DOI: https://doi.org/10.1007/s40820-024-01449-7
PMID: https://pubmed.ncbi.nlm.nih.gov/38861114
تاريخ النشر: 2024-06-11
رسائل النانو والميكرو
(2024) 16:213
تم القبول: 18 مايو 2024
نُشر على الإنترنت: 11 يونيو 2024
© المؤلف(ون) 2024
بناء مجالات كهربائية مدمجة باستخدام تقاطعات أشباه الموصلات وتقاطعات شوتكي المستندة إلى Mo–MXene/Mo–كبريتيدات المعادن للاستجابة الكهرومغناطيسية
النقاط البارزة
- تم تصميم مو-ميكسين/مو-كبريتيدات المعادن مع تقاطعات أشباه الموصلات وتقاطعات موت-شوتكي.
- تُبنى المجالات الكهربائية المدمجة في الهياكل غير المتجانسة من أشباه الموصلات وأشباه الموصلات والمعادن، مما يعزز الاستقطاب العازل وتطابق المعاوقة.
- أكدت حسابات نظرية الكثافة الوظيفية ومحاكاة مقطع الرادار العرضي القدرة الممتازة للهياكل غير المتجانسة على امتصاص الموجات الكهرومغناطيسية.
الملخص
لقد ظهرت استكشافات الهياكل المتغايرة المتعددة المتغيرات كاستراتيجية محورية لتطوير مواد امتصاص الموجات الكهرومغناطيسية عالية الأداء. ومع ذلك، فإن آلية الفقد في الهياكل المتغايرة التقليدية بسيطة نسبيًا، مستندة إلى الملاحظات التجريبية، وليست أحادية. في هذا العمل، قدمنا نظامًا جديدًا من الهياكل المتغايرة شبه الموصلات-شبه الموصلات-المعادن، Mo-MXene/Mo-كبريتيدات المعادن (المعدن=Sn،
مجال يعزز نقل الإلكترونات، كما أكدته نظرية الكثافة الوظيفية، التي تتعاون مع آليات استقطاب عازلة متعددة لتضخيم امتصاص الموجات الكهرومغناطيسية بشكل كبير. لقد قمنا بتفصيل تخليق ناجح لسلسلة من Mo-MXene/Mo-كبريتيدات المعادن التي تتميز بواجهات شبه موصلة وشبه موصلة-معادن. كانت الإنجازات أكثر وضوحًا في Mo-MXene/Mo-Sn كبريتيد، الذي حقق قيم فقدان انعكاس ملحوظة تبلغ -70.6 ديسيبل عند سمك مطابق يبلغ فقط 1.885 مم. تشير حسابات المقطع العرضي للرادار إلى أن هذه MXene/Mo-كبريتيدات المعادن لديها إمكانيات هائلة في تكنولوجيا التخفي العسكرية العملية. يمثل هذا العمل انحرافًا عن قيود تصميم المكونات التقليدية ويقدم مسارًا جديدًا لإنشاء مركبات متقدمة قائمة على MXene تتمتع بقدرات قوية على امتصاص الموجات الكهرومغناطيسية.
1 المقدمة
لقد حدد الباحثون التحديات الكامنة المرتبطة بـ BIEF الناتج عن الاتصالات شبه الموصلة. على سبيل المثال، عند واجهة الوصلات شبه الموصلة، يحدث عادةً إعادة تركيب سريعة للإلكترونات والثقوب المتراكمة خلال فترة زمنية قصيرة، مما يؤثر على إنشاء BIEF الواجهات. لحسن الحظ، أظهرت التحقيقات أن الوصلات الهجينة من نوع موت-شوتكي التي تم إنشاؤها من خلال التفاعلات بين المعادن وشبه الموصلات يمكن أن تنتج BIEF واجهات أكثر قوة وتعزز بشكل كبير نقل الإلكترونات. من خلال هندسة الوصلات الهجينة، يمكن استغلال تأثير الاقتران التآزري بين واجهات مختلفة لتحسين الحالات الإلكترونية للمواد ثنائية الأبعاد والحصول على خصائص مميزة. لذلك، من الممكن تصميم وصلة هجينة متعددة الأبعاد بخصائص امتصاص EMW محسنة من خلال دمج مزايا الوصلات شبه الموصلة ووصلات موت-شوتكي. بالإضافة إلى ذلك، قد تؤدي هذه الوصلة الهجينة الفريدة إلى حالات إلكترونية أكثر تعقيدًا من وصلة شبه موصلة واحدة ووصلة موت-شوتكي، مما يشكل عدة BIEF ويعدل قدرة نقل الإلكترونات لتحقيق قدرة مناسبة على فقدان العوازل. على الرغم من أن بعض الباحثين سعى إلى تعزيز أداء امتصاص EMW من خلال بناء الوصلات شبه الموصلة ووصلات موت-شوتكي، إلا أن الأدبيات نادرًا ما تتناول دمج كلا النوعين من الوصلات لزيادة فعالية امتصاص EMW في جهود البحث الجارية.
طبيعة
2 تجريبي
2.1 المواد الكيميائية
2.2 تحضير مو-ميكسان
تمت عملية الطرد المركزي وتعرضت لعدة غسلات بالماء المقطر. أخيرًا، تم تجفيفها تحت الفراغ عند درجة حرارة
2.3 تحضير Mo-MXene/MoS
2.4 تحضير مو-موكسين/مو-سن كبريتيد
2.5 تحضير Mo-MXene/Mo-Mعدن الكبريتيدات، Mo-MXene/كبريتيدات المعادن، وكبريتيدات المعادن
2.6 توصيف المواد
2.7 قياس المعلمات الكهرومغناطيسية
أين
2.8 قسم عرض الرادار ومحاكاة نظرية الكثافة الوظيفية
3 النتائج والمناقشة
3.1 التركيب والميكروهيكل
أدى إلى مشاكل في تطابق المقاومة بسبب الموصلية العالية لـ


وبناءً على هذه النتائج، نستنتج أن التعايش بين

تقاطع غير متجانس بين أشباه الموصلات وأشباه الموصلات والمعادن خلال عملية التخليق (الشكل 2c).
