricultural Yearbook (China Academic Journal Electronic Publishing House, 2019).
62. Fu, T., Ke, J. H., Zhou, S. & Xie, G. H. Estimation of the quantity and availability of forestry residue for bioenergy production in China. Resour. Conserv. Recycl. 162, 104993 (2020).
63. Xu, X. et al. China’s multi-period land use land cover remote sensing monitoring dataset (CNLUCC). RESDC https://doi.org/10. 12078/2018070201 (2018).
64. Running, S. & Zhao, M. MOD17A2HGF MODIS/Terra Gross Primary Productivity Gap-Filled 8-Day L4 Global 500 m SIN Grid VOO6. NASA EOSDIS Land Processes Distributed Active Archive Center. https://doi.org/10.5067/MODIS/MOD17A2HGF. 006 (2019).
65. National Forestry and Grassland Administration. 2018 Annual Report on China’s Forestry and Grassland Development (National Forestry and Grassland Administration, 2020).
66. Zhang, X., Fu, J., Lin, G., Jiang, D. & Yan, X. Switchgrass-based bioethanol productivity and potential environmental impact from marginal lands in China. Energies 10, 260 (2017).
67. Ministry of Agriculture and Rural Affairs of the People’s Republic of China. National Report on the Comprehensive Utilization of Crop Straw (Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2022).
68. Fischer, G. et al. Global Agro-ecological Zones Assessment for Agriculture (GAEZ 2008). Harmonized World Soil Database v1.2. https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (2008).
69. Qian, C. et al. Prediction of higher heating values of biochar from proximate and ultimate analysis. Fuel 265, 116925 (2020).
70. Deng, X. et al. DXDX97/Biochar_code_and_data: potential of Biochar in China. Zenodo https://doi.org/10.5281/zenodo. 10369112 (2023).
شكر وتقدير
مساهمات المؤلفين
المصالح المتنافسة
معلومات إضافية
المواد التكميلية متاحة على
https://doi.org/10.1038/s41467-024-45314-y.
http://www.nature.com/reprints
ملاحظة الناشر: تظل شركة سبرينغر ناتشر محايدة فيما يتعلق بالمطالبات القضائية في الخرائط المنشورة والانتماءات المؤسسية.
© المؤلف(ون) 2024
معهد الطاقة والبيئة والاقتصاد، جامعة تسينغhua، بكين 100084، الصين. كلية الاقتصاد الزراعي والتنمية الريفية، جامعة الشعب الصينية، بكين 100872، الصين. كلية الموارد وعلوم البيئة، جامعة الزراعة الصينية، بكين 100193، الصين. معهد البيئة والتنمية المستدامة في الزراعة، الأكاديمية الصينية للعلوم الزراعية، بكين 100081، الصين. مختبر رئيسي لمراقبة ونمذجة شبكة النظام البيئي، معهد العلوم الجغرافية وبحوث الموارد الطبيعية، الأكاديمية الصينية للعلوم، بكين 100101، الصين. البريد الإلكتروني: tengfei@tsinghua.edu.cn - تمثل السيناريوهات الحد الأقصى من الإمكانيات النظرية، والإمكانات التقنية المستدامة، والإمكانات التقنية الحالية، على التوالي؛ تشمل المواد الخام الحيوية بقايا الزراعة، وبقايا الغابات، وبقايا الأعشاب، والمحاصيل الطاقية المخصصة المحتملة، على التوالي.
DOI: https://doi.org/10.1038/s41467-024-45314-y
PMID: https://pubmed.ncbi.nlm.nih.gov/38316787
Publication Date: 2024-02-05
Exploring negative emission potential of biochar to achieve carbon neutrality goal in China
Accepted: 19 January 2024
Published online: 05 February 2024
(A) Check for updates
Abstract
Limiting global warming to within
(levelized cost per ton of
biomass types and spatial distribution, addressing the prevalent underestimation of biochar’s potential and providing a detailed, actionable framework for policymakers to guide biochar deployment.
Results
Negative emission potential of biochar
Scenarios | Maximum theoretical potential | Sustainable technical potential | Current technical potential | |||
Description | Maximum amount of available biomass feedstocks | Theoretical potential minus use for livestock, etc., while maintaining ecology | Available biomass feedstocks limited by current technology and practice | |||
Agricultural residues |
|
|
|
|||
100% of 16 types of crop residues | 95% of crop residues those are not used as feed, substrate and raw material | 88% of residues those are not used as feed, substrate and raw material | ||||
Forestry residues |
|
|
|
|||
100% of 10 types of forestry residues | 80% of 10 types of forestry residues | 28% of 10 types of forestry residues | ||||
Grass residues |
|
|
|
|||
100% of hay production in natural grasslands | Hay production in natural grasslands not used as feed | Not available under current technology | ||||
Energy crops |
|
|
|
|||
|
|
Not available under current technology | ||||
Total biomass feedstocks |
|
|
|

potential of biochar produced from various types of feedstocks. Note that ‘other agricultural residues’ refers to the residues of 13 other types of crops excluding rice, wheat, and maize. c Comparison between negative emission demands in mitigation pathways from previous studies, and the negative emission potential of biochar estimated in this study. Source data are provided as a Source data file.
