تأمين مستقبل مستدام: تهديد تغير المناخ للزراعة، والأمن الغذائي، وأهداف التنمية المستدامة Securing a sustainable future: the climate change threat to agriculture, food security, and sustainable development goals

المجلة: Journal of Umm Al-Qura University for Applied Sciences
DOI: https://doi.org/10.1007/s43994-024-00177-3
تاريخ النشر: 2024-07-11

تأمين مستقبل مستدام: تهديد تغير المناخ للزراعة، والأمن الغذائي، وأهداف التنمية المستدامة

أنام سليم صبية أنور توفيق نواز شاه فهد شاه سعود تنزيل الرحمن محمد ناصر رشيد خان توقير نواز

تاريخ الاستلام: 4 أبريل 2024 / تاريخ القبول: 4 يوليو 2024 / تاريخ النشر على الإنترنت: 11 يوليو 2024
© المؤلف(ون) 2024

الملخص

يشكل تغيير المناخ تهديدًا مستمرًا للأمن الغذائي ونظام إنتاج الزراعة. يواجه قطاع الزراعة تحديات شديدة في تحقيق أهداف التنمية المستدامة بسبب الآثار المباشرة وغير المباشرة التي تفرضها التغيرات المناخية المستمرة. على الرغم من أن العديد من الصناعات تواجه تحدي تغير المناخ، إلا أن تأثيره على صناعة الزراعة كبير. لقد أثارت التغيرات المناخية غير المنطقية مخاوف عامة ملحة، حيث أن الإنتاج الكافي والإمدادات الغذائية تحت تهديد مستمر. يتعرض نظام إنتاج الغذاء لتهديد سلبي بسبب تغير الأنماط المناخية مما يزيد من خطر الفقر الغذائي. وقد أدى ذلك إلى حالة مقلقة بشأن أنماط الأكل العالمية، لا سيما في البلدان التي تلعب فيها الزراعة دورًا كبيرًا في اقتصاداتها ومستويات إنتاجيتها. يركز هذا الاستعراض على العواقب المتدهورة لتغيير المناخ مع التأكيد الأساسي على قطاع الزراعة وكيف تؤثر الأنماط المناخية المتغيرة على الأمن الغذائي بشكل مباشر أو غير مباشر. لقد وضعت التحولات المناخية والتغير الناتج في نطاقات درجات الحرارة بقاء وصلاحية العديد من الأنواع في خطر، مما زاد من فقدان التنوع البيولوجي من خلال تقلب الهياكل البيئية بشكل متزايد. تؤدي التأثيرات غير المباشرة لتغير المناخ إلى انخفاض جودة الغذاء وارتفاع تكاليفه بالإضافة إلى أنظمة توزيع الغذاء غير الكافية. يبرز الجزء الختامي من الاستعراض التركيز على تنفيذ السياسات الهادفة إلى التخفيف من آثار تغير المناخ، على المستويين الإقليمي والعالمي. تم جمع بيانات هذه الدراسة من منظمات بحثية مختلفة، وصحف، وأوراق سياسات، ومصادر أخرى لمساعدة القراء في فهم القضية. كما تم تحليل تنفيذ السياسات الذي أظهر أن انخراط الحكومة أمر لا غنى عنه للتقدم على المدى الطويل للأمة، لأنه سيضمن المساءلة الصارمة عن الأدوات واللوائح التي تم تنفيذها سابقًا لإنشاء سياسة مناخية متطورة. لذلك، من الضروري تقليل أو التكيف مع آثار تغير المناخ لأنه، لضمان البقاء العالمي، يتطلب معالجة هذه المخاطر العالمية التزامًا جماعيًا عالميًا للتخفيف من عواقبها الوخيمة.

الكلمات الرئيسية تغير المناخ خطر الزراعة الأمن الغذائي أهداف التنمية المستدامة

1 تغير المناخ – النظرة العالمية

تغيير المناخ هو قضية تثير القلق العالمي مع عواقب مقلقة على الثقافات البشرية والاقتصاد والنظم البيئية. لقد كان مناخ الأرض يتغير منذ ما يقرب من مليون عام، لكن معدل التغيير الحالي أسرع بكثير مما يمكن تفسيره فقط من خلال العمليات الطبيعية. الإجماع الساحق بين العلماء هو أن الأنشطة البشرية هي المحرك الرئيسي وراء تسارع وتيرة تغير المناخ. لقد أظهرت العديد من التحقيقات أن العالم يعاني بالفعل من آثار التحولات المناخية. أدت درجات الحرارة المتزايدة إلى المزيد من
موجات الحرارة المتكررة والشديدة، التي لها تأثير كبير على صحة الإنسان وإنتاجيته. بسبب تغير المناخ، كانت هناك عواصف شديدة وجفاف، مما يؤثر على إمدادات المياه وأمن الغذاء في العديد من البلدان. علاوة على ذلك، فإن ارتفاع مستوى سطح البحر يؤدي إلى الفيضانات الساحلية والتآكل، مما يهدد السكان والبنية التحتية في المناطق المنخفضة.
الأسباب الرئيسية لتغير المناخ هي انبعاثات غازات الدفيئة (GHGs)، مثل ، و ، وزيادة وفرتها في الغلاف الجوي تعزز بشكل كبير من خلال استخدام المركبات، والأنشطة الزراعية، والتطور الصناعي، وحرق الوقود الأحفوري [45]. أفاد أحدث تقرير صادر عن وكالة الطاقة الدولية (IEA) أن في جميع أنحاء العالم انبعاثات استخدام الطاقة زادت بمقدار في
2021، بعد انخفاض طفيف في 2020 بسبب جائحة COVID19 [54]. بينما تعتبر الدورات الشمسية، والنشاط الزلزالي، والانفجارات البركانية أمثلة على الظواهر الطبيعية التي تساهم في تدهور البيئة، فإن التدخلات البشرية تسرع بشكل مقلق انبعاثات غازات الدفيئة العالمية، مما يؤدي إلى توازن غير متوازن في الغلاف الجوي الطبيعي، وتدهور البيئة، والاحترار العالمي [96]. لذلك، من الضروري التعامل مع قضايا تغير المناخ من خلال تقليل انبعاثات غازات الدفيئة وخلق أنشطة صديقة للبيئة ستساعد في تقليل آثارها الضارة [75].

1.1 تغير المناخ – تهديد مقلق للزراعة

تتأثر الزراعة بشكل كبير بتغير المناخ، والزراعة ضرورية لكل من التنمية المستدامة وإنتاج الغذاء. تشمل تداعيات تغير المناخ المتنوع على الزراعة، التغيرات في درجات الحرارة، وهطول الأمطار، والطقس القاسي. هذه الآثار الضارة تثير القلق فيما يتعلق بالدول النامية حيث تلعب الزراعة دورًا أساسيًا في ضمان كل من النمو الاقتصادي والأمن الغذائي. باكستان، وهي دولة زراعية حيث يرتبط معظم سكانها بشكل مباشر أو غير مباشر بقطاع الزراعة، هي أيضًا عرضة للغاية للكوارث الطبيعية الناجمة عن تغير المناخ.

2 العواقب المباشرة لتغير المناخ على الزراعة

2.1 تغييرات درجة الحرارة

تؤثر التغيرات الكبيرة في درجات الحرارة الناتجة عن تغير المناخ بشكل مباشر على إنتاجية المحاصيل. تؤدي درجات الحرارة المتزايدة إلى زيادة مستويات الضغوط المتعلقة بالحرارة والمياه، مما يقلل من الإنتاج الزراعي. تتأثر درجة حرارة الغلاف الجوي بزيادة غازات الدفيئة. يتم امتصاص موجات الحرارة في الغلاف الجوي بواسطة الغازات النشطة بالأشعة تحت الحمراء، وخاصة ثاني أكسيد الكربون. الأوزون ) وبخار الماء ( ) مما يؤدي بعد ذلك إلى تدفئة الأرض في ظاهرة معروفة باسم تأثير الاحتباس الحراري [69]. لقد ارتفعت درجة الحرارة العالمية المتوسطة بمقدار منذ عام 1850. ومع ذلك، فقد ارتفعت درجة حرارة اليابسة العالمية بمعدل يقارب ضعف ما ارتفعت به المحيطات بسبب التغيرات الأكثر وضوحًا في درجات الحرارة على اليابسة. بالمقارنة مع متوسط درجة الحرارة بين عامي 1951 و1980، فقد زادت درجات الحرارة العالمية لليابسة بمعدل بينما ارتفعت درجات حرارة سطح المحيطات (باستثناء مناطق الجليد البحري) بـ . بالإضافة إلى ذلك، نظرًا لأنها تحتوي على نسبة أكبر من اليابسة مقارنة بالكرة الأرضية الجنوبية، فقد أظهرت الكرة الأرضية الشمالية متوسط درجة حرارة أعلى. لقد شهدت المناطق القطبية unprecedented
ارتفاع في درجة الحرارة، مما له عواقب سلبية مثل ذوبان الأنهار الجليدية. من الضروري تقليل انبعاثات غازات الدفيئة لمنع درجة حرارة الأرض من تجاوز زيادة فوق المستويات ما قبل الصناعية. لقد ارتفع مستوى سطح البحر بسبب الاحتباس الحراري بطريقتين. كل من تمدد حجم الماء بسبب الاحترار وذوبان الأنهار الجليدية، والغطاء الجليدي القطبي، ورف الجليد الأطلسي تسبب في زيادة حجم المحيط. على مدى الألفية الثلاث الماضية، ارتفع متوسط مستوى سطح البحر بشكل أسرع منذ عام 1900 مما كان عليه في أي قرن سابق. التوقعات المستقبلية للهيئة الحكومية الدولية المعنية بتغير المناخ (IPCC) تقدر أن متوسط درجة حرارة العالم سيرتفع بـ بحلول عام 2100 و بحلول عام 2400 [55]. عند مستوى القوة الإشعاعية الحالي، يتجاوز بحلول عام 2100 لا يبدو أنه سيحدث. ومع ذلك، فإن الخطر في تزايد، بشكل أساسي نتيجة للقوى المشعة التي تستقر فوق 400 جزء في المليون من [40].
تقدم الظروف المناخية القاسية التي ظهرت في باكستان خطرًا شديدًا على الأمن الغذائي واستدامة الأنظمة الزراعية. نظرًا لتنوع مناطقها المناخية، فإن باكستان عرضة لدرجات حرارة متطرفة بما في ذلك موجات الحر وموجات البرد. لقد أثرت درجات الحرارة المتزايدة على إنتاجية الزراعة من خلال عمليات متعددة، بما في ذلك زيادة الضغط المائي، وتغير في ظواهر المحاصيل، وزيادة ضغط الآفات والأمراض. علاوة على ذلك، يمكن أن يؤدي الضغط الحراري إلى تقليل غلات المحاصيل، وتدهور جودة المحاصيل، والتداخل مع التلقيح في مراحل النمو الحاسمة. بالإضافة إلى ذلك، فإن الطقس الحار يزيد من ضعف النباتات الحساسة للحرارة مثل القمح والأرز والذرة. من ناحية أخرى، بسبب الصقيع ودرجات الحرارة المتجمدة، فإن الأحداث الباردة الشديدة، لا سيما في شمال باكستان، قد وضعت أيضًا الأنظمة الزراعية في خطر. يؤدي الصقيع إلى تدهور أنسجة النباتات، مما يقلل من الغلات وجودة وكمية المحاصيل. كما أن إنتاج وصحة الماشية تتأثر أيضًا بموجات البرد، مما يعرض سبل عيش المزارعين الذين يعتمدون على تربية الحيوانات للخطر.

2.2 تغييرات الهطول

تعد التعديلات على أنماط هطول الأمطار تأثيرًا آخر من تأثيرات تغير المناخ التي تسهم في كل من الجفاف والفيضانات. وقد صرح الفريق الحكومي الدولي المعني بتغير المناخ (IPCC) التابع للأمم المتحدة بشكل صريح في تقرير التقييم السادس أن الأنشطة البشرية والتطور الصناعي السريع قد زادت من تركيز غازات الدفيئة سنويًا، مما أدى إلى ارتفاع متوسط درجة حرارة سطح الأرض العالمية بحوالي في غضون عشر سنوات فقط (2011-2020) [56]. كما ذكرت اللجنة أنه نتيجة للاحتباس الحراري، ستحدث أحداث هطول الأمطار الشديدة بشكل أكثر تكرارًا [121، 122]. ستتأثر شدة الفيضانات و magnitude بشكل كارثي بتغير المناخ، لا سيما في الزراعة، التي تعد مصدر دخل رئيسي للناس ومحركًا كبيرًا لاقتصادات
تتعرض العديد من الدول [103]. سكان المناطق الريفية، وخاصة في الدول النامية، غالبًا ما يكونون عرضة للفيضانات لأن لديهم موارد أقل وقدرة تكيف أقل [90]. التغيرات البيئية والمناخية هي المسؤولة بشكل أساسي عن شدة وكثافة كوارث الفيضانات [61، 62]. إن التعرف بشكل غير دقيق على كيفية تأثير الظروف المناخية المختلفة على الأنظمة الزراعية لن يؤدي فقط إلى إلحاق الضرر بالإنتاج الغذائي والسلامة، بل سيعيق أيضًا الجهود الرامية إلى تعزيز التنمية المستدامة والقضاء على الفقر [52]. يمكن أن تتسبب التغيرات الجذرية في أنماط هطول الأمطار في أضرار للبنية التحتية وفقدان زراعي. لقد تسببت الجفاف في انخفاض الإنتاجية الزراعية والأمن الغذائي في العديد من المناطق، بينما أدت الأمطار غير العادية إلى تدهور المحاصيل الناضجة. أظهرت دراسة حديثة في إثيوبيا أن انخفاض غلات الذرة والتيف كان نتيجة لزيادة تقلبات هطول الأمطار [105]. وبالمثل، أدى انخفاض هطول الأمطار في منطقة جنوب الصحراء الأفريقية إلى انخفاض إنتاجية الذرة، حيث أدى انخفاض هطول الأمطار إلى تقليل غلات محصول الذرة، الذي يعد الغذاء الأساسي في المنطقة [20]. من بين أهم آثار التغير المناخي العالمي في باكستان هو زيادة تكرار الفيضانات وشدتها. وفقًا لتقرير صادر عن البنك الدولي، تحتل باكستان مرتبة بين الدول الأكثر عرضة للفيضانات على مستوى العالم [13]. في عام 2022، شهدت البلاد عدة فيضانات كبيرة كانت الأسوأ في تاريخ البلاد، مما تسبب في أضرار كبيرة للمحاصيل القائمة بما في ذلك القمح والأرز والدخن والدخن وقصب السكر والقطن، خاصة في مقاطعتي السند وبلوشستان [1]. هذه الأضرار في المحاصيل تسببت في خسائر بمليارات الدولارات للاقتصاد الوطني [86].
تواجه باكستان تباينًا كبيرًا في هطول الأمطار بسبب تنوع مناطقها المناخية. ومع ذلك، من المتوقع أن يؤدي تغير المناخ إلى تفاقم هذا التباين، مما يؤدي إلى زيادة حدوث وشدة الفيضانات. لقد أدت أحداث هطول الأمطار الشديدة والفيضانات إلى تآكل التربة، وتسرب المغذيات، وتجمع المياه، وكل ذلك يمكن أن يضر بصحة المحاصيل ويقلل من الغلات. تسببت الفيضانات في تدمير البنية التحتية، وغسل المحاصيل، وتعطيل الأنشطة الزراعية. تم عرض المناخ الشهري لدرجات الحرارة الدنيا، ودرجات الحرارة القصوى، ودرجة الحرارة المتوسطة، وهطول الأمطار من 1991 إلى 2020 في باكستان، المأخوذ من بوابة المعرفة حول تغير المناخ العالمية، في الشكل 1.

2.3 تغيير في جودة التربة واستهلاك الأسمدة

تواجه الأنظمة الزراعية مشاكل هائلة بسبب تأثيرات تغير المناخ على جودة التربة واستخدام الأسمدة. قد تعاني العائدات واستدامة الزراعة نتيجة للظروف المناخية المتغيرة الناجمة عن تغير المناخ. أحد التأثيرات الرئيسية هو تدهور التربة، الذي يحدث نتيجة لأشياء مثل زيادة هطول الأمطار والأحداث الجوية القاسية التي تسبب تسرب المغذيات، والتآكل، والانضغاط. يتم إزالة التربة السطحية المهمة من خلال هذه العمليات، مما يقلل من خصوبتها ويقيد نمو المحاصيل. يمكن أن يتعطل نمو الجذور وامتصاص المغذيات أيضًا بسبب انضغاط التربة، الذي يمكن أن يتفاقم من خلال تغيير هطول الأمطار.
الشكل 1 المناخ الشهري لدرجة الحرارة الدنيا، ودرجة الحرارة القصوى، ودرجة الحرارة المتوسطة، وهطول الأمطار من 1991-2020 في باكستان (مقتبس من بوابة معرفة تغير المناخ العالمية)
الأنماط ودرجات الحرارة [61، 62]. بالإضافة إلى ذلك، يتأثر دورة النيتروجين في التربة بتغير المناخ. يمكن أن تعرقل العمليات الطبيعية التي تضمن توفر المغذيات بسبب التغيرات في درجة الحرارة، ومحتوى الرطوبة، والنشاط الميكروبي [89]. على سبيل المثال، يمكن أن تؤدي زيادة معدلات التبخر وارتفاع درجات الحرارة إلى جعل التربة أقل رطوبة، مما سيؤثر على النشاط الميكروبي وإطلاق المغذيات [51]. قد تحدث نقص في المغذيات وعدم توازن، مما يمنع المحاصيل من النمو والتطور إلى إمكاناتها الكاملة. يمكن أن يؤثر تغير المناخ على مستويات pH في التربة بالإضافة إلى تعطيل دورة النيتروجين. زيادة ثاني أكسيد الكربون في الغلاف الجوي ( تؤدي مستويات الحموضة إلى جعل التربة أكثر حموضة، مما يؤثر سلبًا على قدرة النباتات على امتصاص العناصر الغذائية. تتأثر إنتاجية المحاصيل بالتربة الحمضية لأنها تحد من توفر العناصر الغذائية الأساسية بما في ذلك الكالسيوم والمغنيسيوم والفوسفور، بالإضافة إلى تأثيرها على احتجاز الكربون.
تغيير المادة العضوية في التربة هو تأثير آخر لتغير المناخ على الزراعة. النشاط الميكروبي المتزايد وارتفاع درجات الحرارة بسبب تغير المناخ يسرعان من تحلل المواد العضوية في التربة. ونتيجة لذلك، تنخفض كمية الكربون العضوي في التربة، وهو أمر حاسم للحفاظ على هيكل التربة، وقدرتها على الاحتفاظ بالمياه، واحتفاظها بالعناصر الغذائية. فقدان المادة العضوية في التربة له تأثير ضار على خصوبة التربة ويقلل من إنتاج المحاصيل. علاوة على ذلك، قد تكون هناك حاجة لتعديلات في ممارسات الأسمدة بسبب تغير المناخ. لضمان حصول المحاصيل على الكمية المناسبة من العناصر الغذائية، يجب النظر بعناية في تركيبات الأسمدة، ومعدلات التطبيق، والتوقيت في ضوء التغيرات في أنماط النمو، وتوافر المياه، وأنظمة درجات الحرارة. يمكن أن تؤدي مستويات العناصر الغذائية غير المتوازنة، وانخفاض فعالية استخدام العناصر الغذائية، وزيادة المخاطر البيئية إلى الفشل في التكيف مع التغيرات المناخية.