228.73 إلكترون فولت تت correspond إلى
تتجمع الأزهار النانوية بواسطة العديد من الأوراق النانوية بسمك

3.2 أداء امتصاص EMW
الكبريتيد يظهر أيضًا انخفاضًا

لأمواج EM، بينما
لتحقيق تطابق المقاومة (الشكل 4c) [51]. يحتوي Mo-MXene على أقل قيمة للنفاذية، ربما بسبب إدخال العديد من
قدرة التخفيف [60، 61]. بالإضافة إلى ذلك، فإن كل من Mo-MXene / كبريتيد القصدير وكبريتيد القصدير يظهران منحنيات كول-كول مشابهة لـ Mo-MXene (الشكل S26). وهذا يشير إلى أن إدخال عناصر القصدير له تأثير محدود على استرخاء الاستقطاب لديهم. المجموع
المقاومة. يسهل هذا الظاهرة تراكم الشحنات وتوليد الاستقطاب الواجهوي.
المواد القائمة على – لديها القدرة على تقليل RCS. مقارنة بـ Mo-MXene/MoS

العنصر (الأشكال S31b و S32b). الشكل 6j و k يكشف أيضًا أن عرض النطاق الترددي الفعال لمركب Mo-MXene/Mo-Mn الكبريتي يمكن أن يصل إلى 4.4 جيجاهرتز. تشير المزيد من الاستكشافات حول مطابقة المقاومة إلى أن إضافة هذه الأيونات المعدنية

غير ملحوظ بسبب سماحيتها المنخفضة، مما يؤدي إلى قدرة ضعيفة على فقدان العوازل. وبالتالي، فإن السماحية العالية لمركبات مو-موكسين/مو-كبريتيدات المعادن (المعدن
ال
3.3 محاكاة DFT وآليات الامتصاص
التحكم في نقل الشحنة داخل الهيكل غير المتجانس. عندما يتم إضافة القصدير، يظهر مخطط كثافة الشحنة التفاضلية أن الإلكترونات تتدفق من

الخسارة الحالية، الرنين الطبيعي، ورنين التبادل، جميعها تساهم في سعة خسارة المغناطيسية. وبالتالي، من خلال بناء تقاطعات أشباه الموصلات وتقاطعات موت-شوتكي بين Mo-MXene،
4 الاستنتاجات
تقاطعات وتقاطعات موت-شوتكي. يُظهر سلوك توليد واستقطاب BIEF أنه عامل رئيسي في تحسين خصائص امتصاص EMW، استنادًا إلى النتائج التجريبية والحسابات النظرية. بناءً على هذه الاستراتيجية المبتكرة، أجرينا تقييمًا مقارنًا لجميع العينات ضمن نظام Sn، وكشفنا أن تحقيق الهياكل غير المتجانسة من أشباه الموصلات-أشباه الموصلات-المعادن بنجاح يؤدي إلى أداء متميز. كنتيجة ملحوظة لهذه الطريقة، يظهر Mo-MXene/ Mo-Sn sulfide قدرات ملحوظة في امتصاص EMW مع
الإعلانات
المواد في هذه المقالة مشمولة في رخصة المشاع الإبداعي للمقالة، ما لم يُشار إلى خلاف ذلك في سطر الائتمان للمادة. إذا لم تكن المادة مشمولة في رخصة المشاع الإبداعي للمقالة وكان استخدامك المقصود غير مسموح به بموجب اللوائح القانونية أو يتجاوز الاستخدام المسموح به، فستحتاج إلى الحصول على إذن مباشرة من صاحب حقوق الطبع والنشر. لعرض نسخة من هذه الرخصة، قم بزيارةhttp://creativecommons.org/licenses/by/4.0/.