energy crops on marginal lands, a more efficient residue harvesting rate brought about by technological and policy progress, while maintaining current biomass use patterns. Therefore, the ‘Current Technical’ and ‘Sustainable Technical’ scenarios present near-term and sustainable upper limits of biochar’s negative emission potential without compromising food security or habitats. However, it’s crucial to note that both scenarios necessitate progressive policy action to enhance biomass availability beyond current practices. The range of negative emission potentials reported in this paper pertains solely to the scenarios considered and does not reflect constraints imposed by real-world policies.
total feedstocks, equivalent to
from agriculture and forestry for biochar production are calculated at
Economics of negative emissions from biochar
Spatial analysis of biochar potential

cost curve (
distribution patterns because they are the most abundant biomass feedstocks. Agricultural residues are primarily distributed in Central and South China (
average costs of 77.8 and

acidic soils (brown pixels in Supplementary Fig. 6) yield greater benefits than alkaline soils
Discussion
and sustainable technical negative emission potential being 0.43 and
a. Net costs of negative emissions

Technical Potential’ scenario. a-c Net cost of negative emissions on a
of soil emissions of methane and nitrous oxide. Both are conceptually different from the negative emission potential but are important factors to consider when assessing the life cycle emissions of biochar. Results indicate that the mitigation potential is 1.5 times greater than the negative emission potential, which are displayed in Supplementary Note 4 and 6. In particular, the negative emission potential and mitigation potential of agricultural residues under the sustainable technical scenario amount to
Methods
Overall approach
Agricultural residues
the spatial distribution of crops, which incorporated the use of spatial data on crop types, the crop-specific residue-to-product ratio, and the calibration of the result based on national statistics. Here, the residues of 16 types of agricultural crops were considered. Spatial data on various types of crops were obtained from the Harvard Dataverse 2010 with
Forestry residues
Grass residues
Energy crops
Scenarios development on available biomass feedstocks
agricultural and forestry residues can be collected-specifically, 88% of agricultural residues
Slow pyrolysis
Negative emission potential
Yield increasing
Economic analysis
the feedstock was harvested. First, net present value (NPV) of 20-year project of pyrolysis plant was calculated. NPV includes the initial investment, annual cash inflows and outflows. Annual cash inflows consisted of increasing yield income and syngas income calculated based on the price and production. Annual cash outflows consisted of the cost of feedstock purchasing, feedstock storage, operation and maintenance, transport of biomass and biochar, and biochar application. Then, the cost of negative emission can be defined as the initial investment and cash outflows apportioned to each unit of
Spatially explicit analysis
Uncertainty analysis
Reporting summary
Data availability
Code availability
References
- Gillett, N. P. et al. Constraining human contributions to observed warming since the pre-industrial period. Nat. Clim. Chang 11, 207-212 (2021).
- IPCC. Climate Change 2014: Mitigation of Climate Change (Cambridge University Press, 2014).
- IPCC. Global Warming of
. An IPCC Special Report on the Impacts of Global Warming of above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate
4. Muratori, M. et al. EMF-33 insights on bioenergy with carbon capture and storage (BECCS). Clim. Change 163, 1621-1637 (2020).
5. Huang, X., Chang, S., Zheng, D. & Zhang, X. The role of BECCS in deep decarbonization of China’s economy: a computable general equilibrium analysis. Energy Econ. 92, 104968 (2020).
6. Jiang, K., He, C., Dai, H., Liu, J. & Xu, X. Emission scenario analysis for China under the global
7. Pan, X., Chen, W., Wang, L., Lin, L. & Li, N. The role of biomass in China’s long-term mitigation toward the Paris climate goals. Environ. Res. Lett. 13, 124028 (2018).
8. Weng, Y., Cai, W. & Wang, C. Evaluating the use of BECCS and afforestation under China’s carbon-neutral target for 2060. Appl. Energy 299, 117263 (2021).
9. Cai, B., Li, Q. & Zhang, X. China Carbon Dioxide Capture Utilization and Storage (CCUS) Annual Report (2021) – China CCUS Pathway Study (Chinese Academy of Environmental Planning, 2021).
10. Galik, C. S. A continuing need to revisit BECCS and its potential. Nat. Clim. Chang. 10, 2-3 (2020).
11. Babin, A., Vaneeckhaute, C. & Iliuta, M. C. Potential and challenges of bioenergy with carbon capture and storage as a carbon-negative energy source: a review. Biomass Bioenergy 146, 105968 (2021).