3 عواقب غير مباشرة لتغير المناخ الضار

3.1 انخفاض الإنتاج الزراعي: السياق العالمي مقابل المحلي

أنماط المناخ المتغيرة بما في ذلك هطول الأمطار ودرجات الحرارة قد تعيق إنتاج المحاصيل. تؤثر درجات الحرارة المرتفعة، وهطول الأمطار غير المنتظم، وتخصيب ثاني أكسيد الكربون، والري، بطرق متنوعة تعتمد على المحصول المحدد، ومكان زراعته، وتغير هذه العوامل نفسها. كما أن تأثير تغير المناخ على إنتاج الزراعة يختلف أيضًا حسب المنطقة وطريقة الري. نتيجةً لتقليص مواسم النمو، من المحتمل أن العديد من المحاصيل ستنتج أقل. زيادات درجات الحرارة من من المتوقع أن تؤدي التغيرات المناخية في كل من المواقع المعتدلة والاستوائية إلى انخفاض في العائد الإجمالي المتوقع
من القمح والأرز والذرة [118]. تتأثر المناطق الاستوائية بشكل أكبر بالتغيرات المناخية بشكل عام لأن المحاصيل في المناطق الاستوائية لديها درجات حرارة مثالية أعلى، وبالتالي فهي أكثر عرضة للإجهاد الناتج عن ارتفاع درجات الحرارة [69]. بالإضافة إلى درجة الحرارة وهطول الأمطار، تعتبر الرطوبة وسرعة الرياح متغيرات إضافية تؤثر على الإنتاجية الزراعية. لقد زادت شعبية تطبيق خوارزميات التعلم الآلي في أبحاث المحاصيل وأبحاث تغير المناخ. أظهر هان وآخرون [46] أنه عندما يتعلق الأمر بتقدير إنتاج القمح الشتوي في الصين، فإن نهج الغابة العشوائية يتفوق على كل من الانحدار باستخدام العمليات الغاوسية وآلة الدعم الناقل. وجد زهي وآخرون [123] أن المدخلات التكنولوجية حاسمة لإنتاج الصين من القمح والأرز والذرة باستخدام خوارزمية أشجار الانحدار المعززة. وقد وُجد أن العديد من نماذج المحاصيل تشير إلى أن المناخ يمثل بين 39 و من التباين في عائد القمح في سهل شمال الصين [101]. تم التنبؤ بانخفاض إجمالي عائد القمح في أستراليا بسبب تغير المناخ، وتم اكتشاف أن الإجهاد الحراري قلل من إنتاج القمح الشتوي بنسبة في الجزء الشمالي من منطقة زراعة القمح الشتوي في الصين [23]. من المحتمل أن تعاني معظم أجزاء العالم من زيادة في نقص المياه نتيجة لتغير المناخ، مع زيادة في المناطق المتأثرة بالجفاف من 15.4 إلى بحلول عام 2100. المنطقة الأكثر عرضة للخطر في هذا الصدد هي أفريقيا. في ظل هذا السيناريو، من المتوقع أن يكون انخفاض العائد المتوقع للمحاصيل الرئيسية أكثر من بحلول عام 2050 وبنحو بحلول عام 2100 [69].
علاوة على ذلك، لقد أظهرت الدراسات أن ارتفاع درجات الحرارة يقلل من العائد؛ ومع ذلك، من المحتمل أن يؤدي ارتفاع هطول الأمطار إلى التخفيف أو تحييد آثار ارتفاع درجات الحرارة [59]. يتأثر إنتاج المحاصيل، كما هو الحال في إيران تحت تأثير المتغيرات المناخية، بنوع المحصول، وحالة المناخ، وتأثير التسميد [59]. مع تأثير تغير المناخ على أنماط الطقس ومكونات المناخ مثل درجة الحرارة وهطول الأمطار، فإن له تأثيرًا سلبيًا على أنظمة الزراعة المعتمدة على الأمطار بشكل خاص. تقلل هذه التغيرات من إنتاجية المحاصيل وتزيد من حوادث فشل المحاصيل. بسبب الأحداث المناخية المتطرفة، انخفضت الذرة والمحاصيل الأخرى في مرتفعات بامندا في الكاميرون. يمكن تفسير ذلك من خلال متوسط معامل تباين هطول الأمطار (CV) البالغ [108]. هناك دليل إحصائي على أن درجة الحرارة في فيراكروز، المكسيك، تؤثر على عائد القهوة. علاوة على ذلك، وُجد أن هناك علامات على انخفاض في إنتاج القهوة الحالي، مما يدل على أن إنتاج القهوة قد لا يكون مربحًا للمزارعين في السنوات القادمة [69].
باكستان هي خامس دولة في العالم الأكثر عرضة لتغير المناخ. ستكون عواقب تغير المناخ كارثية نظرًا لأن التحضر ونمو السكان في باكستان يحدثان في وقت واحد [7]. تزرع باكستان حاليًا تقريبًا كل أراضيها القابلة للزراعة في محاولة لتلبية معيار الأمن الغذائي المستدام [102]. على مدى السنوات القليلة الماضية، واجهت باكستان أيضًا بشكل متزايد تهديدًا
للفيضانات الكبيرة والجفاف المطول، وذلك أساسًا بسبب عدم انتظام موسم الرياح الموسمية وهطول الأمطار السنوي. وبالتالي، فإن الزراعة في باكستان، وأمن المياه، وأمن الفيضانات، وأمن الطاقة معرضة باستمرار للتغيرات المناخية [67]. علاوة على ذلك، فإن المحاصيل التي تشكل فقط من الناتج المحلي الإجمالي تُروى بمقدار من المياه خلال الري، مما يدل على أن باكستان تعطي قيمة عالية للري [44]. تم استخدام طرق زراعية وتقنيات ري متنوعة في هذا الصدد، مما يجعل المحصول أكثر عرضة للتقلبات المناخية. تمامًا كما في أنظمة الزراعة المعتمدة على الفيضانات والري، فإن المحاصيل حساسة للغاية للتغيرات في درجة الحرارة وكمية المياه [102].
تُزرع المحاصيل في كل من مواسم الرابي والخريف في باكستان. المحصول الرئيسي في الرابي هو القمح، بينما الأرز والذرة والكركم وقصب السكر هي المحاصيل البارزة في الخريف. المحاصيل الرئيسية في الخريف التي تُزرع في باكستان هي قصب السكر في فبراير، والقطن في مارس-مايو، والأرز في يونيو-يوليو، والذرة في يوليو-أغسطس. ومع ذلك، فإن نظام إنتاج المحاصيل الرئيسية لدينا مهدد بتغير المناخ (القمح، والقطن، والذرة، وقصب السكر، والأرز). من المتوقع أن ترتفع درجات الحرارة بنسبة بحلول عام 2040 و نحو نهاية القرن، مما سيؤدي إلى انخفاض في إنتاج القمح للدول الآسيوية. ومن المتوقع أيضًا أنه مع ارتفاع درجات الحرارة، ستنخفض الإنتاجية الزراعية الإجمالية بنسبة إلى [25]. وفقًا لدراسة حالة أجراها المعهد الدولي لتحليل النظم التطبيقية (IIASA) والنظام المعرفي للبنك الدولي، بحلول عام 2080، ستنخفض إنتاجية جميع الحبوب والمحاصيل الرئيسية، مع أكبر انخفاض محتمل في إنتاج القمح [21]. وفقًا لديفيدسون [26]، تختلف الآثار من محصول إلى آخر. في السنوات الأخيرة، أدى تغير المناخ إلى انخفاض بنسبة 14.7 في المئة في عائد القمح وزيادة بنسبة 20.5 في المئة في أسعار السوق للأرز [48]. هذه الآفاق الرهيبة مثيرة للقلق وتتطلب من باكستان التدخل بشكل كبير في عملية التكيف الخاصة بها [102]. تعرض الجدول 1 التغييرات النسبية المستهدفة المتوقعة في عائد المحاصيل الرئيسية (2020-2080) تحت سيناريو A2 مقارنة بعائد الأساس (1961-1990)، تم تكييفه من البيانات المستخرجة من بوابة المعرفة لتغير المناخ التابعة للبنك الدولي.

3.2 الاضطراب في سلسلة الإمداد

من بين العواقب الأكثر تميزًا لتغير المناخ هو الزيادة المحتملة في سوء التغذية وفقر الغذاء الناجمين بشكل رئيسي عن اضطراب سلسلة الإمداد. الكوارث المرتبطة بالمناخ المتغيرة لديها القدرة على تدمير الأصول العامة الهامة، والبنية التحتية الحيوية، والمحاصيل، مما سيكون له تأثير ضار على الدخل المحلي وكذلك الأمن الغذائي. هذا يضر سبل العيش وبالتالي يؤدي إلى زيادة الفقر. عامل آخر يسبب استمرار تغير المناخ هو ارتفاع مستوى سطح البحر، مما يعرض سبل عيش سكان دلتا الأنهار والسواحل
الجدول 1 التغييرات النسبية المتوقعة في عائد المحاصيل الرئيسية (2020-2080) مقارنة بعائد الأساس (1961-1990) تحت سيناريو A2
المحاصيل % تغيير
2020 2050 2080
قمح -3.3 -11.0 -27.0
أرز 0 -0.8 -19.0
ذرة -2.4 -3.3 -43.0
المصدر: ماتي تغير العالم بنك المعرفة
بوابة: الزراعة نموذج
IIASA. http://sdwebx.world
bank. org/climateportal/ index.cfm?page=country-
المجتمعات في خطر أكبر. ستتأثر كمية وثبات مياه الري المتاحة، بالإضافة إلى أنماط الفيضانات والجفاف، بسرعة ذوبان الأنهار الجليدية [26]. في هذا الصدد، فإن سلسلة الإمداد الزراعية في باكستان منظمة بشكل سيء بشكل رئيسي بسبب ضعف المعالجة والتخزين واللوجستيات [10]. علاوة على ذلك، تأثرت سلسلة الإمداد الكاملة لأنظمة الثروة الحيوانية، من التصنيع إلى المناولة، والتجزئة، والنقل، والتخزين، والاستهلاك، بشكل كبير بتغير المناخ [28،41]. يتأثر الشبكة الغذائية المائية بتغيرات في دورة النيتروجين، وإنتاجية العوالق، وارتفاع درجة حرارة المحيطات [11]. التأثير الأكبر يشعر به في الدول والمناطق ذات الدخل المنخفض التي تعاني بالفعل من انعدام الأمن الغذائي؛ مما يؤدي إلى نقص الغذاء، وانخفاض في الجودة الغذائية للطعام، وآثار صحية سلبية طويلة الأمد [78]. ومع ذلك، فإن تزايد تكرار وشدة الطقس المتطرف يشكل تهديدًا كبيرًا في المناطق ذات الوصول المحدود إلى أنظمة التدفئة والتبريد [38].

3.3 تفشي الأمراض المتكررة

من المرجح أن يتأثر تطور وبقاء مسببات الأمراض بتغير المناخ المتوقع [16]. من المتوقع أن تصبح المحاصيل أكثر عرضة لمسببات الأمراض والآفات والأعشاب الضارة، حيث أن الطقس الأكثر دفئًا ورطوبة أكثر ملاءمة لنمو الآفات. ومع ذلك، سيختلف ذلك وفقًا لقدرة الآفات على التكيف مع تغير المناخ وكذلك من مكان إلى آخر. يُقدّر أن زيادة درجة واحدة في درجة الحرارة ستؤدي إلى زيادة في الخسائر بسبب غزو الآفات الحشرية [95]. لذلك، فإن تغير المناخ لديه القدرة على زيادة أعداد الآفات وإعادة توطينها، مما قد يكون له آثار ضارة على جدوى الزراعة والإنتاج، حيث تعتمد أعداد الآفات بشكل أساسي على المتغيرات غير الحيوية مثل درجة الحرارة والرطوبة [16]. الآفات اللافقارية، بالإضافة إلى مسببات الأمراض النباتية مثل البكتيريا (بما في ذلك الفيتوبلازما)، والفطريات، والديدان الخيطية، والوميكيت، وكذلك الفيروسات، وناقلاتها، ستتأثر بشكل مباشر وغير مباشر
بزيادة مستويات ثاني أكسيد الكربون في الغلاف الجوي، وارتفاع درجات الحرارة، وتغير توفر المياه، وزيادة تكرار الأحداث المناخية المتطرفة. مع زيادة رطوبة الهواء، يصبح الفطر Sclerotinia sclerotiorum أكثر مرضية؛ حيث يصل نمو الأمراض في نباتات الخس إلى ذروته عندما تصل الرطوبة النسبية في الهواء إلى [104]. وفقًا لدراسة ستوركوك وآخرين [99]، فإن تأثير العديد من أمراض الغابات سيزداد أو ينقص اعتمادًا على تقلبات درجات الحرارة. دمج تشالونر وآخرون [19] بيانات مسببات الأمراض الفطرية والوميكيت مع نماذج المحاصيل العالمية الموزعة على الشبكة لإظهار أنه بالنسبة لمعظم المحاصيل، من المتوقع أن ترتفع كل من الغلات ومخاطر العدوى المعتمدة على درجة الحرارة في خطوط العرض العالية، بينما من المحتمل أن تظل إنتاجية المحاصيل مستقرة أو حتى تنخفض في المناطق الاستوائية ومن المتوقع أن تنخفض مخاطر العدوى.
على وجه الخصوص، من المتوقع أن يسبب تغير المناخ مشاكل في تطوير ومعدلات الأيض للحشرات، خاصة في المناطق المعتدلة [29]. جعل تغير المناخ المزيد من الأماكن ملائمة لغزو الآفات. تزداد ملاءمة موطن الأنواع الثلاثة الشائعة من الحشرات الأفريقية، Tuta absoluta وCeratitis cosyra وBactrocera invadens، في جميع أنحاء القارة، خاصة في المناطق القريبة من موطنها المثالي [15]. زيادة انتشار الأعشاب الضارة في المحاصيل هي قضية أخرى تتأثر بتغير المناخ. تؤدي الزيادة في تركيز إلى استجابة أكثر حدة للأعشاب الضارة من النوع C3. بينما تكون الأعشاب الضارة من النوع C4 أقل تنافسية في نباتات C3، فإن الأعشاب الضارة من النوع C3 تمثل مشكلة كبيرة لنباتات C4 [64]. تتوسع الأعشاب الضارة في نطاقها الجغرافي بسبب تأثيرات تغير المناخ، ولن يكون من العملي إدارتها إلا عند وضع تقنيات إدارة جديدة تأخذ تغير المناخ في الاعتبار [69].

3.4 ارتفاع أسعار الغذاء/المضاربة على السلع

يمكن أن تؤدي انخفاض غلات المحاصيل إلى زيادة أسعار الغذاء وتأثير سلبي على الازدهار الزراعي في جميع أنحاء العالم، مع خسارة سنوية محتملة في الناتج المحلي الإجمالي العالمي بحلول عام 2100 [69]. تؤدي تقلبات المناخ إلى تفاقم حالة عدم اليقين الغذائي والفقر، خاصة في دول جنوب آسيا، من خلال تأثير سلبي على إنتاج الزراعة وتوفر الموارد الطبيعية. سيؤثر ذلك سلبًا على وسائل العيش لملايين الأشخاص في المنطقة [9،12،114]. أكثر من من الناس في المنطقة الآسيوية يعتمدون على الزراعة لكسب عيشهم، حيث توظف حوالي 60 في المئة من القوة العاملة وتوفر من الناتج المحلي الإجمالي (GDP) للمنطقة [114]. من المتوقع أن ترتفع درجة الحرارة القصوى السنوية في جنوب آسيا (SA) إلى في عام 2030، بينما في عام 2050، وبالتالي ستتعرض المزيد من المناطق لضغوط الحرارة في عام 2030، بينما في عام 2050، ستتأثر المناطق بشكل أكبر [106]. وفقًا للتوقعات، قد تؤثر الضغوط الناتجة عن الحرارة على حوالي نصف سهول إندوجانجيت (IGP)، مما يجعلها غير مناسبة لزراعة القمح بحلول عام 2050 [9].
بسبب موسم الأمطار الأكثر تقلبًا والمياه المذابة من الأنهار الجليدية، حتى ارتفاع طفيف في درجة حرارة SA بمقدار يمكن أن يؤثر بشكل سلبي كبير على إمكانية الوصول واستقرار موارد المياه، مهددًا الإنتاج الزراعي المستقبلي [113]. وفقًا للتوقعات، سيتسبب تحول المناخ في زيادة أسعار الغذاء بمعدل أسرع بمقدار مرتين ونصف للمحاصيل الغذائية الرئيسية (مثل الأرز، والذرة، والقمح، وفول الصويا) ومعدل أسرع بمقدار مرة ونصف للسلع المتعلقة بالثروة الحيوانية (مثل لحم البقر، ولحم الخنزير، ولحم الضأن، والدجاج) بين عامي 2000 و2050 [5]. بالإضافة إلى ذلك، تشير بعض الأبحاث إلى أن تغير المناخ له تأثير سلبي على إمدادات الغذاء في دول شمال وشرق إفريقيا. وفقًا لدراسة أجراها معهد أبحاث فنلندي، إذا لم يتم تنظيم انبعاثات غازات الدفيئة، فإن ما يقرب من من إمدادات الغذاء في العالم ستكون في حالة صفرية بحلول نهاية القرن الحادي والعشرين [101].
من المتوقع أن تكون الخسائر المالية الإجمالية المتوسطة لبنغلاديش , بوتان , الهند , جزر المالديف , نيبال , وسريلانكا . تقدر الخسائر بحوالي لجزر المالديف. نظرًا لأن أكثر من من الناس في SA يعتمدون على الزراعة لكسب عيشهم، فإن حوالي من القوة العاملة تعمل في هذا القطاع، و من الناتج المحلي الإجمالي للمنطقة يتم توليده من خلاله [114]. التأثير النهائي لتغير المناخ على انخفاض إنتاج الزراعة سيؤدي بالتأكيد إلى ارتفاع أسعار الغذاء وتقليل توفر الغذاء مما يحد من الوصول إلى المجتمع. من المرجح أن يكون المنتجون والمستهلكون ذوو الدخل المنخفض الأكثر تأثرًا بالتقلبات المناخية بسبب قدرتهم المحدودة على التكيف [110].
نظرًا لأن التقلبات المناخية تؤثر بشكل مباشر على إنتاج المحاصيل والثروة الحيوانية، فإن المزارعين أصحاب الحيازات الصغيرة الذين تعتمد سبل عيشهم بشكل كبير على الزراعة المعتمدة على الأمطار يُعتقد أنهم أكثر عرضة لتأثيرات تغير المناخ، سواء للاستهلاك الشخصي أو للبيع [65]. أخيرًا، إذا أدت الصدمات المتعلقة بالمناخ إلى ارتفاع أسعار الغذاء، فإن ذلك سيؤثر على قدرة المستهلكين في المناطق الريفية والحضرية على شراء الغذاء، مما يهدد قدرتهم على الحفاظ على نظام غذائي صحي [65].

3.5 المخاطر على سلامة وأمن الغذاء: تحدي تلبية الطلب العالمي على الغذاء

تركز معظم الأدبيات التي تمت مراجعتها بشكل أساسي على العلاقة بين مخاطر الغذاء وتغير المناخ بدلاً من تسليط الضوء على العلاقة بين سلامة الغذاء وتغير المناخ. ومع ذلك، تؤثر العوامل المناخية على مخاطر الغذاء من حيث الأمن والسلامة. في دراستنا، ركزنا بإيجاز على كلا الجانبين من مخاطر الغذاء المرتبطة بالمناخ. نظرًا لأن متوسط درجة الحرارة و تؤثر التركيزات على نمو النباتات، فإن ارتفاع أحدهما يمكن أن يؤدي نظريًا إلى زيادة في المحاصيل، مما سيحسن من توفر الغذاء لكل من السكان البشريين المتزايدين والحيوانات. إذا لم يحدث ذلك، فقد يكون السبب
في عواقب أخرى لتغير المناخ، مثل زيادة تكرار الأحداث المناخية المتطرفة (مثل موجات الحرارة القوية، والفيضانات، والجفاف الشديد). يمكن أن يكون لهذه التأثيرات تأثير ضار على إنتاج المحاصيل وكذلك القطاعات الأخرى المعنية في إنتاج الغذاء، مما يؤدي إلى تقليل إمدادات الغذاء وزيادة انعدام الأمن الغذائي [71].
توسع الرفاهية لجزء كبير من السكان في الدول النامية يشكل خطرًا على قدرة أنظمة الثروة الحيوانية الحالية على تلبية الطلب المتزايد. هذا الطلب قد عجل من حرق الغابات في عدة دول [109] من أجل إنتاج المحاصيل وخلق المراعي لتربية المجترات الكبيرة. لذلك، فإن جودة وكمية وتوزيع الغذاء بشكل عادل مهددة بعدة آثار لتغير المناخ، مما يعرض سكان المناطق الجافة وشبه الجافة لخطر سوء التغذية [37، 38]. علاوة على ذلك، بسبب الآثار على سبل العيش والمخاطر الصحية، خاصة بين الفئات السكانية المعرضة، من الممكن أن تتأثر جميع جوانب الأمن الغذائي (بما في ذلك التوفر، الوصول، الاستقرار، والاستخدام) بشكل غير مباشر [37]. على سبيل المثال، لتغير المناخ تأثير كبير على الزراعة الصغيرة في غرب إفريقيا بسبب ضعف البنية التحتية، وفجوات الاتصال، وتدهور البيئة، وضعف مجموعات المزارعين [98]. علاوة على ذلك، بسبب انخفاض توفر السلع المحلية، وتغير طرق إعداد وتخزين الطعام، وانخفاض عدد المهرجانات الغذائية، تتعرض أنظمة الغذاء التقليدية، سواء الملموسة أو غير الملموسة، للاضطراب بسبب الكوارث الطبيعية المتكررة [28]. علاوة على ذلك، من المتوقع أنه بحلول عام 2050، سيتجاوز إجمالي الطلب على الأسماك في جزر سليمان إنتاج الأسماك، مما سيكون له تأثير كبير على الأمن الغذائي حيث سينخفض استهلاك الفرد [69]. وبالمثل، مع ارتفاع درجة الحرارة العالمية خاصة خلال الصيف، تصبح الأمراض المنقولة بالغذاء أكثر شيوعًا، بسبب طول موسم الصيف، مما يزيد من المخاطر المرتبطة بسلامة الغذاء [71].

3.6 العواقب على أهداف التنمية المستدامة

تأثيرات تغير المناخ على الزراعة تمثل تحديًا كبيرًا للاكتفاء الغذائي العالمي والأهداف المتعلقة بالتنمية المستدامة [79]. انخفاض الإنتاجية الزراعية المرتبط بتغير المناخ هو السبب الرئيسي لعدم الأمن الغذائي وسوء التغذية. أفاد رحمن وآخرون [90] أن المناطق في جنوب آسيا معرضة لتدهور التربة والأراضي، وهو ما يمكن تفسيره بمساحتها الصغيرة نسبيًا – حوالي من إجمالي مساحة العالم – مقترنًا بارتفاع عدد السكان – حوالي من التقديرات البالغة 1.75 مليار شخص على الكوكب. لذلك، فإن الآثار السلبية في هذه المنطقة قد تعيق الإنتاجية الزراعية [36]. يمكن أن يؤدي فقدان الإنتاجية الزراعية أيضًا إلى الفقر، مما يزيد من تفاقم الفجوات الاجتماعية والاقتصادية القائمة. قد يؤدي تغير المناخ إلى تحول في
ملاءمة الأراضي للزراعة حيث تشهد المناطق المرتفعة زيادة في إنتاج المحاصيل، بينما قد تشهد المناطق المنخفضة انخفاضًا في غلات المحاصيل [56]. المحاصيل الرئيسية الأخرى في باكستان بما في ذلك القطن والذرة وقصب السكر والبقوليات تعاني أيضًا مؤخرًا من معدلات نمو بطيئة ومشوهة للغاية [1]. جنبًا إلى جنب مع مشكلة انعدام الأمن الغذائي المتزايدة، فإن الأداء غير المنتظم لنمو مثل هذه المحاصيل المهمة يمكن أن يقلل ليس فقط من الدخل المحلي والوظائف ولكن أيضًا يؤثر سلبًا على أداء الأعمال الإنتاجية ذات الصلة.
علاوة على ذلك، يمكن أن يؤدي تغير المناخ إلى الصراع والهجرة وعدم الاستقرار الاجتماعي، مما يزيد من تأثيره على الأمن الغذائي. لتغير المناخ آثار كبيرة على تحقيق أهداف التنمية المستدامة، بما في ذلك تقليل الفقر، وتعزيز الزراعة المستدامة، ومكافحة تغير المناخ [111]. الزراعة المستدامة ضرورية لتحقيق الأمن الغذائي وتقليل الفقر، لكن الآثار السلبية لتغير المناخ، خاصة على التنوع البيولوجي والموارد الطبيعية، هي أكبر العوائق في طريق تحقيق هذه الأهداف. تم ذكر ملخص للآثار المباشرة وغير المباشرة التي يسببها تغير المناخ على الزراعة والأمن الغذائي (الشكل 2).