References
- Y. Xia, W. Gao, C. Gao, A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption. Adv. Funct. Mater. 32, 2204591 (2022). https://doi.org/10.1002/adfm. 202204591
- J. Yan, Q. Zheng, S. Wang, Y. Tian, W. Gong et al., Multifunctional organic-inorganic hybrid perovskite microcrystalline engineering and electromagnetic response switching multi-band devices. Adv. Mater. 35, 2300015 (2023). https:// doi.org/10.1002/adma. 202300015
- F. Pan, K. Pei, G. Chen, H. Guo, H. Jiang et al., Integrated electromagnetic device with on-off heterointerface for intelligent switching between wave-absorption and wave-transmission. Adv. Funct. Mater. 33(49), 2306599 (2023). https://doi. org/10.1002/adfm. 202306599
- R. Song, B. Mao, Z. Wang, Y. Hui, N. Zhang et al., Comparison of copper and graphene-assembled films in 5G wireless communication and THz electromagnetic-interference shielding. Proc. Natl. Acad. Sci. U.S.A. 120, e2209807120 (2023). https://doi.org/10.1073/pnas. 2209807120
- H. Jiang, L. Cai, F. Pan, Y. Shi, J. Cheng et al., Ordered heterostructured aerogel with broadband electromagnetic wave absorption based on mesoscopic magnetic superposition enhancement. Adv. Sci. 10(21), 2301599 (2023). https://doi. org/10.1002/advs. 202301599
- Y. Hou, Z. Sheng, C. Fu, J. Kong, X. Zhang, Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption. Nat. Commun. 13, 1227 (2022). https://doi.org/10.1038/ s41467-022-28906-4
- J. Cheng, H. Zhang, H. Wang, Z. Huang, H. Raza et al., Tailoring self-polarization of bimetallic organic frameworks with multiple polar units toward high-performance consecutive multi-band electromagnetic wave absorption at gigahertz. Adv. Funct. Mater. 32(24), 2201129 (2022). https://doi.org/10.1002/ adfm. 202201129
- Y. Liu, X. Zhou, Z. Jia, H. Wu, G. Wu, Oxygen vacancyinduced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived
composites. Adv. Funct. Mater. 32, 2204499 (2022). https:// doi.org/10.1002/adfm. 202204499 - B. Li, H. Tian, L. Li, W. Liu, J. Liu et al., Graphene-assisted assembly of electrically and magnetically conductive ceramic nanofibrous aerogels enable multifunctionality. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm. 202314653
- L. Gai, Y. Wang, P. Wan, S. Yu, Y. Chen et al., Compositional and hollow engineering of silicon carbide/carbon microspheres as high-performance microwave absorbing materials with good environmental tolerance. Nano-Micro Lett. 16, 167 (2024). https://doi.org/10.1007/s40820-024-01369-6
- F. Pan, M. Ning, Z. Li, D. Batalu, H. Guo et al., Sequential architecture induced strange dielectric-magnetic behaviors in ferromagnetic microwave absorber. Adv. Funct. Mater. 33, 2300374 (2023). https://doi.org/10.1002/adfm. 202300374
- M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi /polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. (2024). https://doi. org/10.1002/adfm. 202316691
- K. Zhang, Y. Liu, Y. Liu, Y. Yan, G. Ma et al., Tracking regulatory mechanism of trace Fe on graphene electromagnetic wave absorption. Nano-Micro Lett. 16, 66 (2024). https://doi. org/10.1007/s40820-023-01280-6
- J. Cheng, Y. Jin, J. Zhao, Q. Jing, B. Gu et al., From VIB- to VB-group transition metal disulfides: structure engineering modulation for superior electromagnetic wave absorption. Nano-Micro Lett. 16, 29 (2024). https://doi.org/10.1007/ s40820-023-01247-7
- M. Ning, P. Jiang, W. Ding, X. Zhu, G. Tan et al., Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz. Adv. Funct. Mater. 31(19), 2011229 (2021). https://doi.org/10.1002/ adfm. 202011229
- J. Liang, F. Ye, Y. Cao, R. Mo, L. Cheng et al., Defectengineered graphene/
multilayer alternating core-shell nanowire membrane: a plainified hybrid for broadband electromagnetic wave absorption. Adv. Funct. Mater. 32, 2200141 (2022). https://doi.org/10.1002/adfm. 202200141 - J. Wang, L. Liu, S. Jiao, K. Ma, J. Lv et al., Hierarchical carbon fiber@MXene@MoS
core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 30(45), 2002595 (2020). https://doi.org/ 10.1002/adfm. 202002595 - X. Wu, S. Xie, H. Zhang, Q. Zhang, B. Sels et al., Metal sulfide photocatalysts for lignocellulose valorization. Adv. Mater. 33(50), 2007129 (2021). https://doi.org/10.1002/ adma. 202007129
- Y. Dong, X. Zhu, F. Pan, Z. Xiang, X. Zhang et al., Fireretardant and thermal insulating honeycomb-like
nanosheets@3D porous carbon hybrids for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 426, 131272 (2021). https://doi.org/10.1016/j.cej.2021.131272 - Z. Tang, L. Xu, C. Xie, L. Guo, L. Zhang et al., Synthesis of
@expanded graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption.
21. L. Xing, X. Li, Z. Wu, X. Yu, J. Liu et al., 3D hierarchical local heterojunction of
22. Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed
23. L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic
24. B. Li, N. Wu, Y. Yang, F. Pan, C. Wang et al., Graphene oxide-assisted multiple cross-linking of MXene for largearea, high-strength, oxidation-resistant, and multifunctional films. Adv. Funct. Mater. 33(11), 2213357 (2023). https:// doi.org/10.1002/adfm. 202213357
25. M. Li, Y. Sun, D. Feng, K. Ruan, X. Liu et al., Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res. 16(5), 7820-7828 (2023). https://doi.org/10.1007/ s12274-023-5594-1
26. Y. Zhang, K. Ruan, Y. Guo, J. Gu, Recent advances of MXenes-based optical functional materials. Adv. Photonics Res. 4(12), 2300224 (2023). https://doi.org/10.1002/adpr. 202300224
27. L. Chen, L. Yue, X. Wang, S. Wu, W. Wang et al., Synergistically accelerating adsorption-electrocataysis of sulfur species via interfacial built-in electric field of