12. Fuss, S. et al. Negative emissions-Part 2: Costs, potentials and side effects. Environ. Res. Lett. 13, 063002 (2018).
13. Hepburn, C. et al. The technological and economic prospects for
14. Keith, D. W., Holmes, G., Angelo, D. S. & Heidel, K. A process for capturing
15. Lane, J., Greig, C. & Garnett, A. Uncertain storage prospects create a conundrum for carbon capture and storage ambitions. Nat. Clim. Chang 11, 925-936 (2021).
16. Popp, A. et al. Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options. Clim. Change 123, 495-509 (2014).
17. Anderson, K. & Peters, G. The trouble with negative emissions. Science 354, 182-183 (2016).
18. Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. & Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 1, 56 (2010).
19. Cernansky, R. Agriculture: state-of-the-art soil. Nature 517, 258-260 (2015).
20. Sohi, S. P. Carbon storage with benefits. Science 338, 1034-1035 (2012).
21. Wu, P. et al. A scientometric review of biochar research in the past 20 years (1998-2018). Biochar 1, 23-43 (2019).
22. Kurniawan, T. A. et al. Challenges and opportunities for biochar to promote circular economy and carbon neutrality. J. Environ. Manag. 332, 117429 (2023).
23. Peters, J. F., Iribarren, D. & Dufour, J. Biomass pyrolysis for biochar or energy applications? A life cycle assessment. Environ. Sci. Technol. 49, 5195-5202 (2015).
24. Lehmann, J. et al. Biochar in climate change mitigation. Nat. Geosci. 14, 883-892 (2021).
25. Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Notice of the General Office of the Ministry of Agriculture on the Promotion and Release of the Top Ten Patterns of Straw for Agricultural Use (Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2017).
26. Meng, J. et al. Development of the straw biochar returning concept in China. Biochar 1, 139-149 (2019).
27. Roe, S. et al. Contribution of the land sector to a
28. Werner, C., Lucht, W., Gerten, D. & Kammann, C. Potential of landneutral negative emissions through biochar sequestration. Earth’s Future 10, e2021EF002583 (2022).
29. Ippolito, J. A. et al. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar 2, 421-438 (2020).
30. Hassan, M. et al. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: a meta-analysis. Sci. Total Environ. 744, 140714 (2020).
31. Xia, L. et al. Integrated biochar solutions can achieve carbon-neutral staple crop production. Nat. Food 4, 236-246 (2023).
32. Yang, Q. et al. Country-level potential of carbon sequestration and environmental benefits by utilizing crop residues for biochar implementation. Appl. Energy 282, 116275 (2021).
33. Yang, Q. et al. Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and renewable energy goals. Nat. Commun. 12, 1698 (2021).
34. Wang, Y., Hu, Y., Zhao, X., Wang, S. & Xing, G. Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times. Energy Fuels 27, 5890-5899 (2013).
35. He, X. et al. Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues. Energy 143, 746-756 (2018).
36. Singh, H., Northup, B. K., Rice, C. W. & Prasad, P. V. V. Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis. Biochar 4, 8 (2022).
37. Wang, Y., Villamil, M. B., Davidson, P. C. & Akdeniz, N. A quantitative understanding of the role of co-composted biochar in plant growth using meta-analysis. Sci. Total Environ. 685, 741-752 (2019).
38. Joseph, S. et al. How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy 13, 1731-1764 (2021).
39. Woolf, D. et al. Greenhouse gas inventory model for biochar additions to soil. Environ. Sci. Technol. 55, 14795-14805 (2021).
40. Nie, Y. et al. Spatial distribution of usable biomass feedstock and technical bioenergy potential in China. GCB Bioenergy 12, 54-70 (2020).
41. Xing, X. et al. Spatially explicit analysis identifies significant potential for bioenergy with carbon capture and storage in China. Nat. Commun. 12, 3159 (2021).
42. Qaseem, M. F. & Wu, A.-M. Marginal lands for bioenergy in China; an outlook in status, potential and management. GCB Bioenergy 13, 21-44 (2021).
43. Qin, Z. et al. Biomass and biofuels in China: toward bioenergy resource potentials and their impacts on the environment. Renew. Sustain. Energy Rev. 82, 2387-2400 (2018).
44. Zhang, B., Hastings, A., Clifton-Brown, J. C., Jiang, D. & Faaij, A. P. C. Modeled spatial assessment of biomass productivity and technical potential of Miscanthus
45. Jiang, D., Hao, M., Fu, J., Liu, K. & Yan, X. Potential bioethanol production from sweet sorghum on marginal land in China. J. Clean. Prod. 220, 225-234 (2019).