4 استراتيجيات التخفيف والتكيف المحتملة

لا يمكن المبالغة في أهمية الحلول المحلية لمشاكل البيئة العالمية لأنها ضرورية في خلق مستقبل مستدام.
يتطلب تعزيز مرونة المجتمع مجموعة متنوعة من خيارات التكيف، من الحلول التقنية المتطورة إلى الأساليب التقليدية المعتمدة على المعرفة [100]. ينطوي التكيف مع تغير المناخ على أي إجراء يهدف إلى تقليل القابلية وزيادة مرونة النظام. التكيف أمر حيوي للزراعة في مناطق جنوب آسيا بشكل خاص لأن: (1) الزراعة مصدر دخل مهم؛ (2) تعتمد بشكل كبير على الأمطار، مما يجعلها عرضة للطقس القاسي؛ (3) تنتشر عبر قطع أراض صغيرة، أقل من هكتار، مما يجعل من الصعب على المزارعين إدارة ظروف المناخ المتغيرة؛ عدم كفاية المنظمات واللوائح للتعامل مع مخاطر المناخ في الزراعة، وسوق أقل تطورًا للمخاطر والتأمين لتشجيع التكيف مع تغير المناخ، وعدم كفاية المؤسسات واللوائح، وزيادة الطلب من صناعات مختلفة على المياه والأراضي، التي تتأثر بشكل أساسي بالبحث عن طرق زراعية بديلة، وللحفاظ على الأمن الغذائي الإقليمي، خاصة للفئات المحرومة. نظرًا للاختلاف الكبير في الظروف الاجتماعية والاقتصادية والأنظمة البيئية الزراعية، يجب أن تأخذ طرق التكيف في الاعتبار السياقات الثقافية والبيئية محليًا وإقليميًا ووطنياً [2، 17]. في هذا السياق، يجب أخذ عدة تدابير للتكيف بعين الاعتبار.
الشكل 2 التأثيرات المباشرة وغير المباشرة لتغير المناخ على الزراعة والأمن الغذائي

4.1 إدارة الممارسات الزراعية

لتسهيل التكيف، يمكن تحسين العديد من تقنيات إدارة الزراعة الحديثة وتوسيع نطاقها. تم البحث في العديد من خيارات التكيف، مثل تحسين الممارسات المستخدمة في المزارع وكذلك التدابير البيوفيزيائية، بشكل واسع [121،122]. تشمل هذه تحسين محتوى التربة العضوي، وتنقيح ممارسات إدارة الأراضي الزراعية، واستغلال التنوع الجيني المحلي، وتحسين تقنيات تربية الماشية، ودمج أنظمة المحاصيل والماشية، واستخدام طرق زراعة متنوعة، وتعزيز إدارة الأراضي الرعوية، وزيادة الإنتاجية الزراعية، والتخفيف من تآكل التربة، واعتماد منهجيات الزراعة البيئية. تمثل هذه التدابير نقطة تركيز للبحث، مما يعكس جهدًا منسقًا لمعالجة التحديات المتعددة الأوجه في مجال الزراعة [117].

4.2 إدارة الأراضي/التربة والمياه

يساعد استخدام أساليب إدارة الأراضي المستدامة مثل الزراعة الحافظة، والزراعة الحراجية، والتكثيف المستدام، وأنظمة الزراعة المحسنة في التكيف مع تقلبات المناخ. تم مؤخرًا التركيز الدولي بشكل كبير على التكثيف المستدام [58]. يعترف التكثيف المستدام بأهمية
الحفاظ على خدمات النظام البيئي الإضافية وتعزيز المرونة أمام الصدمات كعناصر أساسية لتحقيق زيادة الإنتاجية. قد تشمل أساليب الزراعة المستدامة طرقًا متكاملة لإدارة الآفات وخصوبة التربة، واستخدام أفضل وأكثر كفاءة للمياه والمواد الغذائية. تم التعرف على إدارة التربة كواحدة من أهم الاستراتيجيات للتكيف مع تغير المناخ، حيث تحتوي التربة على جميع العناصر الغذائية اللازمة للنمو الزراعي [107]. أدت زيادة التباين في المناخ والظواهر الجوية القاسية مثل الأمطار الغزيرة والرياح القوية إلى تسريع تآكل التربة. لذلك، يجب اعتماد استراتيجيات إدارة فعالة لتقليل الاضطراب في التربة. في المناطق شبه الجافة، لمواجهة تآكل التربة الناتج عن الرياح، يتم استخدام زراعة الأشجار وإنشاء الحواجز؛ كما تستخدم المناطق الرطبة والساحلية بشكل متكرر تغطية النباتات، وتقلبات التربة، وحواجز الرياح. تساعد زراعة الحدائق على المدرجات وجمع المياه في المناطق الجبلية في السيطرة على تآكل التربة [30]. يمكن أن تتفاعل أنظمة الزراعة مع الإجهاد المائي، والمياه الزائدة الناتجة عن الأمطار غير المناسبة، ودرجات الحرارة القصوى من خلال التحول إلى الحد الأدنى من الحراثة مع الاحتفاظ بالمخلفات. كما أشار سابكوتا وآخرون [91]، يمكن زيادة إنتاجية مياه الري، مقارنة بالأنظمة الزراعية التقليدية من خلال من خلال تغيير أنماط الحراثة وتخفيف آثار درجات الحرارة المرتفعة، مما يؤدي إلى تقليل الغطاء النباتي
درجة الحرارة بواسطة . وهذا يجعلها مناسبة تمامًا للمواقف التي تتضمن الماء وإجهاد الحرارة. إحدى الاستراتيجيات الرئيسية لتقليل تغير المناخ وتعزيز جودة التربة هي احتجاز الكربون العضوي في التربة (SOC). يمكن تحسين الخصائص الفيزيائية للتربة حتى مع زيادة بسيطة في SOC، مما قد يعزز مقاومة التربة للإجهاد ويساعد في التكيف مع تغير المناخ [80،84،120]. في التربة التي تم زراعتها لمدة 100 عام أو أكثر، أدت أنماط الزراعة التقليدية والحراثة الواسعة إلى تقليل الكربون في التربة بنسبة 30 إلى [63].
علاوة على ذلك، تم اقتراح أن هذه الطرق تزيد من محتوى الماء في التربة. وبالتالي، تحد هذه الطرق من خطر فقدان المحاصيل بينما تحمي المزارع من الدمار الذي تسببه الجفاف. في النهاية، تدعم الزراعة المستدامة من خلال تحسين إدارة التربة، مما يحافظ أيضًا على جودة التربة ويزيد من كفاءة استخدام المياه.

4.3 تنويع المحاصيل، تحسين نظام الزراعة

يمكن أن يكون تنويع المحاصيل في الوقت والمكان (تغيير دورة المحاصيل أو أنظمة الزراعة) استراتيجية معقولة واقتصادية لزيادة مرونة النظام الزراعي تجاه تغير المناخ. إن زيادة التنوع في أنظمة الإنتاج تعزز قدرتها على تعزيز الأمن الغذائي والتغذوي في ظل تحديات تغير المناخ. علاوة على ذلك، فإن طرق الإنتاج المتنوعة ضرورية لتقديم خدمات تتعلق بتنظيم النظام البيئي، والتي تشمل أشياء مثل التحكم في تآكل التربة، وتقليل انبعاثات غازات الدفيئة، ودورة المغذيات، واحتجاز الكربون، وتنظيم العمليات الهيدرولوجية. يلعب تنوع المحاصيل دورًا في تعزيز القدرة على السيطرة على تفشي الآفات ومقاومة التغيرات المناخية من خلال تقليل خطر انتقال الأمراض الناجم عن زيادة عدم اليقين المناخي، وبالتالي، تخفيف تأثير الضغوط المتعلقة بالمناخ على إنتاج المحاصيل. على سبيل المثال، كانت أصناف الأرز المعرضة للأمراض قد… زيادة العائد و انخفضت فرصة حدوث انفجار فطري عند زراعته في تركيبات مع أنواع مقاومة على مساحات واسعة من الأرض [27].
يمكن أن يؤدي ارتفاع درجات الحرارة إلى تمديد موسم النمو في المناطق المعرضة للصقيع، وخاصة في المناطق المعتدلة والقطبية. يفتح هذا التمديد إمكانية زراعة أصناف موسمية تحتاج إلى وقت أطول للنضوج والتي يمكن أن تحقق نتائج أفضل. من خلال إطالة موسم الزراعة، هناك إمكانية لزراعة محاصيل إضافية سنويًا. في الحالات التي تتجاوز فيها درجات الحرارة المرتفعة الحدود الحرجة بشكل مستمر خلال الأشهر الأكثر دفئًا، يصبح من الممكن التفكير في موسم مقسم مع فترة خلو قصيرة في الصيف، خاصة للمحاصيل قصيرة المدة مثل القمح والشعير والحبوب ومجموعة متنوعة من المحاصيل الخضرية.

4.4 احتجاز الكربون العضوي في التربة (SOC)

تتمتع أنظمة الزراعة السنوية بإمكانية احتجاز الكربون التي لم يتم استغلالها بالكامل بعد. تُعرف تقنيات الانبعاثات السلبية (NETs) أيضًا باسم “الجو النشط تقنيات الإزالة، مطلوبة بالإضافة إلى تقليل انبعاثات غازات الدفيئة من أجل تحقيق انخفاضات صافية في ومنع أسوأ آثار تغير المناخ [74]. تنفيذ الغلاف الجوي تكنولوجيا الإزالة أمر ضروري، بهدف الوصول إلى مستويات سنوية تبلغ حوالي بحلول عام 2050 و بحلول عام 2100 [74]. يعتبر احتجاز الكربون في التربة الخيار الأكثر قابلية للتوسع والأقل تكلفة لـ الإزالة في العقود القادمة [74]. على الرغم من أن الكربون في التربة قد انخفض بوضوح على مدى القرن الماضي، إلا أن التربة الزراعية لديها القدرة على تخزين كل من الذي هو حاليًا في الغلاف الجوي [31].
وفقًا لأوغلي وآخرين [82]، فإن الغالبية العظمى من المبادرات لاستخدام نظام المحاصيل السنوية لزيادة الكربون العضوي في التربة قد ركزت على إدارة التعديلات التي تم إجراؤها في البداية لصحة الجذور. الزراعة المنخفضة، وزيادة احتفاظ المخلفات، والمحاصيل الغطائية هي بعض الأمثلة الاستراتيجية المستخدمة لتعزيز الكتلة الحيوية للنباتات فوق الأرض المحتفظ بها في الحقل لكل وحدة مساحة سنويًا [70]. ومع ذلك، فإن معظم التقارير حول تأثير إدارة الكربون في التربة تركز فقط على الطبقة العليا من التربة بعمق 30 سم، على الرغم من أن هذا هو المكان الذي يُتوقع أن تحدث فيه معظم واردات الكربون [82]. ومع ذلك، فإن الكربون في التربة في الطبقة العليا بعمق 30 سم هو الأقل مرونة ويمكن أن يعود إلى في غضون بضع سنوات. لتحقيق نسبة أكبر وأيضًا دائمة من الكربون العضوي في التربة، يجب حقن مدخلات الكربون في التربة بعمق أكبر [83]. سيتطلب ذلك تغيير التركيب الجيني للمحاصيل. ومع ذلك، من أجل أنظمة الزراعة السنوية لتقليل المدخلات وتحقيق احتجاز الكربون السنوي يصل إلى أطنان لكل هكتار، هناك حاجة إلى تغييرات جينية [81].

4.5 الزراعة الذكية المناخية المحسّنة

في باكستان، حيث الزراعة ضرورية للهيكل الاجتماعي والاقتصاد والثقافة في البلاد، تقدم الزراعة الذكية مناخياً (CSA) إمكانيات هائلة. يشكل تغير المناخ تهديداً متزايداً للمجتمعات المعتمدة على الزراعة. هذه التغيرات تعيق النمو الاقتصادي للأمة وتعيد سنوات من التقدم. يتم حالياً استخدام العديد من مقاييس الزراعة الذكية مناخياً في جميع أنحاء البلاد، حيث يمكن الحصول على أنظمة زراعية أقوى وأكثر ازدهاراً من خلال استغلال الأموال المتاحة، وفتح مصادر تمويل جديدة، وتعزيز الممارسات الصديقة للبيئة، ومنح المؤسسات السلطة للعمل. يمكن تعزيز الاقتصاد الباكستاني من خلال الزراعة الذكية مناخياً باستخدام التكنولوجيا المتطورة مثل تسوية الأراضي بالليزر وأنظمة الري التي تعمل بالطاقة الشمسية، بالإضافة إلى التعديلات الإدارية مثل تنويع المحاصيل، وأنماط الزراعة المناسبة، وتواريخ الزراعة المتقدمة. في سهول الهندو-غانجيت الشرقية، المحاصيل
تعتبر خدمات التأمين، وتحذيرات الطقس، وتسوية الأراضي بالليزر (LLL) من أكثر تقنيات الزراعة المستدامة استخدامًا. في المقابل، يفضل المزارعون في منطقة السهول الجانبية الغربية الزراعة المباشرة، وتسوية الأراضي بالليزر، والزراعة بدون حراثة، وتزامن الري مع تأمين المحاصيل.

4.6 تطوير أصناف مقاومة

الإجراء الأكثر أهمية الذي يجب على الحكومة القيام به هو تمويل الأبحاث لتطوير مجموعة أفضل من الأصناف الزراعية والحيوانية التي تتحمل الحرارة، وتتحمل الجفاف، ومقاومة للآفات. أرز سكوبا، وهو نوع من الأرز مقاوم للفيضانات، يمكنه التكيف مع هذه الضغوط المائية الزائدة من خلال تحمل 17 يومًا من الغمر الكامل وإنتاج ما يصل إلى 3 أطنان لكل هكتار من الأرز خلال الفيضانات المفاجئة. وبالمثل، يمكن أن تزيد أصناف الأرز المقاومة للجفاف من الغلات حتى [72]. تأثير آخر من تأثيرات تغير المناخ هو ارتفاع ملوحة التربة، خاصة في المناطق الزراعية القريبة من المحيط. على سبيل المثال، أكثر من توجد نسبة كبيرة من الأراضي القابلة للزراعة في البلاد في المناطق الساحلية، مما يشكل تهديدًا خطيرًا للدول الآسيوية بما في ذلك بنغلاديش. وبالتالي، تم تطوير أصناف الأرز المقاومة للملوحة CSR 26 و CSR 43 للتغلب على التحديات المناخية في بنغلاديش [9].

4.7 الاستشعار عن بُعد وتصوير الأقمار الصناعية للتنبؤ بالمستقبل للأنظمة البيئية المعرضة للخطر

تلعب الاستشعار عن بُعد دورًا حاسمًا في التنبؤ بتأثير تغير المناخ على الزراعة. على سبيل المثال، يمكن مراقبة الغطاء النباتي باستخدام الأقمار الصناعية المزودة بأجهزة استشعار، وبالتالي يمكن قياس مؤشر الفرق النباتي الطبيعي (NDVI). ستوفر هذه المؤشرات معلومات حول صحة المحاصيل ونشاطها، مما يساعد العلماء على تتبع التغيرات في أنماط نمو النباتات واكتشاف الضغوط المحتملة الناتجة عن تغير المناخ. نوع آخر من تطبيقات الاستشعار عن بُعد هو رسم خرائط درجة حرارة سطح الأرض (LST)، وهو قياس لدرجة حرارة سطح الأرض. من خلال مراقبة درجة حرارة سطح الأرض، يمكن للعلماء تحديد المناطق التي تعاني من حرارة مفرطة أو اتجاهات تبريد، مما يمكنهم من التنبؤ بتأثير ذلك على نمو المحاصيل وإنتاجيتها.
من أجل تحليل وتوقع تأثير تغير المناخ على الأمن الغذائي، استخدمت دراسة حديثة صور الأقمار الصناعية من لاندسات وMODIS بالإضافة إلى متغيرات مسبقة مثل درجة حرارة سطح الأرض، التبخر، هطول الأمطار، الأيام المشمسة، نسبة السحب، ملوحة التربة، رطوبة التربة، جودة المياه الجوفية، أنواع التربة، نموذج الارتفاع الرقمي، الانحدار، والاتجاه. تم استخدام نموذج عملية الشبكة التحليلية (ANP) واستراتيجية قائمة على الاستشعار عن بعد لتحديد المناطق المتضررة من الصقيع. أظهرت النتائج وجود علاقة بين الانخفاض في AL والارتفاع في LST، التبخر، نسبة السحب وملوحة التربة. بالإضافة إلى ذلك، انخفض AL مع هطول الأمطار، الأيام المشمسة، ورطوبة التربة كما
كما أن جودة المياه الجوفية. علاوة على ذلك، تم اكتشاف أن المناطق المتأثرة بالصقيع تزداد مع درجة حرارة السطح، والتبخر، ونسبة السحب، والارتفاع، والانحدار، والاتجاه. تم توقع خريطة استخدام الأراضي/غطاء الأرض والتغيرات المرتبطة بها باستخدام نموذج الخلايا الآلية ماركوف (CA_Markov) على صور الأقمار الصناعية متعددة التواريخ من Sentinel 2A وLandsat Oli-8 وETM التي تم جمعها في 2017 و2013 و2003، على التوالي. علاوة على ذلك، تم دمج معادلة فقدان التربة العالمية المنقحة (RUSLE) في نظام نظم المعلومات الجغرافية لتقدير فقدان التربة ولتvisualize خطر التآكل لسنوات معينة. وقد أظهرت هذه التقنية فعاليتها في توقع التغيرات في استخدام الأراضي وتقدير حجم فقدان التربة بدقة في المستقبل. ومع ذلك، توفر الاستشعار عن بعد وتصوير الأقمار الصناعية بيانات قيمة لرصد وتحليل وتوقع تأثيرات تغير المناخ على الزراعة. تعزز هذه الأدوات فهمنا للتغيرات البيئية، وتساعد في اتخاذ القرارات، وتمكن من اتخاذ تدابير استباقية للحفاظ على توفر الغذاء وممارسات الزراعة الصديقة للبيئة في ظل تغير المناخ.

4.8 تأمين المحاصيل

في بعض دول جنوب آسيا، تم اعتماد خطة تأمين المحاصيل على أساس مؤشر المنطقة كأداة لحماية سبل عيش المزارعين الفقراء خلال الظروف المناخية القاسية. استنادًا إلى مؤشرات الطقس والعائد، تستخدم برنامجا تأمين المحاصيل الرئيسيان في الهند منهجية قائمة على المنطقة تقضي على المخاطر الفردية. من خلال منتجات تأمين الطقس على مستوى المنطقة، يتم تعويض خسائر المحاصيل الناتجة عن الشذوذات المناخية في المناطق المؤمنة. لقد زادت شعبية هذه المنتجات التأمينية، التي تستند إلى أوراق شروط تم إنشاؤها من مجموعات بيانات الطقس التاريخية وتغطي عادةً المحاصيل البستانية والمحاصيل الزراعية، بسبب سهولة تنفيذها. يتم تغطية خسائر العائد على المحاصيل في المناطق المؤمنة من خلال منتجات تأمين العائد على مستوى المنطقة، وتركز الأبحاث الحالية على تحسين تقييم خسائر المحاصيل في هذه الآليات التأمينية من خلال أساليب قائمة على البيانات. على الرغم من أن النظامين يتعاملان مع آثار المناخ على العوائد الزراعية، إلا أن خطط تأمين المحاصيل على أساس العائد قد احتلت تاريخيًا حصة سوقية أكبر.
أطلق مجلس التأمين الوطني تأمين المحاصيل في نيبال في عام 2013. في ميزانيتها لعام 2013-2014، شملت الحكومة النيبالية 135 مليون روبية نيبالية كتمويل لبرنامج التأمين الزراعي، الذي سيستمر في تلقي التمويل. قد يتم أيضًا تأمين المزارعين من خلال التعاونيات الإقليمية من خلال جهود على المستوى الصغير. على سبيل المثال، كانت منطقة روبيندهى في نيبال موطنًا لبرنامج أبحاث CGIAR حول تغير المناخ والزراعة والأمن الغذائي (CCAFS) خلال السنوات القليلة الماضية. قام المزارعون المحليون بتطوير جمعية هناك، تقدم سياسات تأمين للمزارعين الصغار الذين يزرعون القمح والأرز في أراضٍ صغيرة.
مساحة 1.33 هكتار [92]. يتلقى المزارعون تعويضًا يصل إلى خسارتهم في حالة تلف المحاصيل، حيث يُطلب منهم الدفع محصولهم المتوقع كضمان. تم تنفيذ تأمين المحاصيل في بنغلاديش في عام 1977 من قبل شركة سادهران بيما الحكومية (SBC)، وتم التخلي عنه في عام 1996. كان الهدف الرئيسي من سياسة التأمين هو تعويض المزارعين عن الخسائر الزراعية الناتجة عن الفيضانات، والأعاصير، والبَرَد، والرياح، والجفاف، وأمراض النباتات، والآفات، والحشرات. نظرًا لأن محصول الأرز والقمح والجوت مؤمن عليه، فإن التغطية توفر من القيمة المتوقعة للإنتاج. ومع ذلك، لم تحقق بنغلاديش نجاحًا في هذا المخطط. تشمل المشاكل الرئيسية مع القيود الصعوبات في حساب خسارة المحاصيل بسبب ظروف الطقس المحددة والمخاطر الأخلاقية.
تأمين الزراعة أمر حيوي لباكستان لأنه، بينما يعد أساس اقتصاد البلاد، فإنه عرضة للكوارث المتعلقة بالمناخ التي تهدد سبل عيش المزارعين الصغار بسبب نقص قدرتهم على التكيف. يُذكر أن مربي الماشية الذين يحصلون على تأمين للتخفيف من مخاطر المناخ يتمتعون بصحة أفضل. على الرغم من أنه بدأ في عام 2008 مع تأمين الماشية، إلا أن تأمين الزراعة لا يزال في مراحله الأولى من التطوير. تم ذكر التدابير التكيفية المحتملة للتعامل مع الآثار الجذرية لتغير المناخ.