28. J. Choi, Y. Kim, S. Cho, K. Park, H. Kang et al., In situ formation of multiple schottky barriers in a
29. X. Zhao, M. Liu, Y. Wang, Y. Xiong, P. Yang et al., Designing a built-in electric field for efficient energy electrocatalysis. ACS Nano 16(12), 19959-19979 (2022). https://doi.org/10. 1021/acsnano.2c09888
30. S. Bai, J. Jiang, Q. Zhang, Y. Xiong, Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 44(10), 2893-2939 (2015). https://doi.org/10.1039/ C5CS00064E
31. M. Eshete, X. Li, L. Yang, X. Wang, J. Zhang et al., Charge steering in heterojunction photocatalysis: general principles, design, construction, and challenges. Small Sci. 3(3), 2200041 (2023). https://doi.org/10.1002/smsc. 202200041
32. Y. Dong, Y. Liu, Y. Hu, K. Ma, H. Jiang et al., Boosting reaction kinetics and reversibility in Mott-Schottky
heterojunctions for enhanced lithium storage. Sci. Bull. 65(17), 1470-1478 (2020). https://doi.org/10.1016/j.scib. 2020.05.007
33. M. Saraf, B. Chacon, S. Ippolito, R. Lord, M. Anayee et al., Enhancing charge storage of
34. B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B. Hosler et al., Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9(10), 9507-9516 (2015). https://doi. org/10.1021/acsnano.5b03591
35. X. Zeng, X. Jiang, Y. Ning, F. Hu, B. Fan, Construction of dual heterogeneous interface between zigzag-like Mo-MXene nanofibers and small CoNi@NC nanoparticles for electromagnetic wave absorption. J. Adv. Ceram. 12(8), 1562-1576 (2023). https://doi.org/10.26599/JAC.2023.9220772
36. Y. Sun, K. Liu, X. Hong, M. Chen, J. Kim et al., Probing local strain at
37. X. Wang, T. Zhu, S. Chang, Y. Lu, W. Mi et al., 3D nest-like architecture of core-shell
38. L. Huang, L. Zhao, Y. Zhang, Y. Chen, Q. Zhang et al., Selflimited on-site conversion of
39. J. Liu, H. Liang, B. Wei, J. Yun, L. Zhang et al., “Matryoshka Doll” heterostructures induce electromagnetic parameters fluctuation to tailor electromagnetic wave absorption. Small Struct. 4(7), 2200379 (2023). https://doi.org/10.1002/sstr. 202200379
40. J. Liu, L. Zhang, H. Wu, Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption. Adv. Funct. Mater. 32(26), 2200544 (2022). https://doi.org/10.1002/adfm. 202200544
41. X. Zeng, C. Zhao, Y. Yin, T. Nie, N. Xie et al., Construction of
42. Y. Liu, P. Zhang, N. Sun, B. Anasori, Q. Zhu et al., Selfassembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 30(23), 1707334 (2018). https://doi.org/10.1002/adma. 20170 7334
43. X. Jiang, Q. Wang, L. Song, H. Lu, H. Xu et al., Enhancing electromagnetic wave absorption with core-shell structured
44. Q. Xi, F. Xie, J. Liu, X. Zhang, J. Wang et al., In situ formation
coordination and electronic structure. Small 19(24), 2300717 (2023). https://doi.org/10.1002/smll. 202300717
45. F. Hu, F. Zhang, X. Wang, Y. Li, H. Wang et al., Ultrabroad band microwave absorption from hierarchical
46. J. Liu, Z. Jia, W. Zhou, X. Liu, C. Zhang et al., Self-assembled
47. X. Zeng, H. Zhang, R. Yu, G. Stucky, J. Qiu, A phase and interface co-engineered
48. Z. Gao, Z. Ma, D. Lan, Z. Zhao, L. Zhang et al., Synergistic polarization loss of
49. T. Zeng, G. Chen, Q. Peng, D. Feng, Q. Wang, Nano
50. J. Liu, L. Zhang, D. Zang, H. Wu, A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption. Adv. Funct. Mater. 31(45), 2105018 (2021). https://doi.org/10.1002/adfm. 202105018
51. X. Zeng, C. Zhao, X. Jiang, R. Yu, R. Che, Functional tailoring of multi-dimensional pure MXene nanostructures for significantly accelerated electromagnetic wave absorption. Small 19(41), 2303393 (2023). https://doi.org/10.1002/smll. 20230 3393
52. Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of
53. Z. Chen, J. Zhang, L. Ni, D. Sheng, R. Gao et al., Improving electromagnetic wave absorption property of metal borides/ carbon nanocomposites by magnetic-electric balance and ion substitution tuning strategy. Carbon 221, 118901 (2024). https://doi.org/10.1016/j.carbon.2024.118901
54. A. Xie, D. Sheng, W. Liu, Y. Chen, S. Cheng, Enhancing electromagnetic absorption performance of Molybdate@Carbon by metal ion substitution. J. Mater. Sci. Technol. 163, 92-100 (2023). https://doi.org/10.1016/j.jmst.2023.05.004
55. Y. Jiao, Z. Dai, M. Feng, J. Luo, Y. Xu, Electromagnetic absorption behavior regulation in bimetallic polyphthalocyanine derived CoFe -alloy/C 0D/2D nanocomposites. Mater. Today Phys. 33, 101058 (2023). https://doi.org/10.1016/j. mtphys.2023.101058
56. T. Gao, R. Zhao, Y.X. Li, Z. Zhu, C. Hu et al., Sub-nanometer Fe clusters confined in carbon nanocages for boosting dielectric polarization and broadband electromagnetic wave
absorption. Adv. Funct. Mater. 32(31), 2204370 (2022). https://doi.org/10.1002/adfm. 202204370
57. A. Xie, Z. Ma, Z. Xiong, W. Li, L. Jiang et al., Conjugate ferrocene polymer derived magnetic
58. K. Cole, R. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9, 341-351 (1941). https://doi.org/10.1063/1.1750906
59. Z. Gao, A. Iqbal, T. Hassan, S. Hui, H. Wu et al., Tailoring built-in electric field in a self-assembled zeolitic imidazolate framework/MXene nanocomposites for microwave absorption. Adv. Mater. (2024). https://doi.org/10.1002/adma. 202311411
60. A. Xie, R. Guo, L. Wu, W. Dong, Anion-substitution interfacial engineering to construct
61. Z. Li, L. Zhang, H. Wu, A regulable polyporous graphite/ melamine foam for heat conduction, sound absorption and electromagnetic wave absorption. Small 20(11), 2305120 (2024). https://doi.org/10.1002/smll. 202305120
