DOI: https://doi.org/10.1038/s41467-025-55890-2
PMID: https://pubmed.ncbi.nlm.nih.gov/39820002
تاريخ النشر: 2025-01-16
تُهدد الظروف الهيدرولوجية المناخية المتطرفة جودة واستقرار المياه الجوفية
تاريخ القبول: 2 يناير 2025
تاريخ النشر على الإنترنت: 16 يناير 2025
الملخص
تحدث الأمطار الغزيرة والجفاف وغيرها من الظروف الهيدرولوجية المناخية المتطرفة بشكل متكرر أكثر من فترة المناخ المرجعية السابقة (1961-1990). نظرًا لتأثيرها القوي على ديناميات إعادة شحن المياه الجوفية، فإن هذه الظواهر تزيد من ضعف كمية وجودة المياه الجوفية. على مدار العقد الماضي، وثقنا تغييرات في تركيبة المواد العضوية المذابة في المياه الجوفية. نوضح أن أجزاء من الجزيئات العضوية المشتقة من السطح المتدفقة زادت بشكل كبير مع انخفاض مستويات المياه الجوفية، بينما ظلت تركيزات الكربون العضوي المذاب ثابتة. تم تسريع تغيير التركيب الجزيئي بعد جفاف الصيف الشديد في عام 2018. تظهر هذه النتائج أن الظروف الهيدرولوجية المناخية المتطرفة تعزز النقل السريع بين النظم البيئية السطحية والمياه الجوفية، مما يمكّن المواد الغريبة من التهرب من المعالجة الميكروبية، والتراكم بكميات أكبر في المياه الجوفية، وقد تعرض الطبيعة الآمنة لهذه المصادر المائية القابلة للشرب للخطر. جودة المياه الجوفية أكثر عرضة لتأثير الشذوذ المناخي الحديث مما هو معترف به حاليًا، ويمكن استخدام التركيب الجزيئي للمواد العضوية المذابة كمؤشر شامل لتدهور جودة المياه الجوفية.
النتائج والمناقشة
تزايد تباين تسرب المياه الجوفية
كما يتضح من الزيادات في التباينات السنوية الداخلية لنظائر المياه الجوفية المستقرة (الشكل 1a، b). تحمل نسب نظائر الأمطار إشارة متغيرة موسميًا إلى المياه الجوفية، حيث تتجمع وتختلط العديد من مصادر المياه المساهمة (الزمان والمكان)
نقل التربة إلى المياه الجوفية المعدل

. تم تقييم الأهمية باستخدام معامل ارتباط كيندال. خلال عام الجفاف الشديد 2018، تم الكشف عن زيادة غير خطية في التباين لبئر H41. لقد أظهر هذا البئر سابقًا استجابة سريعة وقوية جدًا لديناميات إعادة الشحن والانكماش
الآثار على نظم المياه الجوفية

المرجع (
قارن الدرجات المماثلة المبلغ عنها في الشكل 2 مع الوفرة النسبية للصيغ الجزيئية المتوقعة في المياه الجوفية، المجمعة حسب المسارات الأيضية عبر المطابقة مع قاعدة بيانات KEGG. تم استخدام مجموعة بيانات ذات جودة عالية مكونة من 1224 جينوم تم تجميعها من الميتاجينوم (MAGs) تم الحصول عليها من نفس الآبار في Hainich CZE لتقييد توقعات المسارات الأيضية من DOM إلى الإمكانات الوظيفية لمجتمعات الميكروبات في المياه الجوفية
طيف DOM HR-MS لتسرب التربة عبر نفس مجموعة العينات. العديد من المسارات الأكثر ارتباطًا بشكل قوي تشارك في استقلاب المواد الغريبة (المميزة باللون الأحمر) أو في تخليق المضادات الحيوية الطبيعية والسموم. تشير الاستجابات القوية لمسارات تحلل المواد الغريبة والهيدروكربونات العطرية في DOM المياه الجوفية إلى أنه خلال إعادة شحن المياه الجوفية السريعة والمتقطعة، تتجنب هذه المواد الاحتفاظ والمعالجة الميكروبية في (التربة)

المنطقة الحرجة، مما يؤثر سلبًا على توفر المياه الجوفية وسلامتها على نطاق أكبر وبمعدل أسرع بكثير مما هو معترف به حاليًا
طرق
مواقع الدراسة
أخذ العينات
نظائر المياه الجوفية المستقرة
تركيب الجزيئات لـ DOM
نظائر الكربون المشع
الميتاجينومات
توفر البيانات
توفر الشيفرة
References
- Margat, J. & Van der Gun, J. Groundwater around the World: A Geographic Synopsis. (CRC Press, 2013).