5 تنفيذ السياسات على المستوى العالمي والإقليمي

لمعالجة قضايا تغير المناخ، تعاونت دول من جميع أنحاء العالم لوضع معاهدات دولية مثل اتفاقية الأمم المتحدة الإطارية بشأن تغير المناخ (UNFCCC) واتفاق باريس. تسعى هذه الاتفاقيات إلى بذل الجهود للحد من ارتفاع درجة الحرارة إلى ما دون للحفاظ على ارتفاع درجة الحرارة العالمية دون [112]. استخدام موارد الطاقة المتجددة، كفاءة الطاقة، ومنع إزالة الغابات هي مجرد بعض الاستراتيجيات التي تتبناها الدول لتقليل انبعاثات غازات الدفيئة من أجل تحقيق هذه الأهداف [88]. بالإضافة إلى ذلك، يتعاونون لاستغلال الموارد التكنولوجية والمالية لدعم العمل المناخي في الدول النامية [14]. حتى لو شهدت بعض القطاعات تحسناً، لا يزال هناك الكثير الذي يجب القيام به لمعالجة شدة واستعجال الكارثة المناخية.
في انتظار اتفاق باريس، من الضروري تنفيذ تدابير استراتيجية للتخفيف من الانبعاثات. يجب أن تكون تبني تخطيط شامل وطويل الأجل هو الأولوية الرئيسية لضمان بقاء متوسط درجة الحرارة العالمية دون المستوى الحرج. العتبة. هذه نهج استراتيجي حاسم لتقليل المخاطر وآثار تغير المناخ بنجاح. بالإضافة إلى ذلك، فإن أحد أهم جوانب تقليل الانبعاثات هو المتطلبات
الشكل 3 استراتيجيات التكيف مع تغير المناخ
يجب أن تصل انبعاثات الكربون العالمية إلى ذروتها في أقرب وقت ممكن عمليًا، مع الأخذ في الاعتبار إمكانية وجود إطار زمني أطول للدول النامية. وبالتالي، من الضروري الالتزام بتخفيضات سريعة وكبيرة، مسترشدين بأحدث التقدمات العلمية، بهدف نهائي هو تحقيق التوازن بين الانبعاثات والعمليات الإزالة بحلول نهاية القرن. من المتوقع أن يكون لتغير المناخ العالمي تأثير سلبي أكبر على الزراعة في المستقبل، مما يؤثر على الدول التي تشارك بالفعل في إدارة الزراعة النشطة. تشير دراسة قائمة على تنفيذ السياسات والمبادرات لدعم نجاح القطاع الزراعي في سان دييغو إلى أنه يجب أخذ المبادرات على المستوى القطاعي في الاعتبار، بما في ذلك التحول إلى معدات زراعية كهربائية، وزيادة زراعة الأشجار في المقاطعات والمنازل، وتنفيذ برنامج تعزيز الزراعة، الذي تم تصميمه لتحسين الاستخدامات المساعدة للعمليات الزراعية.
في سياق الدول النامية والضعيفة تجاه التغير المناخي مثل باكستان، وضعت وزارة التغير المناخي مجموعة متنوعة من المبادرات لزيادة الوعي العام بأنشطة التخفيف والتكيف بما يتماشى مع استراتيجية المناخ في البلاد. من الضروري تحسين النقل، والغابات، والطاقة، والثروة الحيوانية، والزراعة، والتخطيط للمدن، والقطاعات الصناعية للتخفيف من العواقب السلبية لتغير المناخ. يتطلب تقليل عواقب الإجراءات المناخية على المستوى الوطني استخدام أجهزة موفرة للطاقة واستخدام الطاقة المتجددة والصديقة للبيئة. تقدر المساهمات المحددة وطنياً (INDC) لباكستان أن التكلفة السنوية لتنفيذ هذه التدابير التخفيفية ستتراوح بين 7 إلى 14 مليار دولار أمريكي. تم أيضاً زراعة ما يقرب من 100 مليون شجرة على مستوى البلاد كجزء من برنامج باكستان الأخضر (GOP 2017-18) [102].
تؤكد الدراسة حول تحليل الحواجز والإطار التمكيني على التقدم التكنولوجي الملحوظ داخل صناعات الطاقة والغابات والنقل. تشمل الأمثلة البارزة على التقدم في توفير الطاقة المذكورة في الوثيقة محطات الطاقة الصغيرة الحديثة والطاقة الشمسية. علاوة على ذلك، في مجال الغابات، تشمل هذه الخطوات التكنولوجية مبادرات مثل الغابات الاجتماعية لمعالجة خزانات الكربون وتعزيز إدارة الغابات المستدامة (SFM) كإجراء استباقي ضد إزالة الغابات [43]. تم العثور على أن الصناعتين الأكثر ضعفاً هما المياه والزراعة، وقد تم اقتراح ثلاث تقنيات تكيف محددة لهذه القطاعات، بما في ذلك، جمع مياه الأمطار، وإدارة مياه العواصف، وإعادة شحن المياه الجوفية. في قطاع الزراعة، تشمل التقنيات المثلى أنظمة الري الفعالة (كلا من الري بالتنقيط والرش)، وأنواع المحاصيل المقاومة للجفاف، وتوقعات الطقس المتقدمة، وتنفيذ أنظمة الإنذار المبكر [43].
يعد ضمان المشاركة النشطة للسكان في خطط التخفيف والتكيف أمراً ضرورياً، نظراً لوعيهم
بالوضع المحلي مقارنة بالمنظمات الخارجية. هناك حاجة ماسة لمعالجة التناقضات في التخطيط والسياسة الحكومية. لاحظت الهيئة الحكومية الدولية المعنية بتغير المناخ [55] أن عدم كفاية المعرفة لتحفيز الاستجابات التكيفية هو من بين عدة ظواهر تتطلب الانتباه. الوضع في باكستان هو الأسوأ في هذا الصدد، وفقاً لـ IPCC [55]، الذي استنتج أن تنفيذ السياسات كان مقيداً نسبياً ويواجه صعوبات متنوعة. للتعامل مع الآثار الدقيقة لتغير المناخ، تتطلب مختلف القطاعات تطوير خطط شاملة ومتعددة الأبعاد على الفور [55].

6 آفاق المستقبل

سيكون من الضروري إنشاء نماذج قائمة على البيانات تحاكي التأثيرات المتوقعة لتغير المناخ على أنظمة الإنتاج الزراعي المختلفة داخل المناطق الزراعية البيئية (AEZ) لضمان اتباع أساليب التكيف والإغاثة المناسبة. استخدام تكنولوجيا المعلومات، ونظم المعلومات الجغرافية، والاستشعار عن بعد لتطبيق تقنيات الزراعة الدقيقة هو استراتيجية استراتيجية تزيد من كفاءة المدخلات وتنتج بيانات واسعة حول المحاصيل والتربة والخصائص المتعلقة بالمناخ. باستخدام هذه البيانات، سيكون من الممكن تحديد أفضل استراتيجيات الزراعة لكل منطقة AEZ، مما يقلل من العواقب السلبية لتغير المناخ. بخلاف التدخلات المعتمدة على التكنولوجيا، فإن الحصول على تمويل مسبق من القنوات المحلية والدولية، مع التركيز بشكل خاص على صغار المزارعين، أمر ضروري لتعزيز التبني الواسع للزراعة الذكية مناخياً (CSA).
إن إنشاء استراتيجية إنذار مناخي، والاعتراف بتهديد تغير المناخ في أجندات التخطيط الوطنية، ونقل المعرفة للمزارعين من خلال برامج مستهدفة هي خطوات حاسمة لتعزيز التنفيذ العالمي والمحلي لـ CSA، خاصة في سياق باكستان. من أجل تقليل انبعاثات غازات الدفيئة، والاستعداد لتداعيات تغير المناخ، وزيادة القدرة على التحمل تجاه آثاره، يجب على المجتمع الدولي الاستمرار في العمل معاً لتنفيذ سياسات وإجراءات مناخية طموحة.
مساهمات المؤلفين: التصور؛ AS، SA، SS، TN، وSF، البيانات؛ TN، SF، وSS، الكتابة – المسودة الأصلية، SF، TUR، SA، MNRK الكتابة – المراجعة والتحرير SF. TN.
التمويل: لم يتم الحصول على أي تمويل لهذه الدراسة.
توفر البيانات: جميع البيانات التي تم إنشاؤها أو تحليلها خلال هذه الدراسة مدرجة في هذه المقالة المنشورة.

الإقرارات

تضارب المصالح: يعلن المؤلفون أنهم ليس لديهم مصالح متنافسة. كعضو في هيئة التحرير (شاه فهد) لهذه المجلة، ليس لدي مصالح متنافسة. يعلن المؤلفون أنهم ليس لديهم مصالح مالية متنافسة معروفة أو علاقات شخصية قد تكون قد أثرت على العمل المبلغ عنه في هذه الورقة.

الموافقة الأخلاقية: غير قابلة للتطبيق.

الموافقة على المشاركة: جميع المؤلفين متفقون على المساهمة في هذه الدراسة.
الوصول المفتوح: هذه المقالة مرخصة بموجب رخصة المشاع الإبداعي للاستخدام والمشاركة والتكيف والتوزيع وإعادة الإنتاج في أي وسيلة أو صيغة، طالما أنك تعطي الائتمان المناسب للمؤلفين الأصليين والمصدر، وتوفر رابطاً لرخصة المشاع الإبداعي، وتوضح ما إذا كانت هناك تغييرات قد تم إجراؤها. الصور أو المواد الأخرى من طرف ثالث في هذه المقالة مشمولة في رخصة المشاع الإبداعي للمقالة، ما لم يُشار إلى خلاف ذلك في سطر ائتمان للمادة. إذا لم تكن المادة مشمولة في رخصة المشاع الإبداعي للمقالة واستخدامك المقصود غير مسموح به بموجب اللوائح القانونية أو يتجاوز الاستخدام المسموح به، ستحتاج إلى الحصول على إذن مباشرة من صاحب حقوق الطبع والنشر. لعرض نسخة من هذه الرخصة، قم بزيارةhttp://creativecommons.org/licenses/by/4.0/.