62. C. Wei, L. Shi, M. Li, M. He, M. Li et al., Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci.
63. Y. Liu, X. Wei, X. He, J. Yao, R. Tan et al., Multifunctional shape memory composites for Joule heating, self-healing, and highly efficient microwave absorption. Adv. Funct. Mater. 33(5), 2211352 (2023). https://doi.org/10.1002/adfm. 20221 1352
64. X. Liu, W. Ma, Z. Qiu, T. Yang, J. Wang et al., Manipulation of impedance matching toward 3D-printed lightweight and stiff MXene based aerogels for consecutive multiband tunable electromagnetic wave absorption. ACS Nano 17(9), 8420-8432 (2023). https://doi.org/10.1021/acsnano.3c00338
65. J. Wen, G. Chen, S. Hui, Z. Li, J. Yun et al., Plasma induced dynamic coupling of microscopic factors to collaboratively promote EM losses coupling of transition metal dichalcogenide absorbers. Adv. Powder Mater. 3(3), 100180 (2024). https://doi.org/10.1016/j.apmate.2024.100180
66. H. Liang, S. Hui, G. Chen, H. Shen, J. Yun et al., Discovery of deactivation phenomenon in
67. S. Hui, X. Zhou, L. Zhang, H. Wu, Constructing multiphaseinduced interfacial polarization to surpass defect-induced polarization in multielement sulfide absorbers. Adv. Sci. 11(6), 2307649 (2024). https://doi.org/10.1002/advs. 202307649
- Xiaojun Zeng and Xiao Jiang contributed equally to this work.
Xiaojun Zeng, zengxiaojun@jcu.edu.cn; Renchao Che, rcche@fudan.edu.cn
School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, People’s Republic of China
School of Materials Science and Engineering, Shanghai University, Shanghai 200444, People’s Republic of China
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering and Technology, Fudan University, Shanghai 200438, People’s Republic of China
Zhejiang Laboratory, Hangzhou 311100, People’s Republic of China
DOI: https://doi.org/10.1007/s40820-024-01449-7
PMID: https://pubmed.ncbi.nlm.nih.gov/38861114
Publication Date: 2024-06-11
Nano-Micro Lett.
(2024) 16:213
Accepted: 18 May 2024
Published online: 11 June 2024
© The Author(s) 2024
Constructing Built-In Electric Fields with Semiconductor Junctions and Schottky Junctions Based on Mo-MXene/Mo-Metal Sulfides for Electromagnetic Response
HIGHLIGHTS
- Mo-MXene/Mo-metal sulfides with semiconductor junctions and Mott-Schottky junctions are designed.
- Built-in electric field are constructed in semiconductor-semiconductor-metal heterostructure, enhancing dielectric polarization and impedance matching.
- Density functional theory calculations and Radar cross-section simulations confirmed the excellent electromagnetic wave absorption ability of heterostructures.
Abstract
The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave (EMW) absorption materials. However, the loss mechanism in traditional heterostructures is relatively simple, guided by empirical observations, and is not monotonous. In this work, we presented a novel semiconductor-semiconductor-metal heterostructure system, Mo-MXene/Mo-metal sulfides (metal=Sn,
field that intensifies electron transfer, as confirmed by density functional theory, which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption. We detailed a successful synthesis of a series of Mo-MXene/Mo-metal sulfides featuring both semiconductorsemiconductor and semiconductor-metal interfaces. The achievements were most pronounced in Mo-MXene/Mo-Sn sulfide, which achieved remarkable reflection loss values of -70.6 dB at a matching thickness of only 1.885 mm . Radar cross-section calculations indicate that these MXene/Mo-metal sulfides have tremendous potential in practical military stealth technology. This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.
1 Introduction
researchers have identified inherent challenges associated with BIEF generated through semiconductor contacts. For instance, at the interface of semiconductor heterojunctions, a rapid recombination of accumulated electrons and holes often transpires within a short interval, thus affecting the establishment of interfacial BIEF [30, 31]. Fortunately, investigations have shown that Mott-Schottky heterojunctions established through interactions between metals and semiconductors can produce more robust interfacial BIEF and significantly enhance electron transfer [32]. By heterojunction engineering, the synergistic coupling effect between different interfaces can be exploited to improve the electronic states of 2D materials and obtain distinctive properties. Therefore, it is possible to design a multidimensional heterojunction with enhanced EMW absorption properties by combining the advantages of semiconductor junctions and Mott-Schottky junctions. In addition, this unique heterojunction may lead to more complex electronic states than a single semiconductor junction and Mott-Schottky junction, forming multiple BIEF and modulating the electron transfer capability to bring about a suitable dielectric loss capability. Although some researchers have sought to enhance EMW absorption performance through the construction of semiconductor and Mott-Schottky heterojunctions, the literature scarcely addresses the amalgamation of both types of junctions to heighten EMW absorption efficacy in ongoing research efforts.
nature of
2 Experimental
2.1 Chemicals
2.2 Preparation of Mo-MXene
underwent centrifugation and subjected to multiple washes with deionized water. Finally, it was vacuum-dried at a temperature of
2.3 Preparation of Mo-MXene/MoS
2.4 Preparation of Mo-MXene/Mo-Sn Sulfide
2.5 Preparation of Mo-MXene/Mo-Metal Sulfides, Mo-MXene/Metal Sulfides, and Metal Sulfides
2.6 Materials Characterization
2.7 Electromagnetic Parameter Measurement
where
2.8 Radar Cross-Section and Density Functional Theory Simulations
3 Results and Discussion
3.1 Composition and Microstructure
led to issues with poor impedance matching due to the high conductivity of


and S3c-g). Based on these findings, we infer that the coexistence of

semiconductor-semiconductor-metal heterojunction during the synthesis process (Fig. 2c).