- Griebler, C. & Avramov, M. Groundwater ecosystem services: a review. Freshw. Sci. 34, 355-367 (2015).
- Zeder, J. & Fischer, E. M. Observed extreme precipitation trends and scaling in Central Europe. Weather Clim. Extremes 29, 100266 (2020).
- Büntgen, U. et al. Recent European drought extremes beyond Common Era background variability. Nat. Geosci. 14, 190-196 (2021).
- Freund, M. B. et al. European tree-ring isotopes indicate unusual recent hydroclimate. Commun. Earth Environ. 4, 26 (2023).
- Rohde, M. M. Floods and droughts are intensifying globally. Nat. Water 1, 226-227 (2023).
- Rodell, M. & Li, B. Changing intensity of hydroclimatic extreme events revealed by GRACE and GRACE-FO. Nat. Water 1, 241-248 (2023).
- Richts, A. & Vrba, J. Groundwater resources and hydroclimatic extremes: mapping global groundwater vulnerability to floods and droughts. Environ. Earth Sci. 75, 926 (2016).
- Hartmann, A. et al. Modeling spatiotemporal impacts of hydroclimatic extremes on groundwater recharge at a Mediterranean karst aquifer. Water Resour. Res. 50, 6507-6521 (2014).
- Aslam, R. A., Shrestha, S. & Pandey, V. P. Groundwater vulnerability to climate change: A review of the assessment methodology. Sci. Total Environ. 612, 853-875 (2018).
- Wunsch, A., Liesch, T. & Broda, S. Deep learning shows declining groundwater levels in Germany until 2100 due to climate change. Nat. Commun. 13, 1221 (2022).
- Gumuta-Kawęcka, A. et al. Impact of climate change on groundwater recharge in shallow young glacial aquifers in northern Poland. Sci. Total Environ. 877, 162904 (2023).
- Jasechko, S. et al. Rapid groundwater decline and some cases of recovery in aquifers globally. Nature 625, 715-721 (2024).
- Lehmann, K., Lehmann, R. & Totsche, K. U. Event-driven dynamics of the total mobile inventory in undisturbed soil account for significant fluxes of particulate organic carbon. Sci. Total Environ. 756, 143774 (2021).
- Totsche, K. U., Jann, S. & Kögel-Knabner, I. Release of polycyclic aromatic hydrocarbons, dissolved organic carbon, and suspended matter from disturbed NAPL-contaminated gravelly soil material. Vadose Zone J. 5, 469-479 (2006).
- Lasagna, M., Ducci, D., Sellerino, M., Mancini, S. & De Luca, D. A. Meteorological variability and groundwater quality: examples in different hydrogeological settings. Water 12, 1297 (2020).
- Green, T. R. et al. Beneath the surface of global change: Impacts of climate change on groundwater. J. Hydrol. 405, 532-560 (2011).
- Devic, G., Djordjevic, D. & Sakan, S. Natural and anthropogenic factors affecting the groundwater quality in Serbia. Sci. Total Environ. 468-469, 933-942 (2014).
- Bastiancich, L., Lasagna, M., Mancini, S., Falco, M. & De Luca, D. A. Temperature and discharge variations in natural mineral water springs due to climate variability: a case study in the Piedmont Alps (NW Italy). Environ. Geochem. Health 44, 1971-1994 (2022).