46. Nie, Y. et al. Assessment of the potential and distribution of an energy crop at
47. Xue, S., Lewandowski, I., Wang, X. & Yi, Z. Assessment of the production potentials of Miscanthus on marginal land in China. Renew. Sustain. Energy Rev. 54, 932-943 (2016).
48. Lu, N. et al. Biophysical and economic constraints on China’s natural climate solutions. Nat. Clim. Chang. 12, 847-853 (2022).
49. Jin, J. et al. Stand carbon storage and net primary production in China’s subtropical secondary forests are predicted to increase by 2060. Carbon Balance Manag. 17, 6 (2022).
50. Zhou, L. et al. Carbon dynamics in woody biomass of forest ecosystem in China with forest management practices under future climate change and rising
51. Lauri, P. et al. Global woody biomass harvest volumes and forest area use under different SSP-RCP scenarios. JFE 34, 285-309 (2019).
52. Fawzy, S., Osman, A. I., Yang, H., Doran, J. & Rooney, D. W. Industrial biochar systems for atmospheric carbon removal: a review. Environ. Chem. Lett. 19, 3023-3055 (2021).
53. IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2019).
54. Woolf, D., Lehmann, J., Fisher, E. M. & Angenent, L. T. Biofuels from pyrolysis in perspective: trade-offs between energy yields and soilcarbon additions. Environ. Sci. Technol. 48, 6492-6499 (2014).
55. Heck, V., Gerten, D., Lucht, W. & Popp, A. Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nat. Clim. Chang 8, 151-155 (2018).
56. Smith, P. et al. Which practices co-deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification? Glob. Change Biol. 26, 1532-1575 (2020).
57. Frank, S. et al. Reducing greenhouse gas emissions in agriculture without compromising food security? Environ. Res. Lett. 12, 105004 (2017).
58. Zhang, B., Xu, J., Lin, Z., Lin, T. & Faaij, A. P. C. Spatially explicit analyses of sustainable agricultural residue potential for bioenergy in China under various soil and land management scenarios. Renew. Sustain. Energy Rev. 137, 110614 (2021).
59. International Food Policy Research Institute. Global SpatiallyDisaggregated Crop Production Statistics Data for 2010 Version 2.0. Harvard Dataverse. https://doi.org/10.7910/DVN/ PRFF8V (2020).
60. National Forestry and Grassland Administration. China Forest Resources Report 2014-2018 (China Forestry Publishing House, 2019).
61. Ministry of Agriculture and Rural Affairs of the People’s Republic of China. 2018 China Agricultural Yearbook (China Academic Journal Electronic Publishing House, 2019).
62. Fu, T., Ke, J. H., Zhou, S. & Xie, G. H. Estimation of the quantity and availability of forestry residue for bioenergy production in China. Resour. Conserv. Recycl. 162, 104993 (2020).
63. Xu, X. et al. China’s multi-period land use land cover remote sensing monitoring dataset (CNLUCC). RESDC https://doi.org/10. 12078/2018070201 (2018).
64. Running, S. & Zhao, M. MOD17A2HGF MODIS/Terra Gross Primary Productivity Gap-Filled 8-Day L4 Global 500 m SIN Grid VOO6. NASA EOSDIS Land Processes Distributed Active Archive Center. https://doi.org/10.5067/MODIS/MOD17A2HGF. 006 (2019).
65. National Forestry and Grassland Administration. 2018 Annual Report on China’s Forestry and Grassland Development (National Forestry and Grassland Administration, 2020).
66. Zhang, X., Fu, J., Lin, G., Jiang, D. & Yan, X. Switchgrass-based bioethanol productivity and potential environmental impact from marginal lands in China. Energies 10, 260 (2017).
67. Ministry of Agriculture and Rural Affairs of the People’s Republic of China. National Report on the Comprehensive Utilization of Crop Straw (Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2022).
68. Fischer, G. et al. Global Agro-ecological Zones Assessment for Agriculture (GAEZ 2008). Harmonized World Soil Database v1.2. https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (2008).
69. Qian, C. et al. Prediction of higher heating values of biochar from proximate and ultimate analysis. Fuel 265, 116925 (2020).
70. Deng, X. et al. DXDX97/Biochar_code_and_data: potential of Biochar in China. Zenodo https://doi.org/10.5281/zenodo. 10369112 (2023).
Acknowledgements
Author contributions
Competing interests
Additional information
supplementary material available at
https://doi.org/10.1038/s41467-024-45314-y.
http://www.nature.com/reprints
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
© The Author(s) 2024
Institute of Energy, Environment and Economy, Tsinghua University, Beijing 100084, China. School of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, China. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China. e-mail: tengfei@tsinghua.edu.cn - The scenarios represent the maximum theoretical potential, sustainable technical potential, and current technical potential, respectively; the biomass feedstocks include agricultural residues, forestry residues, grass residues, and potential dedicated energy crops, respectively.