228.73 eV correspond to
nanoflowers are assembled by numerous nanosheets with a thickness of

3.2 EMW Absorption Performance
sulfide also displays low

of EM waves, while
to impedance matching (Fig. 4c) [51]. Mo-MXene has the lowest permittivity, possibly due to the introduction of numerous
attenuation ability [60, 61]. In addition, both Mo-MXene/ Sn sulfide and Sn sulfide exhibit Cole-Cole curves similar to Mo-MXene (Fig. S26). This indicates that the introduction of Sn elements has a limited effect on their polarization relaxation. The total
resistance. This phenomenon facilitates charge accumulation and the generation of interfacial polarization.
-based materials have the ability to reduce RCS. Compared to Mo-MXene/MoS

element (Figs. S31b and S32b). Figure 6j, k also reveals that the EAB of Mo-MXene/Mo-Mn sulfide can reach 4.4 GHz . Further exploration of impedance matching indicates that the addition of these metal ions (

negligible due to their low permittivity, resulting in poor dielectric loss capability. Consequently, the high permittivity of Mo-MXene/Mo-metal sulfides (metal
the
3.3 DFT Simulation and Absorption Mechanisms
controlling the transfer of charge inside the heterogeneous structure. When Sn is doped, the differential charge density diagram shows that electrons flow from

current loss, natural resonance, and exchange resonance, all contributing to its magnetic loss capacity. Consequently, through the construction of semiconductor junctions and Mott-Schottky junctions between Mo-MXene,
4 Conclusions
junctions and Mott-Schottky junctions. The generation and polarization behavior of BIEF is shown to be a key factor in the improvement of EMW absorption properties, based on experimental results and theoretical calculations. Building upon this innovative strategy, we conducted a comparative assessment of all samples within the Sn system, uncovering that the successful realization of semiconductor-semicon-ductor-metal heterostructures leads to outstanding performance. As a remarkable result of this approach, Mo-MXene/ Mo-Sn sulfide exhibits remarkable EMW absorption capabilities with a
Declarations
material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
References
- Y. Xia, W. Gao, C. Gao, A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption. Adv. Funct. Mater. 32, 2204591 (2022). https://doi.org/10.1002/adfm. 202204591
- J. Yan, Q. Zheng, S. Wang, Y. Tian, W. Gong et al., Multifunctional organic-inorganic hybrid perovskite microcrystalline engineering and electromagnetic response switching multi-band devices. Adv. Mater. 35, 2300015 (2023). https:// doi.org/10.1002/adma. 202300015
- F. Pan, K. Pei, G. Chen, H. Guo, H. Jiang et al., Integrated electromagnetic device with on-off heterointerface for intelligent switching between wave-absorption and wave-transmission. Adv. Funct. Mater. 33(49), 2306599 (2023). https://doi. org/10.1002/adfm. 202306599
- R. Song, B. Mao, Z. Wang, Y. Hui, N. Zhang et al., Comparison of copper and graphene-assembled films in 5G wireless communication and THz electromagnetic-interference shielding. Proc. Natl. Acad. Sci. U.S.A. 120, e2209807120 (2023). https://doi.org/10.1073/pnas. 2209807120
- H. Jiang, L. Cai, F. Pan, Y. Shi, J. Cheng et al., Ordered heterostructured aerogel with broadband electromagnetic wave absorption based on mesoscopic magnetic superposition enhancement. Adv. Sci. 10(21), 2301599 (2023). https://doi. org/10.1002/advs. 202301599
- Y. Hou, Z. Sheng, C. Fu, J. Kong, X. Zhang, Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption. Nat. Commun. 13, 1227 (2022). https://doi.org/10.1038/ s41467-022-28906-4
- J. Cheng, H. Zhang, H. Wang, Z. Huang, H. Raza et al., Tailoring self-polarization of bimetallic organic frameworks with multiple polar units toward high-performance consecutive multi-band electromagnetic wave absorption at gigahertz. Adv. Funct. Mater. 32(24), 2201129 (2022). https://doi.org/10.1002/ adfm. 202201129
- Y. Liu, X. Zhou, Z. Jia, H. Wu, G. Wu, Oxygen vacancyinduced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived
composites. Adv. Funct. Mater. 32, 2204499 (2022). https:// doi.org/10.1002/adfm. 202204499 - B. Li, H. Tian, L. Li, W. Liu, J. Liu et al., Graphene-assisted assembly of electrically and magnetically conductive ceramic nanofibrous aerogels enable multifunctionality. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm. 202314653
- L. Gai, Y. Wang, P. Wan, S. Yu, Y. Chen et al., Compositional and hollow engineering of silicon carbide/carbon microspheres as high-performance microwave absorbing materials with good environmental tolerance. Nano-Micro Lett. 16, 167 (2024). https://doi.org/10.1007/s40820-024-01369-6
- F. Pan, M. Ning, Z. Li, D. Batalu, H. Guo et al., Sequential architecture induced strange dielectric-magnetic behaviors in ferromagnetic microwave absorber. Adv. Funct. Mater. 33, 2300374 (2023). https://doi.org/10.1002/adfm. 202300374
- M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi /polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. (2024). https://doi. org/10.1002/adfm. 202316691
- K. Zhang, Y. Liu, Y. Liu, Y. Yan, G. Ma et al., Tracking regulatory mechanism of trace Fe on graphene electromagnetic wave absorption. Nano-Micro Lett. 16, 66 (2024). https://doi. org/10.1007/s40820-023-01280-6
- J. Cheng, Y. Jin, J. Zhao, Q. Jing, B. Gu et al., From VIB- to VB-group transition metal disulfides: structure engineering modulation for superior electromagnetic wave absorption. Nano-Micro Lett. 16, 29 (2024). https://doi.org/10.1007/ s40820-023-01247-7
- M. Ning, P. Jiang, W. Ding, X. Zhu, G. Tan et al., Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz. Adv. Funct. Mater. 31(19), 2011229 (2021). https://doi.org/10.1002/ adfm. 202011229
- J. Liang, F. Ye, Y. Cao, R. Mo, L. Cheng et al., Defectengineered graphene/
multilayer alternating core-shell nanowire membrane: a plainified hybrid for broadband electromagnetic wave absorption. Adv. Funct. Mater. 32, 2200141 (2022). https://doi.org/10.1002/adfm. 202200141 - J. Wang, L. Liu, S. Jiao, K. Ma, J. Lv et al., Hierarchical carbon fiber@MXene@MoS
core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 30(45), 2002595 (2020). https://doi.org/ 10.1002/adfm. 202002595 - X. Wu, S. Xie, H. Zhang, Q. Zhang, B. Sels et al., Metal sulfide photocatalysts for lignocellulose valorization. Adv. Mater. 33(50), 2007129 (2021). https://doi.org/10.1002/ adma. 202007129
- Y. Dong, X. Zhu, F. Pan, Z. Xiang, X. Zhang et al., Fireretardant and thermal insulating honeycomb-like
nanosheets@3D porous carbon hybrids for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 426, 131272 (2021). https://doi.org/10.1016/j.cej.2021.131272 - Z. Tang, L. Xu, C. Xie, L. Guo, L. Zhang et al., Synthesis of
@expanded graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption.