References

  1. Abbas S (2022) Climate change and major crop production: evidence from Pakistan. Environ Sci Pollut Res 29(4):5406-5414. https://doi.org/10.1007/s11356-021-16041-4
  2. Abbass K, Qasim MZ, Song H, Murshed M, Mahmood H, Younis I (2022) A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ Sci Pollut Res 29(28):42539-42559
  3. Adnan M, Khan MA, Basir A, Fahad S, Nasar J, Imran, Alharbi S, Ghoneim AM, Yu G-H, Saleem MH (2023) Biochar as soil amendment for mitigating nutrients stress in crops. Sustainable agriculture reviews 61: biochar to improve crop production and decrease plant stress under a changing climate. Springer, Cham, pp 123-140
  4. Ahmed I, Ullah A, ur Rahman MH, Ahmad B, Wajid SA, Ahmad A, Ahmed S (2019) Climate change impacts and adaptation strategies for agronomic crops. In: Climate change and agriculture. IntechOpen. https://doi.org/10.5772/INTECHOPEN. 82697
  5. Ahmed M, Suphachalasai S (2014) Assessing the costs of climate change and adaptation in South Asia. Asian Development Bank, Mandaluyong
  6. Ali A, Rahut DB (2020) Localized floods, poverty and food security : empirical evidence from rural Pakistan. Hydrology 7(1):1-15
  7. Anwar A, Younis M, Ullah I (2020) Impact of urbanization and economic growth on CO2 emission: a case of far east Asian countries. Int J Environ Res Public Health 17(7):2531
  8. Arifeen M (2017) Effective execution of crop insurance policy required. Pakistan and Gulf Economist
  9. Aryal JP, Sapkota TB, Khurana R, Khatri-Chhetri A, Rahut DB, Jat ML (2020) Climate change and agriculture in South Asia: adaptation options in smallholder production systems. Environ Dev Sustain 22(6):5045-5075
  10. Asghar AJ, Cheema AM, Hameed MI, Qasim S (2021) The critical junction between CPEC, agriculture and climate
    change. LUMS Centre for Chinese Studies. Retrieved from https://ccls.lums.edu.pk/sites/default/files/2023-01/the_criti cal_junction_between_cpec_agriculture_and_climate_change. pdf. Accessed 5 Jan 2022
  11. Azani N, Ghaffar MA, Suhaimi H, Azra MN, Hassan MM, Jung LH, Rasdi NW (2021) The impacts of climate change on plankton as live food: a review. IOP Conf Ser Earth Environ Sci 869(1):012005
  12. Bandara JS, Cai Y (2014) The impact of climate change on food crop productivity, food prices and food security in South Asia. Econ Anal Policy 44(4):451-465
  13. Bank, T. W. (2022). Pakistan: Flood damages and economic losses over USD 30 billion and reconstruction needs over USD 16 billion – New assessment.
  14. Bawazeer S, Rauf A, Nawaz T, Khalil AA, Javed MS, Muhammad N, Shah MA (2021) Punica granatum peel extracts mediated the green synthesis of gold nanoparticles and their detailed in vivo biological activities. Green Process Synth 10(1):882-892
  15. Biber-Freudenberger L, Ziemacki J, Tonnang HE, Borgemeister C (2016) Future risks of pest species under changing climatic conditions. PLoS ONE 11(4):e0153237
  16. Bradshaw C, Eyre D, Korycinska A, Li C, Steynor A, Kriticos D (2024) Climate change in pest risk assessment: interpretation and communication of uncertainties. EPPO Bull 54:4-19. https:// doi.org/10.1111/epp. 12985
  17. Brempong MB, Amankwaa-Yeboah P, Yeboah S, Owusu Danquah E, Agyeman K, Keteku AK, Addo-Danso A, Adomako J (2023) Soil and water conservation measures to adapt cropping systems to climate change facilitated water stresses in Africa. Front Sustain Food Syst. https://doi.org/10.3389/fsufs.2022. 1091665
  18. Cell CC (2009) Crop insurance as a risk management strategy in Bangladesh. Ministry of Environment and Forests. Government of the People’s Republic of Bangladesh Department of Environment, Dhaka
  19. Chaloner T, Gurr S, Bebber D (2021) Plant pathogen infection risk tracks global crop yields under climate change. Nat Clim Change 11(8):710-715
  20. Chapman S, Birch CE, Pope E, Sallu S, Bradshaw C, Davie J, Marsham JH (2020) Impact of climate change on crop suitability in sub-Saharan Africa in parameterized and convection-permitting regional climate models. Environ Res Lett. https://doi.org/ 10.1088/1748-9326/ab9daf
  21. Chaudhry QUZ (2017) Climate change profile of Pakistan. Asian Development Bank
  22. Chaudhry S, Sidhu GPS (2022) Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. Plant Cell Rep 41(1):1-31. https://doi.org/10.1007/s00299-021-02759-5
  23. Chen C, Ota N, Wang B, Fu G, Fletcher A (2023) Adaptation to climate change through strategic integration of long fallow into cropping system in a dryland Mediterranean-type environment. Sci Total Environ 880:163230
  24. Chivenge P, Mabhaudhi T, Modi AT, Mafongoya P (2015) The potential role of neglected and underutilised crop species as future crops under water scarce conditions in Sub-Saharan Africa. Int J Environ Res Public Health 12(6):5685-5711
  25. Cradock-Henry NA, Blackett P, Hall M, Johnstone P, Teixeira E, Wreford A (2020) Climate adaptation pathways for agriculture: insights from a participatory process. Environ Sci Policy 107:66-79
  26. Davidson DJ (2018) Rethinking adaptation: emotions, evolution, and climate change. Nat Cult 13(3):378-402
  27. Dawood MF, Moursi YS, Abdelrhim AS, Hassan AA (2024) Investigation of ecology, molecular, and host-pathogen interaction of rice blast pathogen and management approaches.
Fungal diseases of rice and their management. Apple Academic Press, Oakville, pp 51-89
28. Dembedza VP, Chopera P, Mapara J, Macheka L (2022) Impact of climate change-induced natural disasters on intangible cultural heritage related to food: a review. J Ethn Foods 9(1):32
29. Deutsch CA, Tewksbury JJ, Tigchelaar M, Battisti DS, Merrill SC, Huey RB, Naylor RL (2018) Increase in crop losses to insect pests in a warming climate. Science 361(6405):916-919
30. Dmuchowski W, Baczewska-d AH, Gworek B (2024) The role of temperate agroforestry in mitigating climate change: a review. For Policy Econ 159(August 2023):103136. https:// doi.org/10.1016/j.forpol.2023.103136
31. Eckardt NA, Ainsworth EA, Bahuguna RN, Broadley MR, Busch W, Carpita NC, Castrillo G, Chory J, Dehaan LR, Duarte CM, Henry A, Jagadish SVK, Langdale JA, Leakey ADB, Liao JC, Lu KJ, McCann MC, McKay JK, Odeny DA et al (2023) Climate change challenges, plant science solutions. Plant Cell 35(1):24-66. https://doi.org/10.1093/plcel1/koac303
32. El Jazouli A, Barakat A, Khellouk R, Rais J, El Baghdadi M (2019) Remote sensing and GIS techniques for prediction of land use land cover change effects on soil erosion in the high basin of the Oum Er Rbia River (Morocco). Remote Sens Appl Soc Environ 13:361-374
33. Elahi E, Khalid Z, Tauni MZ, Zhang H, Lirong X (2022) Extreme weather events risk to crop-production and the adaptation of innovative management strategies to mitigate the risk: a retrospective survey of rural Punjab, Pakistan. Technovation 117:102255. https://doi.org/10.1016/J.TECHNOVATION. 2021.102255
34. Elbasiouny H, El-Ramady H, Elbehiry F, Rajput VD, Minkina T, Mandzhieva S (2022) Plant nutrition under climate change and soil carbon sequestration. Sustainability 14(2):914. https:// doi.org/10.3390/SU14020914
35. Fahad S, Adnan M, Zhou R, Nawaz T, Saud S (2024) Biocharassisted remediation of contaminated soils under changing climate. Elsevier, Amsterdam
36. FAO (2021) FAO. http://www.fao.org/faostat/en/#rankings/ countries_by_commodity
37. Farooq MS, Uzaiir M, Raza A, Habib M, Xu Y, Yousuf M, Ramzan Khan M (2022) Uncovering the research gaps to alleviate the negative impacts of climate change on food security: a review. Front Plant Sci 13:2334
38. Galanakis CM (2023) The ‘vertigo’ of the food sector within the triangle of climate change, the post-pandemic world, and the Russian-Ukrainian war. Foods 12(4):721
39. Gasparini K, Rafael DD, Peres LEP, Ribeiro DM, Zsögön A (2024) Agriculture and food security in the era of climate change. Digital agriculture: a solution for sustainable food and nutritional security. Springer International Publishing, Cham, pp 47-58
40. Gbadeyan OJ, Muthivhi J, Linganiso LZ, Deenadayalu N (2024) Decoupling economic growth from carbon emissions: a transition towards low carbon energy systems-a critical review. https:// doi.org/10.20944/preprints202402.1085.v1
41. Godde CM, Mason-D’Croz D, Mayberry DE, Thornton PK, Herrero Impacts of climate change on the livestock food supply chain; a review of the evidence. Glob Food Sec 28:100488
42. Gojon A, Cassan O, Bach L, Lejay L, Martin A (2023) The decline of plant mineral nutrition under rising : physiological and molecular aspects of a bad deal. Trends Plant Sci 28(2):185198. https://doi.org/10.1016/J.TPLANTS.2022.09.002
43. GOP (2016) BAEF Climate Change Adaptation Report-II. Technology needs assessment fro climate change adaptation barrier analysis and enabling framework
44. Guja MM, Bedeke SB (2024) Smallholders’ climate change adaptation strategies: exploring effectiveness and opportunities
to be capitalized. Environ Dev Sustain. https://doi.org/10.1007/ s10668-024-04750-y
45. Gupta J, Roy D, Thakur IS, Kumar M (2022) Environmental DNA insights in search of novel genes/taxa for production of biofuels and biomaterials. Biomass Biofuels Biochem. https:// doi.org/10.1016/B978-0-12-823500-3.00015-7
46. Han J, Zhang Z, Cao J, Luo Y, Zhang L, Li Z, Zhang J (2020) Prediction of winter wheat yield based on multi-source data and machine learning in China. Remote Sens 12(2):236. https://doi.org/10.3390/rs12020236
47. Hanif S, Hayat MK, Zaheer M, Raza H, Ain QU (2024) Cornous biology impact of climate change on agriculture production and strategies to overcome. May. https://doi.org/10. 37446/corbio/ra/2.2.2024.1-7
48. Haq SU, Boz I, Shahbaz P (2021) Adoption of climate-smart agriculture practices and differentiated nutritional outcome among rural households: a case of Punjab province, Pakistan. Food Secur 13:913-931
49. Hassan MA, Xiang C, Farooq M, Muhammad N, Yan Z, Hui X, Yuanyuan K, Bruno AK, Lele Z, Jincai L (2021) Cold stress in wheat: plant acclimation responses and management strategies. Front Plant Sci 12:1234. https://doi.org/10.3389/FPLS.2021. 676884/BIBTEX
50. Hegerl GC, Brönnimann S, Cowan T, Friedman AR, Hawkins E, Iles C, Müller W, Schurer A, Undorf S (2019) Causes of climate change over the historical record. Environ Res Lett 14(12):123006. https://doi.org/10.1088/1748-9326/ab4557
51. Higgens RF, Pries CH, Virginia RA (2021) Trade-offs between wood and leaf production in Arctic shrubs along a temperature and moisture gradient in West Greenland. Ecosystems 24(3):652-666. https://doi.org/10.1007/s10021-020-00541-4
52. Huong NTL, Yao S, Fahad S (2018) Assessing household livelihood vulnerability to climate change: the case of Northwest Vietnam. Hum Ecol Risk Assess Int J 25(5):1157-1175. https://doi.org/10.1080/10807039.2018.1460801
53. Hussain M, Butt AR, Uzma F, Ahmed R, Irshad S, Rehman A, Yousaf B (2020) A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan. Environ Monit Assess 192(1):1. https://doi.org/10.1007/s10661-019-7956-4
54. Lee H., Calvin K, Dasgupta D, Krinmer G, Mukherji A, Thorne P, Zommers Z (2023). Synthesis report of the IPCC Sixth Assessment Report (AR6), Longer report. IPCC.
55. IPCC (2021) Intergovernmental Panel on Climate Change. Summary for policymakers. In: Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth. Assessment report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, UK
56. IPCC (2023) Intergovernmental Panel on Climate Change: synthesis report (SYR) of the IPCC sixth assessment report (AR6). Cambridge University Press, Cambridge (Panmao Zhai)
57. Islam MM, Ahamed T, Matsushita S, Noguchi R (2024) A damage-based crop insurance system for flash flooding: a satellite remote sensing and econometric approach. Climate change perspective in agriculture in remote sensing application II. Springer Nature, Singapore, pp 121-163
58. Jatav HS, Rajput VD, Minkina T, Van Hullebusch ED, Dutta A (2024) Agroforestry to combat global challenges (issue March). Springer, Singapore. https://doi.org/10.1007/ 978-981-99-7282-1
59. Karimi V, Karami E, Keshavarz M (2018) Climate change and agriculture: Impacts and adaptive responses in Iran. J Integr Agric 17(1):1-15
60. Kazemi Garajeh M, Salmani B, Zare Naghadehi S, Valipoori Goodarzi H, Khasraei A (2023) An integrated approach of
remote sensing and geospatial analysis for modeling and predicting the impacts of climate change on food security. Sci Rep 13(1):1057
61. Khan I, Lei H, Shah AA, Khan I, Muhammad I (2021) Climate change impact assessment, flood management, and mitigation strategies in Pakistan for sustainable future. Environ Sci Pollut Res 28(23):29720-29731. https://doi.org/10.1007/S11356-021-12801-4/FIGURES/7
62. Khan N, Jhariya MK, Raj A, Banerjee A, Meena RS (2021) Soil carbon stock and sequestration: implications for climate change adaptation and mitigation. Ecological intensification of natural resources for sustainable agriculture. Springer, Singapore, pp 461-489. https://doi.org/10.1007/978-981-33-4203-3_ 13/COVER
63. Khangura R, Ferris D, Wagg C, Bowyer J (2023) Regenerative agriculture-a literature review on the practices and mechanisms used to improve soil health. Sustainability (Switzerland). https://doi.org/10.3390/su15032338
64. Korres NE, Norsworthy JK, Tehranchian P, Gitsopoulos TK, Loka DA, Oosterhuis DM, Palhano M (2016) Cultivars to face climate change effects on crops and weeds: a review. Agron Sustain Dev 36:1-22
65. Kubik Z, Mirzabaev A, May J (2023) Handbook of labor, human resources and population economics (issue January). In: Zimmermann KF (ed). Springer Nature, Cham. https://doi. org/10.1007/978-3-319-57365-6
66. Kumar L, Chhogyel N, Gopalakrishnan T, Hasan MK, Jayasinghe SL, Kariyawasam CS, Kogo BK, Ratnayake S (2022) Climate change and future of agri-food production. Future foods: global trends, opportunities, and sustainability challenges. Elsevier, Amsterdam, pp 49-79. https://doi.org/10. 1016/B978-0-323-91001-9.00009-8
67. Lodhi S, Ayyubi MS, Hayat S, Iqbal Z (2024) Unravelling the effects of climate change on agriculture of pakistan: an exploratory analysis. Qlantic J Soc Sci 5(2):142-158. https:// doi.org/10.55737/qjss. 791319404
68. Magesa BA, Mohan G, Matsuda H, Melts I, Kefi M, Fukushi K (2023) Understanding the farmers’ choices and adoption of adaptation strategies, and plans to climate change impact in Africa: a systematic review. Climate Services 30(October 2022):100362. https://doi.org/10.1016/j.cliser.2023.100362
69. Malhi GS, Kaur M, Kaushik P (2021) Impact of climate change on agriculture and its mitigation strategies: a review. Sustainability (Switzerland) 13(3):1-21. https://doi.org/10.3390/su130 31318
70. McClelland SC, Paustian K, Schipanski ME (2021) Management of cover crops in temperate climates influences soil organic carbon stocks: a meta-analysis. Ecol Appl 31(3):e02278
71. Mirón IJ, Linares C, Díaz J (2023) The influence of climate change on food production and food safety. Environ Res 216:114674
72. Mottaleb KA, Rejesus RM, Murty MVR, Mohanty S, Li T (2017) Benefits of the development and dissemination of cli-mate-smart rice: ex ante impact assessment of drought-tolerant rice in South Asia. Mitig Adapt Strat Glob Change 22:879-901
73. Murthy CS, Choudhary KK, Pandey V, Srikanth P, Ramasubramanian S, Kumar GS, Nemani R (2024) Transformative crop insurance solution with big earth data: Implementation for potato crops in India. Clim Risk Manag. https://doi.org/10. 1016/j.crm.2024.100622
74. Northrup DL, Basso B, Wang MQ, Morgan CL, Benfey PN (2021). Novel technologies for emission reduction complement conservation agriculture to achieve negative emissions from row-crop production. Proc Natl Acad Sci 118(28):e2022666118
75. Nawaz T, Gu L, Fahad S, Saud S, Bleakley B, Zhou R (2024) Exploring sustainable agriculture with nitrogen-fixing cyanobacteria and nanotechnology. Molecules 29(11):2534
76. Nawaz T, Gu L, Fahad S, Saud S, Harrison MT, Zhou R (2024) Sustainable protein production through genetic engineering of cyanobacteria and use of atmospheric gas. Food Energy Secur 13(2):e536
77. Nawaz T, Gu L, Fahad S, Saud S, Hassan S, Harrison MT, Liu K, Zhou R (2024) Unveiling the antioxidant capacity of fermented foods and food microorganisms: a focus on cyanobacteria. J Umm Al-Qura Univ Appl Sci 10(1):232-243
78. Nawaz T, Saud S, Gu L, Khan I, Fahad S, Zhou R (2024) Cyanobacteria: harnessing the power of microorganisms for plant growth promotion, stress alleviation, and phytoremediation in the era of sustainable agriculture. Plant Stress 11:100399
79. Nawaz T, Gu L, Gibbons J, Hu Z, Zhou R (2024) Bridging nature and engineering: protein-derived materials for bio-inspired applications. Biomimetics 9(6):373
80. Nazir MJ, Li G, Nazir MM, Zulfiqar F, Siddique KHM, Iqbal B, Du D (2024) Harnessing soil carbon sequestration to address climate change challenges in agriculture. Soil Till Res 237(Novenber 2023):105959. https://doi.org/10.1016/j.still.2023.105959
81. Northrup DL, Basso B, Wang MQ, Morgan CL, Benfey PN (2021) Novel technologies for emission reduction complement conservation agriculture to achieve negative emissions from rowcrop production. Proc Natl Acad Sci 118(28):e2022666118
82. Ogle SM, Alsaker C, Baldock J, Bernoux M, Breidt FJ, McConkey B, Vazquez-Amabile GG (2019) Climate and soil characteristics determine where no-till management can store carbon in soils and mitigate greenhouse gas emissions. Sci Rep 9(1):11665
83. Paustian K, Larson E, Kent J, Marx E, Swan A (2019) Soil C sequestration as a biological negative emission strategy. Front Clim. https://doi.org/10.3389/fclim.2019.00008
84. Powlson DS, Stirling CM, Thierfelder C, White RP, Jat ML (2016) Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agroecosystems? Agr Ecosyst Environ 220:164-174
85. Praveen B, Sharma P (2019) A review of literature on climate change and its impacts on agriculture productivity. J Public Aff 19(4):e1960. https://doi.org/10.1002/PA. 1960
86. Qamer FM, Ahmad B, Abbas S, Hussain A, Salman A, Muhammad S, Nawaz M, Shrestha S, Iqbal B, Thapa S (2022) The 2022 Pakistan floods Assessment of crop losses in Sindh Province. pp 1-24. https://doi.org/10.53055/ICIMOD. 1015
87. Quandt A, Grafton D, Gorman K, Dawson PM, Ibarra C, Mayes E, Paderes P (2023) Mitigation and adaptation to climate change in San Diego County, California. Mitig Adapt Strat Glob Change 28(1):7
88. Raihan A, Pavel MI, Muhtasim DA, Farhana S, Faruk O, Paul A (2023) The role of renewable energy use, technological innovation, and forest cover toward green development: Evidence from Indonesia. Innov Green Dev 2(1):100035. https://doi.org/ 10.1016/J.IGD.2023.100035
89. Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8(2):34. https://doi. org/10.3390/plants8020034
90. Rehman A, Batool Z, Ma H, Alvarado R, Oláh J (2024) Climate change and food security in South Asia: the importance of renewable energy and agricultural credit. Human Soc Sci Commun 11(1):1-11. https://doi.org/10.1057/s41599-024-02847-3
91. Sapkota TB, Jat ML, Aryal JP, Jat RK, Khatri-Chhetri A (2015) Climate change adaptation, greenhouse gas mitigation and economic profitability of conservation agriculture: Some examples from cereal systems of Indo-Gangetic Plains. J Integr Agric 14(8):1524-1533
92. Shakya S, Gyawali, DR, Gurung JK, Regmi PP (2013) A trailblazer in adopting climate smart practices: one cooperative’s success story. https://ccafs.cgiar.org/es/blog/trailblazer-adopt ing-climate-smart-practices-one-cooperative%e2,80
93. Sheikh ZA, Ashraf S, Weesakul S, Ali M, Hanh NC (2024) Impact of climate change on farmers and adaptation strategies in Rangsit, Thailand. Environ Chall 15(December 2023):100902. https://doi.org/10.1016/j.envc.2024.100902
94. Shivanna KR (2022) Climate change and its impact on biodiversity and human welfare. Proc Indian Natl Sci Acad 88(2):160171. https://doi.org/10.1007/s43538-022-00073-6
95. Shrestha S (2019) Effects of climate change in agricultural insect pest. Acta Sci Agric 3:74-80
96. Siddiq A (2017) Climate change profile of Pakistan. https://doi. org/10.22617/TCS178761
97. Siyal GEA (2018). Farmers see room for improvement in crop loan insurance scheme. The Express Tribune, Pakistan. https:// tribune.com.pk/story/1657400/2-farmers-see-room-impro vement-croploan-insurance-scheme/
98. Sorgho R, Quiñonez CAM, Louis VR, Winkler V, Dambach P, Sauerborn R, Horstick O (2020) Climate change policies in 16 West African countries: a systematic review of adaptation with a focus on agriculture, food security, and nutrition. Int J Environ Res Public Health 17(23):8897
99. Sturrock RN, Frankel SJ, Brown AV, Hennon PE, Kliejunas JT, Lewis KJ, Worrall JJ, Woods AJ (2011) Climate change and forest diseases. Plant Pathol 60:133-149
100. Suhaeb FW, Tamrin S (2024) Community adaptation strategies to climate change: towards sustainable social development. Migrat Lett 2:943-953
101. Sun H, Wang Y, Wang L (2024) Impact of climate change on wheat production in China. Eur J Agron 153:127066
102. Syed A, Raza T, Bhatti TT, Eash NS (2022) Climate Impacts on the agricultural sector of Pakistan: risks and solutions. Environ Chall 6:100433
103. Syldon P, Shrestha BB, Miyamoto M, Tamakawa K, Nakamura S (2024) Assessing the impact of climate change on flood inundation and agriculture in the Himalayan Mountainous Region of Bhutan. J Hydrol Region Stud 52:101687. https://doi.org/10. 1016/j.ejrh.2024.101687
104. Szyniszewska AM, Akrivou A, Björklund N, Boberg J, Bradshaw C, Damus M, Gardi C, Hanea A, Kriticos J, Maggini R, Musolin DL (2024) Beyond the present: how climate change is relevant to pest risk analysis. EPPO Bull 54:20-37. https://doi.org/10.1111/ epp. 12986
105. Temesgen H, Wu W, Legesse A, Yirsaw E (2021) Modeling and prediction of effects of land use change in an agroforestry dominated southeastern Rift-Valley escarpment of Ethiopia. Remote Sens Appl Soc Environ 21:100469. https://doi.org/10.1016/J. RSASE.2021.100469
106. Tesfaye K, Zaidi PH, Gbegbelegbe S, Boeber C, Rahut DB, Getaneh F, Stirling C (2017) Climate change impacts and potential benefits of heat-tolerant maize in South Asia. Theor Appl Climatol 130:959-970
107. Timsina J (2024) Agriculture-livestock-forestry Nexus in Asia: Potential for improving farmers’ livelihoods and soil health, and adapting to and mitigating climate change. Agric Syst 218:104012
108. Tume SJP, Mairomi WH, Awazi NP (2024) Rainfall reliability and maize production in the Bamenda Highlands of Cameroon.
World Dev Sustain 4(March):100156. https://doi.org/10.1016/j. wds.2024.100156
109. Uddin ME, Kebreab E (2020) Impact of food and climate change on pastoral industries. Fronti Sustain Food Syst 4:543403
110. UNCDD (2017) Global land outlook. UNCDD, Bonn
111. Yanagi M (2024) Climate change impacts on wheat production: Reviewing challenges and adaptation strategies. Adv Resour Res 4(1):89-107
112. Yin F, Sun Z, You L, Müller D (2024). Determinants of changes in harvested area and yields of major crops in China. Food Secur 16(2):339-351
113. Vinke K, Martin MA, Adams S, Baarsch F, Bondeau A, Coumou D, Svirejeva-Hopkins A (2017) Climatic risks and impacts in South Asia: extremes of water scarcity and excess. Reg Environ Change 17:1569-1583
114. Wang SW, Lee WK, Son Y (2017) An assessment of climate change impacts and adaptation in South Asian agriculture. Int J Clim Change Strateg Manag 9(4):517-534
115. Wieder WR, Sulman BN, Hartman MD, Koven CD, Bradford MA (2019) Arctic soil governs whether climate change drives global losses or gains in soil carbon. Geophys Res Lett 46(24):14486-14495. https://doi.org/10.1029/2019GL085543
116. Xu X, Pei J, Xu Y, Wang J (2020) Soil organic carbon depletion in global Mollisols regions and restoration by management practices: a review. J Soils Sediments 20(3):1173-1181. https:// doi.org/10.1007/s11368-019-02557-3
117. Yanagi M (2024) Climate change impacts on wheat production: reviewing challenges and adaptation strategies. 4(1):89-107. https://doi.org/10.5098/arr.4.1
118. Yin F, Sun Z, You L, Müller D (2024) Determinants of changes in harvested area and yields of major crops in China. Food Secur 16(2):339-351. https://doi.org/10.1007/s12571-023-01424-x
119. You Y, Ting M, Biasutti M (2024) Climate warming contributes to the record-shattering 2022 Pakistan rainfall. npj Clim Atmos Sci 7(1):1-8. https://doi.org/10.1038/s41612-024-00630-4
120. Yu L, Shi H, Wu H, Hu X, Ge Y, Yu L, Cao W (2024) The role of climate change perceptions in sustainable agricultural development: evidence from conservation tillage technology adoption in Northern China. Land 13(5):705. https://doi.org/10.3390/land1 3050705
121. Zheng B, Chen K, Li B, Li Y, Shi L, Fan H (2024) Climate change impacts on precipitation and water resources in Northwestern China. Front Environ Sci 12(April):1-12. https://doi.org/ 10.3389/fenvs.2024.1377286
122. Zheng H, Ma W, He Q (2024) Climate-smart agricultural practices for enhanced farm productivity, income, resilience, and greenhouse gas mitigation: a comprehensive review. Mitig Adapt Strateg Glob Change. https://doi.org/10.1007/ s11027-024-10124-6
123. Zhi J, Cao X, Zhang Z, Qin T, Qi L, Ge L, Fu X (2022) Identifying the determinants of crop yields in China since 1952 and its policy implications. Agric For Meteorol 327:109216
Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

المؤلفون والانتماءات

أنام سليم صبية أنور توفيق نواز شاه فهد شاه سعود تنزيل الرحمن محمد ناصر رشيد خان . توكير نواز

شاه فهد
shah_fahad80@yahoo.com
شاه سعود
saudhort@gmail.com
أنام سليم
anam.saleem@live.com
صبية أنور
sobiaamalik9@gmail.com
توفيق نواز
taufiq.nawaz@jacks.sdstate.edu
تنزيل الرحمن
Tanzeel.htm13@gmail.com
محمد ناصر رشيد خان
nasirrasheed219@gmail.com
توكير نواز
nawaztouqir25@gmail.com
قسم علوم الحياة، جامعة COMSATS إسلام آباد، إسلام آباد، باكستان
2 معهد جامعة الكيمياء الحيوية والتكنولوجيا الحيوية، جامعة PMAS للزراعة الجافة، راولبندي، باكستان
3 كلية العلوم الطبيعية، جامعة ولاية داكوتا الجنوبية، بروكينغز، SD 57007، الولايات المتحدة الأمريكية
4 قسم الزراعة، جامعة عبد الوالي خان، مردان، باكستان
5 كلية علوم الحياة، جامعة لين يي، لين يي 276000، شاندونغ، الصين
6 قسم إدارة الفنادق والسياحة، جامعة سوات، سوات، باكستان
7 قسم الزراعة، جامعة عبد الوالي خان، مردان، باكستان
8 قسم العلوم السياسية، جامعة عبد الوالي خان، مردان، باكستان

  1. معلومات المؤلفين الموسعة متاحة في الصفحة الأخيرة من المقالة

Journal: Journal of Umm Al-Qura University for Applied Sciences
DOI: https://doi.org/10.1007/s43994-024-00177-3
Publication Date: 2024-07-11

Securing a sustainable future: the climate change threat to agriculture, food security, and sustainable development goals

Anam Saleem Sobia Anwar Taufiq Nawaz Shah Fahad Shah Saud Tanzeel Ur Rahman Muhammad Nasir Rasheed Khan . Touqir Nawaz

Received: 4 April 2024 / Accepted: 4 July 2024 / Published online: 11 July 2024
© The Author(s) 2024

Abstract

Climate alteration poses a consistent threat to food security and agriculture production system. Agriculture sector encounters severe challenges in achieving the sustainable development goals due to direct and indirect effects inflicted by ongoing climate change. Although many industries are confronting the challenge of climate change, the impact on agricultural industry is huge. Irrational weather changes have raised imminent public concerns, as adequate output and food supplies are under a continuous threat. Food production system is negatively threatened by changing climatic patterns thereby increasing the risk of food poverty. It has led to a concerning state of affairs regarding global eating patterns, particularly in countries where agriculture plays a significant role in their economies and productivity levels. The focus of this review is on deteriorating consequences of climate alteration with the prime emphasis on agriculture sector and how the altering climatic patterns affect food security either directly or indirectly. Climate shifts and the resultant alteration in the temperature ranges have put the survival and validity of many species at risk, which has exaggerated biodiversity loss by progressively fluctuating the ecological structures. The indirect influence of climate variation results in poor quality and higher food costs as well as insufficient systems of food distribution. The concluding segment of the review underscores the emphasis on policy implementation aimed at mitigating the effects of climate change, both on a regional and global scale. The data of this study has been gathered from various research organizations, newspapers, policy papers, and other sources to aid readers in understanding the issue. The policy execution has also been analyzed which depicted that government engrossment is indispensable for the long-term progress of nation, because it will guarantee stringent accountability for the tools and regulations previously implemented to create state-of-the-art climate policy. Therefore, it is crucial to reduce or adapt to the effects of climate change because, in order to ensure global survival, addressing this worldwide peril necessitates a collective global commitment to mitigate its dire consequences.

Keywords Climate change Risk Agriculture Food security SDGS

1 Climate change-global outlook

Climate alteration is an issue of global concern with alarming consequences for human cultures, economy and ecosystems. The climate of earth has been changing almost a million years, but the current rate of change is significantly rapid than, what can be explained only by natural processes. The overwhelming consensus among scientists is that human activities are the principal driver behind the accelerating pace of climate change [50]. Numerous investigations have shown that the world is already experiencing the effects of climate shifts. Increasing temperatures have resulted in more
recurrent and extreme heat waves, which have a considerable impact on human health and productivity [56]. Due to climate change, there has been intense storms and droughts, affecting water supply and food security in many countries. Furthermore, sea-level rise is inducing coastal flooding and erosion, which endangers residents and infrastructure in lowlying regions [56].
The main causes of climate change are the emissions of greenhouse gases (GHGs), such as , and , and their abundance in the atmosphere is significantly enhanced by vehicular usage, agricultural activities, industrial development, and combusting fossil fuels [45]. Latest report by the International Energy Agency (IEA) indicated that worldwide emissions from energy use increased by in
2021, after a slight reduction in 2020 due to the COVID19 pandemic [54]. While solar cycles, seismic activity, and volcanic eruptions are examples of natural phenomena that contribute to degradation of environment, human interventions are alarmingly, accelerating the global GHG emissions since, resulting in an imbalanced natural atmosphere, environmental degradation and global warming [96]. It is therefore essential to handle with the climate shift issues by cutting greenhouse gas emissions and creating environmentally friendly activities would help to lessen their detrimental effects [75].

1.1 Climate change-alarming threat to agriculture

Agriculture is impacted significantly by climate change, and agriculture is crucial to both sustainable development and food production. The implications of diverse climate change on agriculture, includes variations in temperature, precipitation, and extreme weather. These detrimental effects are concerning with regard to the developing nations where agriculture performs an essential part in assuring both economic growth and food security. Pakistan, an agricultural country where most of its people are directly or indirectly associated with the agriculture sector, is also extremely susceptible to natural disasters brought on by shifting climate.

2 Direct consequences of climate change on agriculture

2.1 Temperature changes

Significant temperature variations induced by climate change directly influence the crop productivity. Increasing temperatures lead to heightened levels of heat and waterrelated pressures, which lowers agricultural output. The rising temperature of the atmosphere is influenced by the increase in greenhouse gases. Heat waves in the atmosphere are absorbed by infrared-active gases, mainly carbon dioxide ( ), ozone ( ), and water vapor ( ) which subsequently warm up the earth in a phenomenon recognized as the greenhouse effect [69]. The average global temperature has risen by since 1850 . Nevertheless, the average worldwide land temperature has risen around twofold as much as the oceans due to the more pronounced temperature changes in landmasses. In contrast to the average temperature between 1951 and 1980, global temperatures of land have increased by , while ocean surface temperatures (excluding sea ice areas) have increased by . Additionally, because it contains a greater proportion of landmasses than the Southern Hemisphere, the Northern Hemisphere has demonstrated a higher average temperature. Polar regions have seen an unprecedented
rise in temperature, which has negative consequences for instance melting glaciers [66]. It is imperative to curtail greenhouse gas emissions to prevent the Earth’s temperature from surpassing a increase above pre-industrial levels. The mean sea level has risen due to global warming in two ways. Both the expansion of the water’s volume due to warming and the melting of glaciers, the polar ice cap, and the Atlantic ice shelf are causing the ocean to grow in size. Over the last three millennia, the average sea level has risen faster since 1900 than it has in any preceding century [94]. Futuristic predictions of Intergovernmental Panel on Climate Change (IPCC) estimate that the average world temperature will rise by by 2100 and by 2400 [55]. At the current radioactive force level, exceeding by 2100 does not appear to occur. However, the risk is increasing, primarily as a result of the radioactive forces stabilizing above 400 ppm of [40].
Extreme temperature conditions that have emerged in Pakistan present a severe danger to food security and the sustainability of agricultural systems. Due to its diverse climate zones, Pakistan is prone to temperature extremes including heat waves and cold waves. Increasing temperatures have impacted agricultural productivity through multiple processes [33], including increased water stress, changed crop phenology, and increased pest and disease pressure. Moreover, heat stress can reduce crop yields, degrade crop quality, and interfere with pollination at crucial growth phases [76]. Furthermore, hot weather exacerbates vulnerability of heatsensitive plants like wheat, rice, and maize [4]. Conversely, due to frost and freezing temperatures, extreme cold events, particularly in Pakistan’s north, have also put agricultural systems in danger. Frost deteriorates plant tissues, reducing yields and quality and quantity of crops [49]. The production and health of livestock are also impacted by cold waves, further jeopardizing the livelihoods of farmers who depend on animal husbandry.