- Glassman, S. I. et al. Decomposition responses to climate depend on microbial community composition. Proc. Natl Acad. Sci. USA 115, 11994-11999 (2018).
- Kramer, M. G. & Chadwick, O. A. Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale. Nat. Clim. Change 8, 1104-1108 (2018).
- Dutta, H. & Dutta, A. The microbial aspect of climate change. Energ. Ecol. Environ. 1, 209-232 (2016).
- Refaey, Y. et al. Effects of clay minerals, hydroxides, and timing of dissolved organic matter addition on the competitive sorption of copper, nickel, and zinc: A column experiment. J. Environ. Manag. 187, 273-285 (2017).
- Wu, X. et al. Microbial interactions with dissolved organic matter drive carbon dynamics and community succession. Front. Microbiol. 9, 1234 (2018).
- Schroeter, S. A. et al. Microbial community functioning during plant litter decomposition. Sci. Rep. 12, 7451 (2022).
- Kaiser, K. & Zech, W. Dissolved organic matter sorption by mineral constituents of subsoil clay fractions. J. Plant Nutr. Soil Sci. 163, 531-535 (2000).
- McDonough, L. K. et al. Changes in global groundwater organic carbon driven by climate change and urbanization. Nat. Commun. 11, 1279 (2020).
- Taubert, M., Stähly, J., Kolb, S. & Küsel, K. Divergent microbial communities in groundwater and overlying soils exhibit functional redundancy for plant-polysaccharide degradation. PLoS ONE 14, e0212937 (2019).
- Kolehmainen, R. E., Langwaldt, J. H. & Puhakka, J. A. Natural organic matter (NOM) removal and structural changes in the bacterial community during artificial groundwater recharge with humic lake water. Water Res. 41, 2715-2725 (2007).
- Schaffer, M. & Licha, T. A framework for assessing the retardation of organic molecules in groundwater: Implications of the species distribution for the sorption-influenced transport. Sci. Total Environ. 524-525, 187-194 (2015).
- Paul, E. A. The nature and dynamics of soil organic matter: plant inputs, microbial transformations, and organic matter stabilization. Soil Biol. Biochem. 98, 109-126 (2016).
- McDonough, L. K. et al. Characterisation of shallow groundwater dissolved organic matter in aeolian, alluvial and fractured rock aquifers. Geochim. Cosmochim. Acta 273, 163-176 (2020).
- Hofmann, R., Uhl, J., Hertkorn, N. & Griebler, C. Linkage between dissolved organic matter transformation, bacterial carbon production, and diversity in a shallow oligotrophic aquifer: results from flow-through sediment microcosm experiments. Front. Microbiol. 11, 543567 (2020).
- Benk, S. A. et al. Fueling diversity in the subsurface: composition and age of dissolved organic matter in the critical zone. Front. Earth Sci. 7, 296 (2019).
- Simon, C., Roth, V.-N., Dittmar, T. & Gleixner, G. Molecular signals of heterogeneous terrestrial environments identified in dissolved organic matter: a comparative analysis of orbitrap and ion cyclotron resonance mass spectrometers. Front. Earth Sci. 6, 138 (2018).
- Küsel, K. et al. How deep can surface signals be traced in the critical zone? merging biodiversity with biogeochemistry research in a central German Muschelkalk landscape. Front. Earth Sci. 4 (2016).
- Duscher, K. et al. The GIS layers of the “International Hydrogeological Map of Europe 1:1,500,000” in a vector format. Hydrogeol. J. 23, 1867-1875 (2015).
- Wendland, F. et al. European aquifer typology: a practical framework for an overview of major groundwater composition at European scale. Environ. Geol. 55, 77-85 (2008).
- Famiglietti, J. S. & Ferguson, G. The hidden crisis beneath our feet. Science 372, 344-345 (2021).
- Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4, 945-948 (2014).
- Jasechko, S. & Perrone, D. Global groundwater wells at risk of running dry. Science 372, 418-421(2021).
- Shekhar, A., Buchmann, N., Humphrey, V. & Gharun, M. More than three-fold increase in compound soil and air dryness across Europe by the end of 21st century. Weather Clim. Extrem. 44, 100666 (2024).
- Yeh, H.-F., Lin, H.-I., Lee, C.-H., Hsu, K.-C. & Wu, C.-S. Identifying seasonal groundwater recharge using environmental stable isotopes. Water 6, 2849-2861 (2014).
- Lehmann, R. & Totsche, K. U. Multi-directional flow dynamics shape groundwater quality in sloping bedrock strata. J. Hydrol. 580, 124291 (2020).
- Lazar, C. S. et al. The endolithic bacterial diversity of shallow bedrock ecosystems. Sci. Total Environ. 679, 35-44 (2019).
- Shen, Y., Chapelle, F. H., Strom, E. W. & Benner, R. Origins and bioavailability of dissolved organic matter in groundwater. Biogeochemistry 122, 61-78 (2015).
- Boergens, E., Güntner, A., Dobslaw, H. & Dahle, C. Quantifying the central European droughts in 2018 and 2019 with GRACE follow-on. Geophys. Res. Lett. 47, e2020GL087285 (2020).
- Bastos, A. et al. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv. 6, eaba2724 (2020).
- Vogel, M. M., Zscheischler, J., Wartenburger, R., Dee, D. & Seneviratne, S. I. Concurrent 2018 hot extremes across northern hemisphere due to human-induced climate change. Earth’s Future 7, 692-703 (2019).
- Orme, A. M. et al. Drought reduces release of plant matter into dissolved organic matter potentially restraining ecosystem recovery. Front. Soil Sci. 2, 904259 (2022).
- Gimbel, K. F., Puhlmann, H. & Weiler, M. Does drought alter hydrological functions in forest soils? Hydrol. Earth Syst. Sci. 20, 1301-1317 (2016).
- Retter, A., Karwautz, C. & Griebler, C. Groundwater microbial communities in times of climate change. Curr. Issues Mol. Biol. 41, 509-538 (2021).
- Yan, L. et al. Groundwater bacterial communities evolve over time in response to recharge. Water Res. 201, 117290 (2021).
- Overholt, W. A. et al. Carbon fixation rates in groundwater similar to those in oligotrophic marine systems. Nat. Geosci. 15, 561-567(2022).
- Mishra, S. et al. Recent advanced technologies for the characterization of xenobiotic-degrading microorganisms and microbial communities. Front. Bioeng. Biotechnol. 9, 632059 (2021).
- Roth, V.-N. et al. Persistence of dissolved organic matter explained by molecular changes during its passage through soil. Nat. Geosci. 12, 755 (2019).
- Lucas, J. M., Gora, E., Salzberg, A. & Kaspari, M. Antibiotics as chemical warfare across multiple taxonomic domains and trophic levels in brown food webs. Proc. R. Soc. B 286, 20191536 (2019).
- Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233-237 (2018).
- Longnecker, K. & Kujawinski, E. B. Composition of dissolved organic matter in groundwater. Geochim. Cosmochim. Acta 75, 2752-2761 (2011).
- Abdelsalam, N. A., Ramadan, A. T., ElRakaiby, M. T. & Aziz, R. K. Toxicomicrobiomics: the human microbiome vs. pharmaceutical,
dietary, and environmental xenobiotics. Front. Pharmacol. 11, 390 (2020). - McDonough, L. K. et al. A new conceptual framework for the transformation of groundwater dissolved organic matter. Nat. Commun. 13, 2153 (2022).
- Kraus, T. E. C. et al. How reservoirs alter drinking water quality: organic matter sources, sinks, and transformations. Lake Reserv. Manag. 27, 205-219 (2011).