21. L. Xing, X. Li, Z. Wu, X. Yu, J. Liu et al., 3D hierarchical local heterojunction of
22. Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed
23. L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic
24. B. Li, N. Wu, Y. Yang, F. Pan, C. Wang et al., Graphene oxide-assisted multiple cross-linking of MXene for largearea, high-strength, oxidation-resistant, and multifunctional films. Adv. Funct. Mater. 33(11), 2213357 (2023). https:// doi.org/10.1002/adfm. 202213357
25. M. Li, Y. Sun, D. Feng, K. Ruan, X. Liu et al., Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res. 16(5), 7820-7828 (2023). https://doi.org/10.1007/ s12274-023-5594-1
26. Y. Zhang, K. Ruan, Y. Guo, J. Gu, Recent advances of MXenes-based optical functional materials. Adv. Photonics Res. 4(12), 2300224 (2023). https://doi.org/10.1002/adpr. 202300224
27. L. Chen, L. Yue, X. Wang, S. Wu, W. Wang et al., Synergistically accelerating adsorption-electrocataysis of sulfur species via interfacial built-in electric field of
28. J. Choi, Y. Kim, S. Cho, K. Park, H. Kang et al., In situ formation of multiple schottky barriers in a
29. X. Zhao, M. Liu, Y. Wang, Y. Xiong, P. Yang et al., Designing a built-in electric field for efficient energy electrocatalysis. ACS Nano 16(12), 19959-19979 (2022). https://doi.org/10. 1021/acsnano.2c09888
30. S. Bai, J. Jiang, Q. Zhang, Y. Xiong, Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 44(10), 2893-2939 (2015). https://doi.org/10.1039/ C5CS00064E
31. M. Eshete, X. Li, L. Yang, X. Wang, J. Zhang et al., Charge steering in heterojunction photocatalysis: general principles, design, construction, and challenges. Small Sci. 3(3), 2200041 (2023). https://doi.org/10.1002/smsc. 202200041
32. Y. Dong, Y. Liu, Y. Hu, K. Ma, H. Jiang et al., Boosting reaction kinetics and reversibility in Mott-Schottky
heterojunctions for enhanced lithium storage. Sci. Bull. 65(17), 1470-1478 (2020). https://doi.org/10.1016/j.scib. 2020.05.007
33. M. Saraf, B. Chacon, S. Ippolito, R. Lord, M. Anayee et al., Enhancing charge storage of
34. B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B. Hosler et al., Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9(10), 9507-9516 (2015). https://doi. org/10.1021/acsnano.5b03591
35. X. Zeng, X. Jiang, Y. Ning, F. Hu, B. Fan, Construction of dual heterogeneous interface between zigzag-like Mo-MXene nanofibers and small CoNi@NC nanoparticles for electromagnetic wave absorption. J. Adv. Ceram. 12(8), 1562-1576 (2023). https://doi.org/10.26599/JAC.2023.9220772
36. Y. Sun, K. Liu, X. Hong, M. Chen, J. Kim et al., Probing local strain at
37. X. Wang, T. Zhu, S. Chang, Y. Lu, W. Mi et al., 3D nest-like architecture of core-shell
38. L. Huang, L. Zhao, Y. Zhang, Y. Chen, Q. Zhang et al., Selflimited on-site conversion of
39. J. Liu, H. Liang, B. Wei, J. Yun, L. Zhang et al., “Matryoshka Doll” heterostructures induce electromagnetic parameters fluctuation to tailor electromagnetic wave absorption. Small Struct. 4(7), 2200379 (2023). https://doi.org/10.1002/sstr. 202200379
40. J. Liu, L. Zhang, H. Wu, Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption. Adv. Funct. Mater. 32(26), 2200544 (2022). https://doi.org/10.1002/adfm. 202200544
41. X. Zeng, C. Zhao, Y. Yin, T. Nie, N. Xie et al., Construction of
42. Y. Liu, P. Zhang, N. Sun, B. Anasori, Q. Zhu et al., Selfassembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 30(23), 1707334 (2018). https://doi.org/10.1002/adma. 20170 7334
43. X. Jiang, Q. Wang, L. Song, H. Lu, H. Xu et al., Enhancing electromagnetic wave absorption with core-shell structured
44. Q. Xi, F. Xie, J. Liu, X. Zhang, J. Wang et al., In situ formation
coordination and electronic structure. Small 19(24), 2300717 (2023). https://doi.org/10.1002/smll. 202300717
45. F. Hu, F. Zhang, X. Wang, Y. Li, H. Wang et al., Ultrabroad band microwave absorption from hierarchical
46. J. Liu, Z. Jia, W. Zhou, X. Liu, C. Zhang et al., Self-assembled
47. X. Zeng, H. Zhang, R. Yu, G. Stucky, J. Qiu, A phase and interface co-engineered
48. Z. Gao, Z. Ma, D. Lan, Z. Zhao, L. Zhang et al., Synergistic polarization loss of