2.2 Precipitation changes

Modifications to the patterns of precipitation are another effect of climate change that contribute to both droughts and floods. The Intergovernmental Panel on Climate Change (IPCC) of the United Nations explicitly stated in its Sixth Assessment Synthesis Report that human activities and rapid industrial development have increased the yearly concentration of greenhouse gases, which has caused the average global surface temperature to rise by approximately in just ten years (2011-2020) [56]. The panel also stated that as a result of global warming, extreme precipitation events will surely occur more frequently [121, 122]. Flood magnitude and severity will be catastrophically affected by climate change, particularly in agriculture, which is a major source of income for people and a big driver of the economies of
many countries [103]. Rural residents, especially in developing nations, are frequently vulnerable to floods because they have lesser resources as well as adaptive capacity [90]. Ecological and climatic changes are primarily responsible for the severity and intensity of flood disasters [61, 62]. Inaccurately recognizing how different climatic conditions affect agricultural systems will not only negatively damage food production and safety but also obstruct attempts to enhance sustainable development and eliminate poverty [52]. The drastic changes in precipitation patterns can cause infrastructure damage and agricultural loss. Droughts have caused a decrease in agricultural productivity and food security in numerous regions while unusual rainfalls have deteriorated the ripe crops. A recent study in Ethiopia reported that decreased maize and teff yields resulted from increased rainfall variability [105]. Likewise, reduced rainfall in SubSaharan African region led to lesser maize productivity, decreased precipitation has resulted in a reduction in maize crop yields, which is the main staple food in the region [20]. Among the most important impacts of global climate alteration in Pakistan is the escalation in flood frequency and intensity. According to a report by the World Bank, Pakistan ranks among the nation’s most susceptible to flooding globally [13]. In 2022, the country has experienced several major floods which were the worst in the country’s history, which caused significant harm to standing crops including wheat, rice, millet, sorghum, sugar cane and cotton particularly in Sindh and Baluchistan provinces [1]. These crop damages caused billion losses to the country’s economy [86].
Pakistan experiences considerable variability in rainfall due to its diverse climatic regions. However, climate change is expected to further exacerbate this variability, resulting in heightened occurrences and severity of floods [1]. Intense rainfall events and flooding has led to soil erosion, nutrient leaching, and water logging, all of which can harmed crop health and reduced yields [119]. Floods damaged infrastructure, washing away crops, and disrupting agricultural activities [6] and [53]). Monthly climatology of minimum temperature, maximum temperature, mean temperature and precipitation from 1991 to 2020 of Pakistan adapted from World Climate Change Knowledge Portal) has been shown in Fig. 1.

2.3 Alteration in soil quality and fertilizer consumption

Agricultural systems are presented by enormous problems due to climate alterations influences the soil quality and fertilizer use. The yield and sustainability of agriculture may suffer as a result of the shifting climatic circumstances brought on by climate change [39]. One of the main effects is soil deterioration, which occurs as a result of things like intensified rainfall and extreme weather events that cause nutrient leaching, erosion, and compaction. Important topsoil is removed through these processes, which lowers its fertility and restricts crop development. The growth of roots and the absorption of nutrients can also be hampered by soil compaction, which can be worse by altering precipitation
Fig. 1 Monthly climatology of minimum temperature, maximum temperature, mean temperature and precipitation from 1991-2020 of Pakistan (Adapted from World Climate Change Knowledge Portal)
patterns and temperatures [61, 62]. Additionally, nitrogen cycle in the soil is disturbed by climate change. The natural processes that ensure nutrient availability can be hampered by variations in temperature, moisture content, and microbial activity [89]. For instance, increased evaporation rates and warmer temperatures can cause the soil to become less moist, which will influence microbial activity and nutrient release [51]. Nutrient deficits and imbalances may occur, which would prevent crops from growing and developing to their full potential. Climate change can affect soil pH levels in addition to disrupting the nitrogen cycle. Increased atmospheric carbon dioxide ( ) levels cause soil to become more acidic, which negatively impacts ability of plant to absorb nutrients [42]. Crop productivity is impacted by acidic soils because they limit the availability of essential nutrients including calcium, magnesium, and phosphorus along with affecting carbon sequestration [34].
The alteration of soil organic matter is another effect of climate shift on agriculture. Increased microbial activity and higher temperatures due to climate change accelerate the breakdown of organic materials in the soil [115]. As a consequence, the quantity of organic carbon in the soil decreases, which is crucial for preserving soil structure, water-holding ability and nutrient retention. The loss of soil organic matter has a harmful impact on soil fertility and lowers crop production [116]. Moreover, modifications to fertilizer practices may be necessary due to the changing climate [85]. To ensure that crops receive the right amount of nutrients, fertilizer formulations, application rates, and timing must be carefully considered in light of variations in growth patterns, water availability, and temperature regimes. Unbalanced nutrient levels, decreased nutrient usage effectiveness, and higher environmental dangers can result from a failure to adjust to climatic changes [22].

3 Indirect consequences of adverse climate change

3.1 Reduced agriculture output: global vs local context

The changing climatic patterns including rainfall and temperature potentially inhibit the crop yields. Increased temperatures, erratic precipitation, carbon dioxide fertilization and irrigation, have varied effects contingent upon the specific crop, where it is grown, and variability of these factors themselves [77]. The influence of climate alteration on agriculture production also differs by region and method of irrigation. As a result of shortened growing seasons, most likely, many crops will yield less [93]. Temperature increases of in both temperate and tropical locations are expected to result in a decline in the projected total yield
of wheat, rice, and maize [118]. Tropical areas are more influenced by climate shifts overall because crops of tropical areas have higher temperature optimums, thus are more vulnerable to elevated temperature stress [69]. In addition to temperature and precipitation, humidity and wind speed are additional variables that impact agricultural productivity. The application of machine learning algorithms in crop research and climate change research has been growing in popularity. Han et al. [46], demonstrated that when it comes to estimating China’s winter wheat production, the Random Forest approach outperforms both Gaussian Process Regression and Support Vector Machine. Zhi et al. [123] found that technology inputs are critical to China’s output of wheat, rice, and maize using the boosted regression trees algorithm. Numerous crop models have been found to indicate that the climate accounts for between 39 and of the variation in wheat yield in the North China Plain [101]. Australia’s total wheat yield was predicted to decrease due to climate change, and it was discovered that heat stress decreased the output of winter wheat by in the northern part of China’s winter wheat planting area [23]. Most parts of the world are likely to experience increased water shortages as a result of climate change, with an increase in drought-affected regions from 15.4 to by 2100 . The most vulnerable region in this regard is Africa. Under this scenario the anticipated yield decline of major crops would be more than by 2050 and by nearly by 2100 [69].
Furthermore, it has been shown that rising temperatures reduce yield; however, rising precipitation is probably going to mitigate or neutralize the effects of escalating temperatures [59]. Crop production, as seen in Iran under the influence of climatic variables, is influenced by kind of crop, climate state, and effect of fertilization [59]. As climate change affects weather patterns and climate components like temperature and rainfall, it has a negative effect on rain-fed farming systems in particular. These changes reduce crop productivity and increase crop failure incidents. Due to extreme weather events, maize and other crops have decreased in the Bamenda highlands of Cameroon. This can be explained by the mean rainfall coefficient of variation (CV) of [108]. There is statistical evidence that the temperature in Veracruz, Mexico, affects the yield of coffee. Furthermore, it was found that there are signs of a decline in current coffee production, depicting that its coffee production may not be lucrative for the farmers in the years to come [69].
Pakistan is the world’s fifth most vulnerable state to climate change. The consequences of climate change will be catastrophic since urbanization and population growth in Pakistan take place simultaneously [7]. Pakistan is currently farming nearly all of its arable land in an effort to meet the sustainable food security standard [102]. Over the past few years, Pakistan has also increasingly faced the threat of
significant floods and prolonged droughts mainly because of irregularities in the monsoon season and annual rainfall Thus, Pakistan’s agriculture, water security, flood security, and energy security are consistently vulnerable to climatic shifts [67]. Moreover, crops that make up only of GDP are irrigated with of the water during irrigation which depicts that Pakistan places a high value on irrigation [44] Various farming methods and irrigation techniques have been utilized in this regard which makes the crop more vulnerable to climate extremities. Just as in spate and irrigated farming systems, crops are extremely sensitive to variations in the temperature and quantity of water [102].
The Crops of both the rabi and kharif seasons are cultivated in Pakistan. The significant rabi crop is Wheat, whereas rice, maize, turmeric, and sugarcane are prominent kharif crops. Major kharif crops grown in Pakistan are sugarcane in February, cotton in March-May, rice in June-July, and maize in July-August. Nevertheless, our major crops’ crop production system is threatened by climate change (wheat, cotton, maize, sugarcane and rice). Temperatures are predicted to rise by by 2040 and towards the end of the century, which will result in a reduction in wheat production for Asian countries. It is further anticipated that as temperatures rise, overall agricultural production will decline by to [25]. According to a case study conducted by International Institute for Applied Systems Analysis (IIASA), Austria and The World Bank Knowledge Portal, by 2080, the productivity of all major cereals and crops will decrease, with the greatest possible reduction in wheat production [21]. According to Davidson [26] the effects vary from crop to crop. In recent years, climate change has resulted in a 14.7 percent decrease in wheat yield and a 20.5 percent increase in rice market prices [48]. These terrible prospects are concerning and require Pakistan to intervene significantly in its adjustment process [102]. Table 1 displays the targeted expected percentage changes in major crop yield (2020-2080) under the A2 scenario relative to the baseline yield (1961-1990), adapted from the data retrieved from World Bank Climate Change Knowledge Portal.

3.2 Disruption in supply chain

Among the most distinguished consequences of climate shift is the likely increase in undernourishment and food poverty aroused mainly due to disrupted supply chain. The altered climatic associated catastrophes have the power to ruin important public assets, vital infrastructure, and crops, which would be detrimental to domestic income as well as food security. This damages livelihoods and thereby leading to increased poverty. Another factor causing continued change of climate is the increasing sea level, which puts the livelihoods of inhabitants of river deltas and coastal
Table 1 Projected percentage changes in major crops yield (2020-2080) compared to baseline yield (1961-1990) under A2 scenario
Crops % change
2020 2050 2080
Wheat -3.3 -11.0 -27.0
Rice 0 -0.8 -19.0
Maize -2.4 -3.3 -43.0
Source: mate World Change Bank CliKnowledge
Portal: Agriculture Model
IIASA. http://sdwebx.world
bank. org/climateportal/ index.cfm?page=country-
communities at even greater risk. The amount and consistency of irrigation water available, as well as the patterns of floods and droughts, will all be impacted by the rapid thawing of glaciers [26]. In this regard, Pakistan’s agricultural supply chain is poorly organized mainly because of ineffective processing, storage, and logistics [10]. Furthermore, the entire supply chain of livestock systems, from manufacturing through handling, retailing, transport, storage, and consumption, has also been significantly influenced by climate change [28,41]. The aquatic food web is impacted by changes in the nitrogen cycle, plankton productivity, and ocean warming [11]. The greatest impact is felt in low-income nations and regions that are already prone to food insecurity; this results in food shortages, a decline in the nutritional quality of food, and long-term negative health effects [78] However, the growing frequency and intensity of extreme weather pose a considerable threat in areas with limited access to heating and cooling systems [38].

3.3 Frequent disease outbreak

The development and survival of pathogens are most likely to be influenced by projected climate change [16]. It is expected that a crop will eventually become more susceptible to specific pests, diseases, and weeds since warmer, more humid weather is more conducive to pest growth. However, it will differ accordingly on the ability of the pests to adjust to climate change as well as from place to region. It is estimated that an increase of one degree in temperature will lead to a rise in losses due to insect pest invasion [95]. Changing weather therefore has the potential to boost pest numbers and relocation, which could have deleterious effects on agricultural viability and production, as the pest population is reliant on mostly on abiotic variables like temperature and humidity [16]. Invertebrate pests, as well as plant pathogens such as bacteria (including phytoplasmas), fungi, nematodes, and oomycetes, as well as viroids, viruses, and their vectors, will be directly and indirectly
impacted by rising atmospheric carbon dioxide levels, rising temperatures, altered water availability, and an increase in the frequency of extreme weather events. As air humidity increases, the fungus Sclerotinia sclerotiorum becomes more pathogenic; disease growth in lettuce plants peaks when air relative humidity reaches [104]. According to Sturrock et al. [99], the impact of several forest diseases would either increase or decrease depending on whether the temperature’s fluctuations. Chaloner et al. [19] integrated fungal and oomycete plant pathogen data with global gridded crop models to show that, for the majority of crops, both yields and the temperature-dependent infection risk are expected to rise in high latitudes, while crop productivity will likely stay stable or even fall in the tropics and the risk of infection is expected to decrease.
In particular, climate change is predicted, to trouble the development and metabolic rates of insects especially in temperate regions [29]. Climate change has made more places conducive to pest invasion. The habitat appropriateness of the three common African bug species, Tuta absoluta, Ceratitis cosyra, and Bactrocera invadens, is rising across the entire continent, particularly in regions near their ideal habitat [15]. Increased crop weed infestation is another issue that is impacted by climate change. Increases in concentration of cause C 3 weeds to react more forcefully. While C4 weeds are less competitive in C3 plants, C3 weeds are a significant issue for C4 plants [64]. Weeds are expanding their geographic range due to the effects of climate change, and managing them will only be practical when under new management techniques are devised while taking climate change under consideration [69].

3.4 Spiked food prices/commodity speculation

Reduced crop yields have the potential to increase food prices and negatively affect agricultural prosperity worldwide, with a annual loss in prospective global GDP by 2100 [69]. Climate variation worsens the state of food uncertainty and impoverishment particularly in South Asian Nations by having a negative impact on the output of agriculture and natural resource availability. This will negatively impact the means of subsistence for millions of people in the area [9,12,114]. Over of people in the Asian region depend on agriculture for their livelihood, it employs nearly 60 percent of the workforce and provides of the gross domestic product (GDP) for the area [114]. The annual maximum temperature in South Asia (SA) is expected to increase up to in 2030 , while in 2050 , thereby more area will be exposed to heat stress in 2030, while in 2050, area will be more affected [106]. As per projections, heat-induced stress could potentially affect approximately half of the Indo-Gangetic Plains (IGP), making it unsuitable for the cultivation of wheat by 2050 [9].
Because of the more erratic monsoon and the water melted from glaciers, even a somewhat slight warming of SA by just can pose a considerable negative effect on the accessibility and stability of water resources, threatening future agricultural outputs [113]. According to projections, climate shift would cause food prices to increase two and a half times faster for main food crops (such as rice, maize, wheat and soybeans) and one and a half times faster for live-stock-related goods (such as beef, pig, lamb, and chicken) between 2000 and 2050 [5]. Additionally, some research indicates that climate change has a negative impact on the food supply in North and East African nations. According to a study conducted by a Finnish research institute, if greenhouse gas emissions are not regulated, almost of the world’s food supply will be in a zero-yield state by the end of the twenty-first century [101].
It is projected that the mean overall financial losses for Bangladesh will be , Bhutan , India , Maldives , Nepal , and Sri Lanka . The losses are estimated to be for the Maldives. Since over of people in SA depend on agriculture for their livelihood, about of the labor force is employed by it, and of the region’s GDP is generated by it [114]. The ultimate influence of climate on reduced agriculture production would definitely leads to spiked food prices and reduced availability of food rendered limited access to community. Low-income producers and consumers are likely to be the most affected by climatic extremities because of their limited ability to cope [110].
Since weather extremities directly affects the crop and livestock production, thus, smallholder farmers whose livelihoods are heavily reliant on rain fed agriculture are thought to be disproportionately susceptible to climate change’s effects, whether for their own consumption or for sale [65]. Finally, if climate-related shocks to food production result in price rises for food, this will have an impact on consumers in rural and urban areas’ ability to buy food, jeopardizing their ability to maintain a healthy diet [65].

3.5 Risks to food safety and security: challenge to meet up global food demand

Most of the reviewed literature focus mainly the connection between food risks and climate change rather than highlighting the linkage between food safety and climate change. However climatic factors influence the food risks both in terms of security and safety point of view. In our study we have focus briefly on both the aspects of climate associated food risks. Since average temperature and concentrations both affect vegetation growth, rising one could theoretically lead to an increase in crops, which would improve the availability of food for both an expanding human population and animals. If this doesn’t happen, it could be because
of other consequences of climate change, like a rise in the frequency of extreme weather events (like powerful heat waves, floods, and severe droughts). These effects could have a harmful effect on crop output as well the other sectors involved in the production of food, thus leading to reduce in food supply and enhanced food insecurity [71].
The expanding affluence of a sizable segment of the population in developing countries poses a danger to the ability of current livestock systems to meet the rising demand. This demand has hastened the burning of forests in several nations [109] in order to produce crops and create pastures for raising large ruminants. The quality, quantity, and equitable distribution of food are therefore threatened by several effects of climate change, putting populations of dry and semi-arid region at risk of malnutrition [37, 38]. Moreover, due to implications on livelihoods and health hazards, especially among susceptible populations, it is conceivable that all facets of food security (including availability, access, stability, and utilization) could be indirectly influenced [37]. For instance, climate change has a significant effect on small-scale farming in West Africa because of poor infrastructure, communication gaps, environmental deterioration, and weak farmer groups [98]. Further, due to the decreasing availability of local goods, altered food preparation and storage methods, and decreased number of food festivals, traditional food systems, both tangible and intangible, are disturbed by frequent natural disasters [28]. Furthermore, it is predicted that by 2050 , the Solomon Islands’ total fish demand will exceed fish production, which will have a substantial effect on food security as, per-capita consumption will decline [69]. Similarly, with the rising worldwide temperature particularly during summer, food-borne illnesses of humans become more common, because of the lengthened summer season, thereby enhancing the risks associated with food safety [71].

3.6 Consequences on sustainable development goals

The climate shift effects on agriculture are significantly challenging for worldwide nutritional sufficiency and objectives for sustainable development [79]. The drop of agricultural productivity associated with climate alteration is the foremost cause of food insecurity and malnutrition. Rehman et al. [90] reported that South Asian regions are vulnerable to soil and land degradation, which could be explained by its relatively small land area-roughly of the world total—combined with a high population—roughly of the estimated 1.75 billion people on the planet. Therefore, the negative effects in this area could hinder agricultural productivity [36]. The loss of agricultural productivity can also lead to poverty, exacerbating existing social and economic inequalities. Climate change may results in shift in
land suitability for farming with high-altitude experiences increased crop production, while low-altitude areas may see a decline in crop yields [56]. Other key crops of Pakistan including cotton, maize, sugar cane and pulses are also recently experiencing extremely slow and skewed growth rates [1]. Along with the growing issue of food insecurity, the irregular growth performance of such important crops can not only lower domestic income and employment but also impair the performance of related production businesses.
Moreover, climate change can lead to conflict, migration, and social instability, further exacerbating the influence on food security. Changing Climate has significant implications for attaining the sustainable development goals, including decreasing poverty, promoting sustainable agriculture, and combating climate change [111]. Sustainable agriculture is essential for achieving food security and reducing poverty, but the adverse effects of climate alterations particularly on biodiversity and natural resources are the biggest hindrances in way of achieving these goals. The summary of direct and indirect effects posed by climate change on agriculture and food security has been mentioned (Fig. 2).

4 Possible mitigation and adaptive strategies

It is impossible to overestimate the importance of local solutions to global environmental problems since they are essential in creating sustainable futures.
Enhancing community resilience requires a variety of adaptation options, from cutting-edge technical solutions to conventional knowledge-based approaches [100]. Climate change adaptation entails any action intended to decrease susceptibility and increase the system’s resilience. Adaptation is crucial for agriculture of South Asian regions in particular because: (1) Agriculture being significant income’s source; (2) it is mostly dependent on rain, making it susceptible to severe weather; (3) it is spread out across small, less than a hectare-sized plots of land, making it difficult for farmers to manage changing climate conditions; Insufficient organizations and regulations to tackle climate hazards in farming, a less advanced market for risk and insurance to encourage climate shift adaptation, inadequate institutions and regulations, rising demand from different industries for water and land, primarily influenced by the search for substitute agricultural methods, and to maintain regional food security, particularly for the underprivileged. Given the significant variance in socioeconomic circumstances and agro-ecosystems, adaptation methods must take into account cultural and environmental contexts locally, regionally, and nationally [2, 17]. In this context the several adaptation measures must be taken into consideration.
Fig. 2 Direct and indirect influences of climatic change on agriculture and food security

4.1 Managing agricultural practices

To facilitate adaptation, a lot of modern agricultural management techniques could be improved as well as scaled up. Numerous adaptation options, such as enhanced practices used on farms as well as biophysical measures, are extensively investigated [121,122]. These encompass enhancing soil organic content, refining agricultural land management practices, leveraging indigenous genetic diversity, optimizing livestock husbandry techniques, integrating crop-livestock systems, employing diversified cropping methods, enhancing grazing land stewardship, increasing agricultural productivity, mitigating soil erosion, and adopting agroecological methodologies. These measures represent a focal point of research, reflecting a concerted effort to address the multifaceted challenges within the realm of agriculture [117].

4.2 Land/soil and water management

Utilizing sustainable land management approaches like preservation farming, agroforestry, sustainable intensification, and optimized cropping systems aids in adapting to climate fluctuations. Much international emphasis has recently been paid to sustainable intensification [58]. Sustainable strengthening recognizes the imperative of
preserving additional ecosystem services and fortifying resilience to shocks as essential components for achieving heightened productivity Sustainable agriculture approaches might include integrated methods for managing pests and soil fertility, better and efficient use of water and nutrients. Soil management has been recognized as one of the most important strategies for coping with climate change, since soil contains all the nutrients needed for agricultural growth [107]. Rising variability in the climate and harsh weather phenomenon such as torrential downpours and powerful winds, hastened the soil destruction. Therefore, effective management strategies must be adopted to minimize the soil disruption. In semi-arid regions, to counteract wind-driven soil erosion, planting trees and creating hedgerows are used; humid and coastal areas also frequently use vegetation cover, contour soil turns over, and contour windbreaks. Terrace gardening and water harvesting in mountainous areas assist control soil erosion [30]. Cropping systems can react to water stress, extra water from untimely rainfall, and extreme temperatures by switching to minimal tillage while retaining residue. As indicated by Sapkota et al. [91], the productivity of irrigation water can be increased, compared to traditional agricultural systems by by changing the tillage patterns and mitigates the effects of elevated temperatures, leading to a reduction in canopy
temperature by . This makes them well suited to situations involving water and heat stress. One key strategy for reducing climate change and enhancing soil quality is the sequestration of soil organic carbon (SOC). The physical qualities of soil can be improved by even a little increase in SOC, which could boost the soil’s resistance to stress and aid in climate change adaption [80,84,120]. In soils that have been farmed for 100 years or more, conventional agricultural cropping patterns and extensive tillage have decreased soil carbon by 30 to [63].
Moreover, it has been suggested that these methods raise the soil’s water content. Consequently, these methods limit the risk of crop loss while protecting the farmer from the devastation brought on by drought. Sustainable agriculture is ultimately aided by improved soil management, which also preserves soil quality and increases the efficiency of water use.

4.3 Crop diversification, cropping system optimization

Diversification of crops in time and location (altering crop rotation or cropping systems) can be a reasonable and economical strategy to increase the agricultural system’s resilience to climate change [68]. Increased diversity in production systems enhances their capacity to bolster food and nutritional security amidst climate change challenges. Furthermore, various methods of production are essential for offering services related to ecosystem regulation, which include things like controlling soil erosion, reducing greenhouse gas emissions, cycling nutrients, sequestering carbon, and regulating hydrological processes [24]. Crop diversity plays role in enhancing the capacity to control pest outbreaks and resistance to climate shifts by reducing the risk of disease transmission brought on by elevated climatic unpredictability and, consequently, buffering crop output under climate related stress. For example, disease-prone rice cultivars had an increased yield and decreased chance of fungal blast when cultivated in combinations with resistant types over broad areas of land [27].
An increase in temperature has the potential to extend the growing season in frost-prone regions, particularly in temperate and arctic zones. This extension opens the possibility for cultivating longer-maturing seasonal varieties that can yield better results [2]. By prolonging the planting season, there is potential for cultivating additional crops annually. In cases where elevated temperatures persistently exceed critical thresholds during warmer months, the consideration of a split season with a brief summer fallow becomes conceivable, particularly for short-period crops like wheat, barley, cereals, and various vegetable crops [2].

4.4 Sequestration of soil organic carbon (SOC)

Yearly cropping systems have potential for sequestering carbon that has not yet been fully utilized. Negative emissions technologies (NETs), also known as active atmospheric removal techniques, are required in addition to reducing GHG emissions in order to achieve net decreases in and prevent the worst effects of climate change [74]. The implementation of atmospheric removal technologies is imperative, with the goal of reaching annual levels of approximately by 2050 and by 2100 [74]. Sequestering carbon in soil is the most scalable and least costly option for removal in the coming decades [74]. Even though soil carbon has clearly decreased over the past century, agricultural soils have the capacity to store all of the that is currently in the atmosphere [31].
According to Ogle et al. [82], the majority of initiatives for employing annual crop system for SOC have concentrated on managing adjustments initially made for rhizospheric health. Reduced tillage, enhanced residue retention, and cover crops are a few strategic examples utilized to boost above-ground plant biomass retained in the field per unit area annually [70]. The majority of reports on impact of soil carbon management are only concerned with upper 30 cm soil layer, despite the fact that this is where most carbon imports are anticipated to occur [82]. The soil carbon in upper 30 cm layer is, however, least resilient and can respire back into in a few years. To attain larger as well as long-lasting SOC in agricultural, soil carbon inputs must be injected deeper into the soil [83]. This will necessitate changing the genetic makeup of crops. Nevertheless, for annual cropping systems to cut inputs and attain annual carbon sequestration of up to tonnes per hectare, genetic alterations are required [81].

4.5 Climate smart optimized agriculture

In Pakistan, where agriculture is vital to the country’s social structure, economy, and culture, Climate Smart Agriculture (CSA) offers tremendous potential. Climate change poses an increasing threat to agriculturally dependent communities [35]. These changes hinder a nation’s economic growth and reverse years of progress. Numerous CSA metrics are currently in use across the country, wherein stronger and more prosperous agricultural systems can be obtained by utilizing of existing funds, opening up new funding sources, promoting ecologically friendly practices, and giving institutions the authority to act. Pakistani economy can be strengthened by CSA through the use of cutting-edge technology such as laser land leveling and solar-powered irrigation systems, as well as management adjustments including crop diversification, appropriate cropping patterns, and advanced planting dates [47]. In the eastern Indo-Gangetic Plains (IGP), crop
insurance, weather warning services, and laser land levelling (LLL) are the most widely used CSA technologies. In contrast, farmers in the western IGP prefer direct sowing, LLL, zero tillage and synchronization irrigation with crop insurance [9].

4.6 Developing resilient varieties

The most important action that the government must do is to fund research to develop a better-yielding array of agricultural and livestock varieties that are heat-resistant, droughttolerant, and pest-resistant. Scuba rice, a flood-resistant rice variety, can adapt to these excessive water stressors by withstanding 17 days of total submersion and producing up to 3 tonnes per hectare of rice during flash floods [9]. Similarly, drought tolerant rice cultivars can increase yields up to [72]. Another effect of climate change is a rise in soil salinity, particularly in agricultural areas near the ocean. For instance, more than of the country’s cultivable land is located in coastal regions, which poses a severe threat to Asian countries including Bangladesh. Consequently, the salt tolerant rice cultivars CSR 26 and CSR 43 were developed for overcoming the climate challenges in Bangladesh [9].

4.7 Remote sensing and satellite imaging for future prediction for vulnerable ecosystem

Remote sensing plays a crucial role in predicting climate change impact on agriculture. For instance, vegetation monitoring can be done using satellites equipped with sensors and thus can measure the Normalized Difference Vegetation Index (NDVI). Theses indices would provide information regarding the crop health and vigor thereby help out the scientists to track changes in plant growth patterns and detect potential stress induced by climate change [3]. Another type of remote sensing application is Land Surface Temperature (LST) Mapping, which is the measure of the temperature of earth’s surface. By monitoring LST, scientists can identify areas experiencing excessive heat or cooling trends, enabling them to predict the impact on crop growth and productivity.
In order to analyse and forecast climate change impact on food security (FS), a recent study used Landsat and MODIS satellite images in addition to predisposed variables such as land surface temperature (LST), evapotranspiration, precipitation, sunny days, cloud ratio, soil salinity, soil moisture, groundwater quality, soil types, digital elevation model, slope, and aspect. Analytical network process (ANP) model and a remote sensing-based strategy were utilized to pinpoint regions damaged by frost. The results demonstrated a correlation between the decline in AL and the rise in LST, evapo-transpiration, cloud ratio and soil salinity. In addition, AL reduced with precipitation, bright days, soil moisture as
well as quality of ground water. Furthermore, it was discovered that areas affected with frost increase with LST, evapotranspiration, cloud ratio, elevation, slope and aspect [60]. The land use/land cover map and associated change detections were predicted using the Cellular Automata Markov (CA_Markov) model on multidate satellite images from Sentinel 2A, Landsat Oli-8, and ETM collected in 2017, 2013 and 2003, respectively. Furthermore, Revised Universal Soil Loss Equation (RUSLE) was incorporated into GIS system to estimate loss of soil and to visualize the danger of erosion for certain years. This technique was shown to be effective for predicting LUCC and precisely estimating the volume of soil losses in the future [32]. Nevertheless, remote sensing and satellite imaging provide valuable data for monitoring, analyzing, and predicting climate change impacts on agriculture. These tools enhance our understanding of environmental changes, assist in decision-making, and enable proactive measures to maintain availability of food and eco-friendly agricultural practices amidst climate change [32].

4.8 Crop insurance

In some South Asian nations, crop insurance plan has been adopted on basis of area index as a tool to protect impoverished farmers’ livelihoods during climatic extremes. Based on weather and yield indices, the two main crop insurance programs in India use an area-based methodology that eliminates individual risk. Through area-weather insurance products, crop losses resulting from weather anomalies over insured territories are compensated. These insurance products, which are based on term sheets generated from historical weather datasets and typically cover horticulture and plantation crops, have grown in popularity because of how easily they can be implemented. Crop yield losses over insured territories are covered by area-yield insurance products, and current research focuses on enhancing crop loss assessment in these insurance mechanisms through datadriven approaches. Although the two systems deal with the effects of climate on agricultural yields, area-yield crop insurance plans have historically had a greater market share [73].
Another, The National Insurance Board launched crop insurance in Nepal in 2013. In its budget for 2013-2014, the Nepalese government included NRs. 135 million as funding for its agriculture insurance programme, which will continue to receive funding. Farmers might also be insured through regional cooperatives through micro-level efforts. For instance, the Rupendehi district of Nepal has been home to the CGIAR research program on Climate Change, Agriculture, and Food Security (CCAFS) for the past few years. Local farmers developed an association over there, that offers insurance policies to small-scale farmers cultivating wheat and paddy on holdings as small
as 1.33 ha [92]. Farmers receive reimbursement for up to of their loss in case of crop damage, whereby they are required to pay of their anticipated crop yield as insurance. Crop insurance was implemented in Bangladesh in 1977 by the government-owned Sadharan Bima Company (SBC), and it was abandoned in 1996 [18]. The main goal of the insurance policy was to compensate farmers for agricultural losses inflicted by floods, cyclones, hail, wind, drought, plant diseases, pests, and insects. Since paddy, wheat and jute yields insured, coverage provides of the projected value of production. Nevertheless, Bangladesh did not have success with this scheme. The main problems with the limitations include the difficulties in calculating crop loss owing to specific meteorological conditions and moral hazards [57].
Agriculture insurance is crucial for Pakistan because, while being the foundation of the country’s economy, it is vulnerable to climate-related disasters that jeopardize smallholder farmers’ livelihoods because they lack resilience [97]. Farmers of livestock who get insurance to mitigate climate risk are reported to be in better health. Although it began in 2008 with livestock insurance, agriculture insurance is still in its early stages of development [8]. The possible adaptive measures to cope with the drastic effects of climate change has been mentioned (Fig. 3).

5 Policy execution at global and regional level

To address the climate change concern, countries from all over the world have collaborated to establish international treaties such as the United Nations Framework Convention on Climate Change (UNFCCC) and the Paris Agreement. These agreements seek to pursue efforts to limit temperature rise below to maintain global temperature rise well below [112]. Utilization of renewable energy resources, energy efficiency, and prevention of deforestation are just a few of the strategies that nations are putting into place to minimize their greenhouse gas emissions in order to meet these objectives [88]. Additionally, they are collaborating to harness technological and financial resources to help climate action in developing nations [14]. Even, if certain sectors have seen improvement, much more must yet be done to address the severity and urgency of the climate catastrophe.
In anticipation of the Paris Agreement, it is crucial to implement strategic measures for mitigating emissions. Adopting thorough, long-term planning should be the major priority in order to guarantee that the global average temperature stays below the crucial threshold. This is a critical strategic approach to successfully reduce the risks and effects of climate change. In addition, one of the most important aspects of reducing emissions is the requirement
Fig. 3 Adaptive strategies to climate change
that global emissions peak as soon as is practically possible, taking into account the possibility of a longer timeframe for emerging countries. Consequently, it is imperative to make a commitment to expeditious and substantial reductions, guided by the most recent scientific advancements, with the ultimate objective of reaching balance between emissions and removals by the end of the century [2]. Global climate change is predicted to have an even adverse impact on agriculture in future, affecting nations already engaged in active agricultural management [87]. A study based on the implementation of policies and initiatives to support the success of the agricultural sector in San Diego suggests that sectorial level initiatives must be taken into account include switching to electric farm equipment, increasing county and residential tree planting, and implementing the Agriculture Promotion Programme, which was designed to improve auxiliary uses for agricultural operations [87].
In context of developing and vulnerable countries to climatic variation like Pakistan, the Ministry of Climate Change has set a variety of initiatives to bring public awareness of mitigation and adaptation activities in line with the country’s climate strategy. Improving the transportation, forestry, energy, livestock, agriculture, planning for cities, and industrial sectors is necessary to mitigate the adverse consequences of climate change. Reducing the consequences of climate actions at the national level requires the use of energy-efficient devices and use of renewable, environmentally friendly energy. Pakistan’s Intended National Determined Contributions (INDC) estimate that the annual cost of putting these mitigation measures into place will range from 7 to 14 billion USD. Nearly 100 million trees have also been planted nationwide as part of the Green Pakistan Programme (GOP 2017-18) [102].
The study on the analysis of barriers and enabling framework underscores noteworthy technological progress within the energy, forestry, and transportation industries. Notable examples of energy-saving advancements featured in the document include contemporary micro-hydropower plants and solar energy generation. Furthermore, in the realm of forestry, these technological strides encompass initiatives such as social forestry to address carbon sinks and the promotion of sustainable forest management (SFM) as a proactive measure against deforestation [43]. The two most vulnerable industries are found to be water and agriculture, and three specific adaption techniques have been proposed for these sectors, including, rainwater harvesting, storm water management, and groundwater recharge. Within the agriculture sector, optimal technologies encompass efficient irrigation systems (both drip and sprinkler), drought-resistant crop varieties, advanced weather forecasting and projections, and the implementation of early warning systems [43].
Ensuring active participation of residents in mitigation and adaptation plans is essential, given their enlightenment
about local situation compared to external organizations. Urgent attention is required to address inconsistencies in government planning and policy. Intergovernmental Panel on Climate Change [55] noted that the inadequacy of knowledge to prompt adaptive responses is among several phenomena requiring attention. The situation in Pakistan are the worst in this regard, according to the IPCC [55], which deduced that policy execution and implementation have been comparatively constrained and confront various difficulties. To deal with the micro-level effects of climate change, various sectors require immediate development of comprehensive and multifaceted plans [55].

6 Future perspectives

It will be essential to create data-driven models that simulate the expected effects of climate change on various agricultural production systems within Agro-ecological Zones (AEZ) in order to guarantee that the appropriate adaptation and relief methods are followed. Using information technology, geographic information system approaches, and remote sensing to apply precision farming techniques is a strategic strategy that increases input efficiency and produces extensive data on crop, soil, and climate-related characteristics. With the use of this data, it will be possible to determine the best cropping strategies for each AEZ, reducing the negative consequences of climate change. Apart from technology-based interventions, obtaining pre-funding from domestic and international channels, with a particular emphasis on smallholders, is essential for promoting broad adoption of Climate-Smart Agriculture (CSA).
Establishing a climate alert strategy, acknowledging the climate change threat in national planning agendas, and imparting knowledge to farmers through targeted programs are critical steps to further reinforce the global and local implementation of CSA, especially in the context of Pakistan. In order to reduce greenhouse gas emissions, prepare for the implications of climate change, and boost resilience to its effects, the international community must continue to work together to implement ambitious climate policies and actions.
Author contributions Conceptualization; AS, SA, SS, TN, and SF, Data; TN, SF, and SS, writing-original draft, SF, TUR, SA, MNRK writing-review and editing SF. TN.
Funding No funding was obtained for this study.
Data availability All data generated or analysed during this study are included in this published article.

Declarations

Conflict of interest The authors declare that they have no competing interests. As a member of the editorial board (Shah Fahad) of this journal, I have no competing interests. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval Not applicable.

Consent to participate All authors are agreed to contribute to this study.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