49. T. Zeng, G. Chen, Q. Peng, D. Feng, Q. Wang, Nano
50. J. Liu, L. Zhang, D. Zang, H. Wu, A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption. Adv. Funct. Mater. 31(45), 2105018 (2021). https://doi.org/10.1002/adfm. 202105018
51. X. Zeng, C. Zhao, X. Jiang, R. Yu, R. Che, Functional tailoring of multi-dimensional pure MXene nanostructures for significantly accelerated electromagnetic wave absorption. Small 19(41), 2303393 (2023). https://doi.org/10.1002/smll. 20230 3393
52. Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of
53. Z. Chen, J. Zhang, L. Ni, D. Sheng, R. Gao et al., Improving electromagnetic wave absorption property of metal borides/ carbon nanocomposites by magnetic-electric balance and ion substitution tuning strategy. Carbon 221, 118901 (2024). https://doi.org/10.1016/j.carbon.2024.118901
54. A. Xie, D. Sheng, W. Liu, Y. Chen, S. Cheng, Enhancing electromagnetic absorption performance of Molybdate@Carbon by metal ion substitution. J. Mater. Sci. Technol. 163, 92-100 (2023). https://doi.org/10.1016/j.jmst.2023.05.004
55. Y. Jiao, Z. Dai, M. Feng, J. Luo, Y. Xu, Electromagnetic absorption behavior regulation in bimetallic polyphthalocyanine derived CoFe -alloy/C 0D/2D nanocomposites. Mater. Today Phys. 33, 101058 (2023). https://doi.org/10.1016/j. mtphys.2023.101058
56. T. Gao, R. Zhao, Y.X. Li, Z. Zhu, C. Hu et al., Sub-nanometer Fe clusters confined in carbon nanocages for boosting dielectric polarization and broadband electromagnetic wave
absorption. Adv. Funct. Mater. 32(31), 2204370 (2022). https://doi.org/10.1002/adfm. 202204370
57. A. Xie, Z. Ma, Z. Xiong, W. Li, L. Jiang et al., Conjugate ferrocene polymer derived magnetic
58. K. Cole, R. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9, 341-351 (1941). https://doi.org/10.1063/1.1750906
59. Z. Gao, A. Iqbal, T. Hassan, S. Hui, H. Wu et al., Tailoring built-in electric field in a self-assembled zeolitic imidazolate framework/MXene nanocomposites for microwave absorption. Adv. Mater. (2024). https://doi.org/10.1002/adma. 202311411
60. A. Xie, R. Guo, L. Wu, W. Dong, Anion-substitution interfacial engineering to construct
61. Z. Li, L. Zhang, H. Wu, A regulable polyporous graphite/ melamine foam for heat conduction, sound absorption and electromagnetic wave absorption. Small 20(11), 2305120 (2024). https://doi.org/10.1002/smll. 202305120
62. C. Wei, L. Shi, M. Li, M. He, M. Li et al., Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci.
63. Y. Liu, X. Wei, X. He, J. Yao, R. Tan et al., Multifunctional shape memory composites for Joule heating, self-healing, and highly efficient microwave absorption. Adv. Funct. Mater. 33(5), 2211352 (2023). https://doi.org/10.1002/adfm. 20221 1352
64. X. Liu, W. Ma, Z. Qiu, T. Yang, J. Wang et al., Manipulation of impedance matching toward 3D-printed lightweight and stiff MXene based aerogels for consecutive multiband tunable electromagnetic wave absorption. ACS Nano 17(9), 8420-8432 (2023). https://doi.org/10.1021/acsnano.3c00338
65. J. Wen, G. Chen, S. Hui, Z. Li, J. Yun et al., Plasma induced dynamic coupling of microscopic factors to collaboratively promote EM losses coupling of transition metal dichalcogenide absorbers. Adv. Powder Mater. 3(3), 100180 (2024). https://doi.org/10.1016/j.apmate.2024.100180
66. H. Liang, S. Hui, G. Chen, H. Shen, J. Yun et al., Discovery of deactivation phenomenon in
67. S. Hui, X. Zhou, L. Zhang, H. Wu, Constructing multiphaseinduced interfacial polarization to surpass defect-induced polarization in multielement sulfide absorbers. Adv. Sci. 11(6), 2307649 (2024). https://doi.org/10.1002/advs. 202307649
- Xiaojun Zeng and Xiao Jiang contributed equally to this work.
Xiaojun Zeng, zengxiaojun@jcu.edu.cn; Renchao Che, rcche@fudan.edu.cn
School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, People’s Republic of China
School of Materials Science and Engineering, Shanghai University, Shanghai 200444, People’s Republic of China
Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering and Technology, Fudan University, Shanghai 200438, People’s Republic of China
Zhejiang Laboratory, Hangzhou 311100, People’s Republic of China