  1. Abbas S (2022) Climate change and major crop production: evidence from Pakistan. Environ Sci Pollut Res 29(4):5406-5414. https://doi.org/10.1007/s11356-021-16041-4
  2. Abbass K, Qasim MZ, Song H, Murshed M, Mahmood H, Younis I (2022) A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ Sci Pollut Res 29(28):42539-42559
  3. Adnan M, Khan MA, Basir A, Fahad S, Nasar J, Imran, Alharbi S, Ghoneim AM, Yu G-H, Saleem MH (2023) Biochar as soil amendment for mitigating nutrients stress in crops. Sustainable agriculture reviews 61: biochar to improve crop production and decrease plant stress under a changing climate. Springer, Cham, pp 123-140
  4. Ahmed I, Ullah A, ur Rahman MH, Ahmad B, Wajid SA, Ahmad A, Ahmed S (2019) Climate change impacts and adaptation strategies for agronomic crops. In: Climate change and agriculture. IntechOpen. https://doi.org/10.5772/INTECHOPEN. 82697
  5. Ahmed M, Suphachalasai S (2014) Assessing the costs of climate change and adaptation in South Asia. Asian Development Bank, Mandaluyong
  6. Ali A, Rahut DB (2020) Localized floods, poverty and food security : empirical evidence from rural Pakistan. Hydrology 7(1):1-15
  7. Anwar A, Younis M, Ullah I (2020) Impact of urbanization and economic growth on CO2 emission: a case of far east Asian countries. Int J Environ Res Public Health 17(7):2531
  8. Arifeen M (2017) Effective execution of crop insurance policy required. Pakistan and Gulf Economist
  9. Aryal JP, Sapkota TB, Khurana R, Khatri-Chhetri A, Rahut DB, Jat ML (2020) Climate change and agriculture in South Asia: adaptation options in smallholder production systems. Environ Dev Sustain 22(6):5045-5075
  10. Asghar AJ, Cheema AM, Hameed MI, Qasim S (2021) The critical junction between CPEC, agriculture and climate
    change. LUMS Centre for Chinese Studies. Retrieved from https://ccls.lums.edu.pk/sites/default/files/2023-01/the_criti cal_junction_between_cpec_agriculture_and_climate_change. pdf. Accessed 5 Jan 2022
  11. Azani N, Ghaffar MA, Suhaimi H, Azra MN, Hassan MM, Jung LH, Rasdi NW (2021) The impacts of climate change on plankton as live food: a review. IOP Conf Ser Earth Environ Sci 869(1):012005
  12. Bandara JS, Cai Y (2014) The impact of climate change on food crop productivity, food prices and food security in South Asia. Econ Anal Policy 44(4):451-465
  13. Bank, T. W. (2022). Pakistan: Flood damages and economic losses over USD 30 billion and reconstruction needs over USD 16 billion – New assessment.
  14. Bawazeer S, Rauf A, Nawaz T, Khalil AA, Javed MS, Muhammad N, Shah MA (2021) Punica granatum peel extracts mediated the green synthesis of gold nanoparticles and their detailed in vivo biological activities. Green Process Synth 10(1):882-892
  15. Biber-Freudenberger L, Ziemacki J, Tonnang HE, Borgemeister C (2016) Future risks of pest species under changing climatic conditions. PLoS ONE 11(4):e0153237
  16. Bradshaw C, Eyre D, Korycinska A, Li C, Steynor A, Kriticos D (2024) Climate change in pest risk assessment: interpretation and communication of uncertainties. EPPO Bull 54:4-19. https:// doi.org/10.1111/epp. 12985
  17. Brempong MB, Amankwaa-Yeboah P, Yeboah S, Owusu Danquah E, Agyeman K, Keteku AK, Addo-Danso A, Adomako J (2023) Soil and water conservation measures to adapt cropping systems to climate change facilitated water stresses in Africa. Front Sustain Food Syst. https://doi.org/10.3389/fsufs.2022. 1091665
  18. Cell CC (2009) Crop insurance as a risk management strategy in Bangladesh. Ministry of Environment and Forests. Government of the People’s Republic of Bangladesh Department of Environment, Dhaka
  19. Chaloner T, Gurr S, Bebber D (2021) Plant pathogen infection risk tracks global crop yields under climate change. Nat Clim Change 11(8):710-715
  20. Chapman S, Birch CE, Pope E, Sallu S, Bradshaw C, Davie J, Marsham JH (2020) Impact of climate change on crop suitability in sub-Saharan Africa in parameterized and convection-permitting regional climate models. Environ Res Lett. https://doi.org/ 10.1088/1748-9326/ab9daf
  21. Chaudhry QUZ (2017) Climate change profile of Pakistan. Asian Development Bank
  22. Chaudhry S, Sidhu GPS (2022) Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. Plant Cell Rep 41(1):1-31. https://doi.org/10.1007/s00299-021-02759-5
  23. Chen C, Ota N, Wang B, Fu G, Fletcher A (2023) Adaptation to climate change through strategic integration of long fallow into cropping system in a dryland Mediterranean-type environment. Sci Total Environ 880:163230
  24. Chivenge P, Mabhaudhi T, Modi AT, Mafongoya P (2015) The potential role of neglected and underutilised crop species as future crops under water scarce conditions in Sub-Saharan Africa. Int J Environ Res Public Health 12(6):5685-5711
  25. Cradock-Henry NA, Blackett P, Hall M, Johnstone P, Teixeira E, Wreford A (2020) Climate adaptation pathways for agriculture: insights from a participatory process. Environ Sci Policy 107:66-79
  26. Davidson DJ (2018) Rethinking adaptation: emotions, evolution, and climate change. Nat Cult 13(3):378-402
  27. Dawood MF, Moursi YS, Abdelrhim AS, Hassan AA (2024) Investigation of ecology, molecular, and host-pathogen interaction of rice blast pathogen and management approaches.
Fungal diseases of rice and their management. Apple Academic Press, Oakville, pp 51-89
28. Dembedza VP, Chopera P, Mapara J, Macheka L (2022) Impact of climate change-induced natural disasters on intangible cultural heritage related to food: a review. J Ethn Foods 9(1):32
29. Deutsch CA, Tewksbury JJ, Tigchelaar M, Battisti DS, Merrill SC, Huey RB, Naylor RL (2018) Increase in crop losses to insect pests in a warming climate. Science 361(6405):916-919
30. Dmuchowski W, Baczewska-d AH, Gworek B (2024) The role of temperate agroforestry in mitigating climate change: a review. For Policy Econ 159(August 2023):103136. https:// doi.org/10.1016/j.forpol.2023.103136
31. Eckardt NA, Ainsworth EA, Bahuguna RN, Broadley MR, Busch W, Carpita NC, Castrillo G, Chory J, Dehaan LR, Duarte CM, Henry A, Jagadish SVK, Langdale JA, Leakey ADB, Liao JC, Lu KJ, McCann MC, McKay JK, Odeny DA et al (2023) Climate change challenges, plant science solutions. Plant Cell 35(1):24-66. https://doi.org/10.1093/plcel1/koac303
32. El Jazouli A, Barakat A, Khellouk R, Rais J, El Baghdadi M (2019) Remote sensing and GIS techniques for prediction of land use land cover change effects on soil erosion in the high basin of the Oum Er Rbia River (Morocco). Remote Sens Appl Soc Environ 13:361-374
33. Elahi E, Khalid Z, Tauni MZ, Zhang H, Lirong X (2022) Extreme weather events risk to crop-production and the adaptation of innovative management strategies to mitigate the risk: a retrospective survey of rural Punjab, Pakistan. Technovation 117:102255. https://doi.org/10.1016/J.TECHNOVATION. 2021.102255
34. Elbasiouny H, El-Ramady H, Elbehiry F, Rajput VD, Minkina T, Mandzhieva S (2022) Plant nutrition under climate change and soil carbon sequestration. Sustainability 14(2):914. https:// doi.org/10.3390/SU14020914
35. Fahad S, Adnan M, Zhou R, Nawaz T, Saud S (2024) Biocharassisted remediation of contaminated soils under changing climate. Elsevier, Amsterdam
36. FAO (2021) FAO. http://www.fao.org/faostat/en/#rankings/ countries_by_commodity
37. Farooq MS, Uzaiir M, Raza A, Habib M, Xu Y, Yousuf M, Ramzan Khan M (2022) Uncovering the research gaps to alleviate the negative impacts of climate change on food security: a review. Front Plant Sci 13:2334
38. Galanakis CM (2023) The ‘vertigo’ of the food sector within the triangle of climate change, the post-pandemic world, and the Russian-Ukrainian war. Foods 12(4):721
39. Gasparini K, Rafael DD, Peres LEP, Ribeiro DM, Zsögön A (2024) Agriculture and food security in the era of climate change. Digital agriculture: a solution for sustainable food and nutritional security. Springer International Publishing, Cham, pp 47-58
40. Gbadeyan OJ, Muthivhi J, Linganiso LZ, Deenadayalu N (2024) Decoupling economic growth from carbon emissions: a transition towards low carbon energy systems-a critical review. https:// doi.org/10.20944/preprints202402.1085.v1
41. Godde CM, Mason-D’Croz D, Mayberry DE, Thornton PK, Herrero Impacts of climate change on the livestock food supply chain; a review of the evidence. Glob Food Sec 28:100488
42. Gojon A, Cassan O, Bach L, Lejay L, Martin A (2023) The decline of plant mineral nutrition under rising : physiological and molecular aspects of a bad deal. Trends Plant Sci 28(2):185198. https://doi.org/10.1016/J.TPLANTS.2022.09.002
43. GOP (2016) BAEF Climate Change Adaptation Report-II. Technology needs assessment fro climate change adaptation barrier analysis and enabling framework
44. Guja MM, Bedeke SB (2024) Smallholders’ climate change adaptation strategies: exploring effectiveness and opportunities
to be capitalized. Environ Dev Sustain. https://doi.org/10.1007/ s10668-024-04750-y
45. Gupta J, Roy D, Thakur IS, Kumar M (2022) Environmental DNA insights in search of novel genes/taxa for production of biofuels and biomaterials. Biomass Biofuels Biochem. https:// doi.org/10.1016/B978-0-12-823500-3.00015-7
46. Han J, Zhang Z, Cao J, Luo Y, Zhang L, Li Z, Zhang J (2020) Prediction of winter wheat yield based on multi-source data and machine learning in China. Remote Sens 12(2):236. https://doi.org/10.3390/rs12020236
47. Hanif S, Hayat MK, Zaheer M, Raza H, Ain QU (2024) Cornous biology impact of climate change on agriculture production and strategies to overcome. May. https://doi.org/10. 37446/corbio/ra/2.2.2024.1-7
48. Haq SU, Boz I, Shahbaz P (2021) Adoption of climate-smart agriculture practices and differentiated nutritional outcome among rural households: a case of Punjab province, Pakistan. Food Secur 13:913-931
49. Hassan MA, Xiang C, Farooq M, Muhammad N, Yan Z, Hui X, Yuanyuan K, Bruno AK, Lele Z, Jincai L (2021) Cold stress in wheat: plant acclimation responses and management strategies. Front Plant Sci 12:1234. https://doi.org/10.3389/FPLS.2021. 676884/BIBTEX
50. Hegerl GC, Brönnimann S, Cowan T, Friedman AR, Hawkins E, Iles C, Müller W, Schurer A, Undorf S (2019) Causes of climate change over the historical record. Environ Res Lett 14(12):123006. https://doi.org/10.1088/1748-9326/ab4557
51. Higgens RF, Pries CH, Virginia RA (2021) Trade-offs between wood and leaf production in Arctic shrubs along a temperature and moisture gradient in West Greenland. Ecosystems 24(3):652-666. https://doi.org/10.1007/s10021-020-00541-4
52. Huong NTL, Yao S, Fahad S (2018) Assessing household livelihood vulnerability to climate change: the case of Northwest Vietnam. Hum Ecol Risk Assess Int J 25(5):1157-1175. https://doi.org/10.1080/10807039.2018.1460801
53. Hussain M, Butt AR, Uzma F, Ahmed R, Irshad S, Rehman A, Yousaf B (2020) A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan. Environ Monit Assess 192(1):1. https://doi.org/10.1007/s10661-019-7956-4
54. Lee H., Calvin K, Dasgupta D, Krinmer G, Mukherji A, Thorne P, Zommers Z (2023). Synthesis report of the IPCC Sixth Assessment Report (AR6), Longer report. IPCC.
55. IPCC (2021) Intergovernmental Panel on Climate Change. Summary for policymakers. In: Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth. Assessment report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, UK
56. IPCC (2023) Intergovernmental Panel on Climate Change: synthesis report (SYR) of the IPCC sixth assessment report (AR6). Cambridge University Press, Cambridge (Panmao Zhai)
57. Islam MM, Ahamed T, Matsushita S, Noguchi R (2024) A damage-based crop insurance system for flash flooding: a satellite remote sensing and econometric approach. Climate change perspective in agriculture in remote sensing application II. Springer Nature, Singapore, pp 121-163
58. Jatav HS, Rajput VD, Minkina T, Van Hullebusch ED, Dutta A (2024) Agroforestry to combat global challenges (issue March). Springer, Singapore. https://doi.org/10.1007/ 978-981-99-7282-1
59. Karimi V, Karami E, Keshavarz M (2018) Climate change and agriculture: Impacts and adaptive responses in Iran. J Integr Agric 17(1):1-15
60. Kazemi Garajeh M, Salmani B, Zare Naghadehi S, Valipoori Goodarzi H, Khasraei A (2023) An integrated approach of
remote sensing and geospatial analysis for modeling and predicting the impacts of climate change on food security. Sci Rep 13(1):1057
61. Khan I, Lei H, Shah AA, Khan I, Muhammad I (2021) Climate change impact assessment, flood management, and mitigation strategies in Pakistan for sustainable future. Environ Sci Pollut Res 28(23):29720-29731. https://doi.org/10.1007/S11356-021-12801-4/FIGURES/7
62. Khan N, Jhariya MK, Raj A, Banerjee A, Meena RS (2021) Soil carbon stock and sequestration: implications for climate change adaptation and mitigation. Ecological intensification of natural resources for sustainable agriculture. Springer, Singapore, pp 461-489. https://doi.org/10.1007/978-981-33-4203-3_ 13/COVER
63. Khangura R, Ferris D, Wagg C, Bowyer J (2023) Regenerative agriculture-a literature review on the practices and mechanisms used to improve soil health. Sustainability (Switzerland). https://doi.org/10.3390/su15032338
64. Korres NE, Norsworthy JK, Tehranchian P, Gitsopoulos TK, Loka DA, Oosterhuis DM, Palhano M (2016) Cultivars to face climate change effects on crops and weeds: a review. Agron Sustain Dev 36:1-22
65. Kubik Z, Mirzabaev A, May J (2023) Handbook of labor, human resources and population economics (issue January). In: Zimmermann KF (ed). Springer Nature, Cham. https://doi. org/10.1007/978-3-319-57365-6
66. Kumar L, Chhogyel N, Gopalakrishnan T, Hasan MK, Jayasinghe SL, Kariyawasam CS, Kogo BK, Ratnayake S (2022) Climate change and future of agri-food production. Future foods: global trends, opportunities, and sustainability challenges. Elsevier, Amsterdam, pp 49-79. https://doi.org/10. 1016/B978-0-323-91001-9.00009-8
67. Lodhi S, Ayyubi MS, Hayat S, Iqbal Z (2024) Unravelling the effects of climate change on agriculture of pakistan: an exploratory analysis. Qlantic J Soc Sci 5(2):142-158. https:// doi.org/10.55737/qjss. 791319404
68. Magesa BA, Mohan G, Matsuda H, Melts I, Kefi M, Fukushi K (2023) Understanding the farmers’ choices and adoption of adaptation strategies, and plans to climate change impact in Africa: a systematic review. Climate Services 30(October 2022):100362. https://doi.org/10.1016/j.cliser.2023.100362
69. Malhi GS, Kaur M, Kaushik P (2021) Impact of climate change on agriculture and its mitigation strategies: a review. Sustainability (Switzerland) 13(3):1-21. https://doi.org/10.3390/su130 31318
70. McClelland SC, Paustian K, Schipanski ME (2021) Management of cover crops in temperate climates influences soil organic carbon stocks: a meta-analysis. Ecol Appl 31(3):e02278
71. Mirón IJ, Linares C, Díaz J (2023) The influence of climate change on food production and food safety. Environ Res 216:114674
72. Mottaleb KA, Rejesus RM, Murty MVR, Mohanty S, Li T (2017) Benefits of the development and dissemination of cli-mate-smart rice: ex ante impact assessment of drought-tolerant rice in South Asia. Mitig Adapt Strat Glob Change 22:879-901
73. Murthy CS, Choudhary KK, Pandey V, Srikanth P, Ramasubramanian S, Kumar GS, Nemani R (2024) Transformative crop insurance solution with big earth data: Implementation for potato crops in India. Clim Risk Manag. https://doi.org/10. 1016/j.crm.2024.100622
74. Northrup DL, Basso B, Wang MQ, Morgan CL, Benfey PN (2021). Novel technologies for emission reduction complement conservation agriculture to achieve negative emissions from row-crop production. Proc Natl Acad Sci 118(28):e2022666118
75. Nawaz T, Gu L, Fahad S, Saud S, Bleakley B, Zhou R (2024) Exploring sustainable agriculture with nitrogen-fixing cyanobacteria and nanotechnology. Molecules 29(11):2534
76. Nawaz T, Gu L, Fahad S, Saud S, Harrison MT, Zhou R (2024) Sustainable protein production through genetic engineering of cyanobacteria and use of atmospheric gas. Food Energy Secur 13(2):e536
77. Nawaz T, Gu L, Fahad S, Saud S, Hassan S, Harrison MT, Liu K, Zhou R (2024) Unveiling the antioxidant capacity of fermented foods and food microorganisms: a focus on cyanobacteria. J Umm Al-Qura Univ Appl Sci 10(1):232-243
78. Nawaz T, Saud S, Gu L, Khan I, Fahad S, Zhou R (2024) Cyanobacteria: harnessing the power of microorganisms for plant growth promotion, stress alleviation, and phytoremediation in the era of sustainable agriculture. Plant Stress 11:100399
79. Nawaz T, Gu L, Gibbons J, Hu Z, Zhou R (2024) Bridging nature and engineering: protein-derived materials for bio-inspired applications. Biomimetics 9(6):373
80. Nazir MJ, Li G, Nazir MM, Zulfiqar F, Siddique KHM, Iqbal B, Du D (2024) Harnessing soil carbon sequestration to address climate change challenges in agriculture. Soil Till Res 237(Novenber 2023):105959. https://doi.org/10.1016/j.still.2023.105959
81. Northrup DL, Basso B, Wang MQ, Morgan CL, Benfey PN (2021) Novel technologies for emission reduction complement conservation agriculture to achieve negative emissions from rowcrop production. Proc Natl Acad Sci 118(28):e2022666118
82. Ogle SM, Alsaker C, Baldock J, Bernoux M, Breidt FJ, McConkey B, Vazquez-Amabile GG (2019) Climate and soil characteristics determine where no-till management can store carbon in soils and mitigate greenhouse gas emissions. Sci Rep 9(1):11665
83. Paustian K, Larson E, Kent J, Marx E, Swan A (2019) Soil C sequestration as a biological negative emission strategy. Front Clim. https://doi.org/10.3389/fclim.2019.00008
84. Powlson DS, Stirling CM, Thierfelder C, White RP, Jat ML (2016) Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agroecosystems? Agr Ecosyst Environ 220:164-174
85. Praveen B, Sharma P (2019) A review of literature on climate change and its impacts on agriculture productivity. J Public Aff 19(4):e1960. https://doi.org/10.1002/PA. 1960
86. Qamer FM, Ahmad B, Abbas S, Hussain A, Salman A, Muhammad S, Nawaz M, Shrestha S, Iqbal B, Thapa S (2022) The 2022 Pakistan floods Assessment of crop losses in Sindh Province. pp 1-24. https://doi.org/10.53055/ICIMOD. 1015
87. Quandt A, Grafton D, Gorman K, Dawson PM, Ibarra C, Mayes E, Paderes P (2023) Mitigation and adaptation to climate change in San Diego County, California. Mitig Adapt Strat Glob Change 28(1):7
88. Raihan A, Pavel MI, Muhtasim DA, Farhana S, Faruk O, Paul A (2023) The role of renewable energy use, technological innovation, and forest cover toward green development: Evidence from Indonesia. Innov Green Dev 2(1):100035. https://doi.org/ 10.1016/J.IGD.2023.100035
89. Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8(2):34. https://doi. org/10.3390/plants8020034
90. Rehman A, Batool Z, Ma H, Alvarado R, Oláh J (2024) Climate change and food security in South Asia: the importance of renewable energy and agricultural credit. Human Soc Sci Commun 11(1):1-11. https://doi.org/10.1057/s41599-024-02847-3
91. Sapkota TB, Jat ML, Aryal JP, Jat RK, Khatri-Chhetri A (2015) Climate change adaptation, greenhouse gas mitigation and economic profitability of conservation agriculture: Some examples from cereal systems of Indo-Gangetic Plains. J Integr Agric 14(8):1524-1533
92. Shakya S, Gyawali, DR, Gurung JK, Regmi PP (2013) A trailblazer in adopting climate smart practices: one cooperative’s success story. https://ccafs.cgiar.org/es/blog/trailblazer-adopt ing-climate-smart-practices-one-cooperative%e2,80
93. Sheikh ZA, Ashraf S, Weesakul S, Ali M, Hanh NC (2024) Impact of climate change on farmers and adaptation strategies in Rangsit, Thailand. Environ Chall 15(December 2023):100902. https://doi.org/10.1016/j.envc.2024.100902
94. Shivanna KR (2022) Climate change and its impact on biodiversity and human welfare. Proc Indian Natl Sci Acad 88(2):160171. https://doi.org/10.1007/s43538-022-00073-6
95. Shrestha S (2019) Effects of climate change in agricultural insect pest. Acta Sci Agric 3:74-80
96. Siddiq A (2017) Climate change profile of Pakistan. https://doi. org/10.22617/TCS178761
97. Siyal GEA (2018). Farmers see room for improvement in crop loan insurance scheme. The Express Tribune, Pakistan. https:// tribune.com.pk/story/1657400/2-farmers-see-room-impro vement-croploan-insurance-scheme/
98. Sorgho R, Quiñonez CAM, Louis VR, Winkler V, Dambach P, Sauerborn R, Horstick O (2020) Climate change policies in 16 West African countries: a systematic review of adaptation with a focus on agriculture, food security, and nutrition. Int J Environ Res Public Health 17(23):8897
99. Sturrock RN, Frankel SJ, Brown AV, Hennon PE, Kliejunas JT, Lewis KJ, Worrall JJ, Woods AJ (2011) Climate change and forest diseases. Plant Pathol 60:133-149
100. Suhaeb FW, Tamrin S (2024) Community adaptation strategies to climate change: towards sustainable social development. Migrat Lett 2:943-953
101. Sun H, Wang Y, Wang L (2024) Impact of climate change on wheat production in China. Eur J Agron 153:127066
102. Syed A, Raza T, Bhatti TT, Eash NS (2022) Climate Impacts on the agricultural sector of Pakistan: risks and solutions. Environ Chall 6:100433
103. Syldon P, Shrestha BB, Miyamoto M, Tamakawa K, Nakamura S (2024) Assessing the impact of climate change on flood inundation and agriculture in the Himalayan Mountainous Region of Bhutan. J Hydrol Region Stud 52:101687. https://doi.org/10. 1016/j.ejrh.2024.101687
104. Szyniszewska AM, Akrivou A, Björklund N, Boberg J, Bradshaw C, Damus M, Gardi C, Hanea A, Kriticos J, Maggini R, Musolin DL (2024) Beyond the present: how climate change is relevant to pest risk analysis. EPPO Bull 54:20-37. https://doi.org/10.1111/ epp. 12986
105. Temesgen H, Wu W, Legesse A, Yirsaw E (2021) Modeling and prediction of effects of land use change in an agroforestry dominated southeastern Rift-Valley escarpment of Ethiopia. Remote Sens Appl Soc Environ 21:100469. https://doi.org/10.1016/J. RSASE.2021.100469
106. Tesfaye K, Zaidi PH, Gbegbelegbe S, Boeber C, Rahut DB, Getaneh F, Stirling C (2017) Climate change impacts and potential benefits of heat-tolerant maize in South Asia. Theor Appl Climatol 130:959-970
107. Timsina J (2024) Agriculture-livestock-forestry Nexus in Asia: Potential for improving farmers’ livelihoods and soil health, and adapting to and mitigating climate change. Agric Syst 218:104012
108. Tume SJP, Mairomi WH, Awazi NP (2024) Rainfall reliability and maize production in the Bamenda Highlands of Cameroon.
World Dev Sustain 4(March):100156. https://doi.org/10.1016/j. wds.2024.100156
109. Uddin ME, Kebreab E (2020) Impact of food and climate change on pastoral industries. Fronti Sustain Food Syst 4:543403
110. UNCDD (2017) Global land outlook. UNCDD, Bonn
111. Yanagi M (2024) Climate change impacts on wheat production: Reviewing challenges and adaptation strategies. Adv Resour Res 4(1):89-107
112. Yin F, Sun Z, You L, Müller D (2024). Determinants of changes in harvested area and yields of major crops in China. Food Secur 16(2):339-351
113. Vinke K, Martin MA, Adams S, Baarsch F, Bondeau A, Coumou D, Svirejeva-Hopkins A (2017) Climatic risks and impacts in South Asia: extremes of water scarcity and excess. Reg Environ Change 17:1569-1583
114. Wang SW, Lee WK, Son Y (2017) An assessment of climate change impacts and adaptation in South Asian agriculture. Int J Clim Change Strateg Manag 9(4):517-534
115. Wieder WR, Sulman BN, Hartman MD, Koven CD, Bradford MA (2019) Arctic soil governs whether climate change drives global losses or gains in soil carbon. Geophys Res Lett 46(24):14486-14495. https://doi.org/10.1029/2019GL085543
116. Xu X, Pei J, Xu Y, Wang J (2020) Soil organic carbon depletion in global Mollisols regions and restoration by management practices: a review. J Soils Sediments 20(3):1173-1181. https:// doi.org/10.1007/s11368-019-02557-3
117. Yanagi M (2024) Climate change impacts on wheat production: reviewing challenges and adaptation strategies. 4(1):89-107. https://doi.org/10.5098/arr.4.1
118. Yin F, Sun Z, You L, Müller D (2024) Determinants of changes in harvested area and yields of major crops in China. Food Secur 16(2):339-351. https://doi.org/10.1007/s12571-023-01424-x
119. You Y, Ting M, Biasutti M (2024) Climate warming contributes to the record-shattering 2022 Pakistan rainfall. npj Clim Atmos Sci 7(1):1-8. https://doi.org/10.1038/s41612-024-00630-4
120. Yu L, Shi H, Wu H, Hu X, Ge Y, Yu L, Cao W (2024) The role of climate change perceptions in sustainable agricultural development: evidence from conservation tillage technology adoption in Northern China. Land 13(5):705. https://doi.org/10.3390/land1 3050705
121. Zheng B, Chen K, Li B, Li Y, Shi L, Fan H (2024) Climate change impacts on precipitation and water resources in Northwestern China. Front Environ Sci 12(April):1-12. https://doi.org/ 10.3389/fenvs.2024.1377286
122. Zheng H, Ma W, He Q (2024) Climate-smart agricultural practices for enhanced farm productivity, income, resilience, and greenhouse gas mitigation: a comprehensive review. Mitig Adapt Strateg Glob Change. https://doi.org/10.1007/ s11027-024-10124-6
123. Zhi J, Cao X, Zhang Z, Qin T, Qi L, Ge L, Fu X (2022) Identifying the determinants of crop yields in China since 1952 and its policy implications. Agric For Meteorol 327:109216
Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Anam Saleem Sobia Anwar Taufiq Nawaz Shah Fahad Shah Saud Tanzeel Ur Rahman Muhammad Nasir Rasheed Khan . Touqir Nawaz

Shah Fahad
shah_fahad80@yahoo.com
Shah Saud
saudhort@gmail.com
Anam Saleem
anam.saleem@live.com
Sobia Anwar
sobiaamalik9@gmail.com
Taufiq Nawaz
taufiq.nawaz@jacks.sdstate.edu
Tanzeel Ur Rahman
Tanzeel.htm13@gmail.com
Muhammad Nasir Rasheed Khan
nasirrasheed219@gmail.com
Touqir Nawaz
nawaztouqir25@gmail.com
Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
2 University Institute of Biochemistry and Biotechnology, PMAS Arid Agriculture University, Rawalpindi, Pakistan
3 College of Natural Sciences, South Dakota State University, Brookings, SD 57007, USA
4 Department of Agriculture, Abdul Wali Khan University Mardan, Mardan, Pakistan
5 College of Life Science, Linyi University, Linyi 276000, Shandong, China
6 Department of Hotel Management and Tourism, University of Swabi, Swabi, Pakistan
7 Department of Agriculture, Abdul Wali Khan University Mardan, Mardan, Pakistan
8 Department of Political Science, Abdul Wali Khan University, Mardan, Pakistan

  1. Extended author information available on the last page of the article