- Andersson, A. et al. Selective removal of natural organic matter during drinking water production changes the composition of disinfection by-products. Environ. Sci. Water Res. Technol. 6, 779-794 (2020).
- Kundzewicz, Z. W. et al. The implications of projected climate change for freshwater resources and their management. Hydrol. Sci. J. 53, 3-10 (2008).
- Verordnung zum Schutz des Grundwassers (Grundwasserverordnung – GrwV) (2010).
- Kristensen, P., Whalley, C., Néry, F., Zal, N. & Christiansen, T. European Waters: Assessment of Status and Pressures 2018 (Publications Office of the European Union, Luxembourg, 2018).
- Singha, K. & Navarre-Sitchler, A. The importance of groundwater in critical zone science. Groundwater 60, 27-34 (2022).
- Kløve, B. et al. Groundwater dependent ecosystems. Part II. Ecosystem services and management in Europe under risk of climate change and land use intensification. Environ. Sci. Policy 14, 782-793 (2011).
- Kohlhepp, B. et al. Aquifer configuration and geostructural links control the groundwater quality in thin-bedded carbonate-siliciclastic alternations of the Hainich CZE, central Germany. Hydrol. Earth Syst. Sci. 21, 6091-6116 (2017).
- Stolze, K., Barnes, A. D., Eisenhauer, N. & Totsche, K. U. Depth-differentiated, multivariate control of biopore number under different land-use practices. Geoderma 418, 115852 (2022).
- Gehre, M., Geilmann, H., Richter, J., Werner, R. A. & Brand, W. A. Continuous flow
and analysis of water samples with dual inlet precision. Rapid Commun. Mass Spectrom. 18, 2650-2660 (2004). - R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).
- Dittmar, T., Koch, B. P., Hertkorn, N. & Kattner, G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol. Oceanogr. 6, 230-235 (2008).
- Li, Y. et al. How representative are dissolved organic matter (DOM) extracts? A comprehensive study of sorbent selectivity for DOM isolation. Water Res. 116, 316-323 (2017).
- Schroeter, S. DOMAssignR. https://doi.org/10.5281/ZENODO. 14209699 (2024).
- Schum, S. K., Brown, L. E. & Mazzoleni, L. R. MFAssignR: molecular formula assignment software for ultrahigh resolution mass spectrometry analysis of environmental complex mixtures. Environ. Res. 191, 110114 (2020).
- Hafen, R. Stlplus: Enhanced Seasonal Decomposition of Time Series by Loess. (2016).
- Tenenbaum, D. KEGGREST. Bioconductor https://doi.org/10.18129/ B9.BIOC.KEGGREST (2017).
- Simon, C. et al. Mass difference matching unfolds hidden molecular structures of dissolved organic matter. Environ. Sci. Technol. 56, 11027-11040 (2022).
- Steinhof, A., Altenburg, M. & Machts, H. Sample preparation at the Jena 14C laboratory. Radiocarbon 59, 815-830 (2017).
- Benk, S. A., Li, Y., Roth, V.-N. & Gleixner, G. Lignin dimers as potential markers for
-young terrestrial dissolved organic matter in the critical zone. Front. Earth Sci. 6 (2018). - Chaudhari, N. M. et al. The economical lifestyle of CPR bacteria in groundwater allows little preference for environmental drivers. Environ. Microbiome 16, 24 (2021).
- Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).
- Aramaki, T. et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251-2252 (2020).
- Bushnell, B. BBMap: a fast, accurate, splice-aware aligner. (2014).
- Nelson, D. B., Basler, D. & Kahmen, A. Precipitation isotope time series predictions from machine learning applied in Europe. Proc. Natl Acad. Sci. USA 118, e2024107118 (2021).
شكر وتقدير
مساهمات المؤلفين
تمويل
المصالح المتنافسة
معلومات إضافية
(ج) المؤلف(ون) 2025
- ¹قسم العمليات البيوجيوكيميائية، معهد ماكس بلانك لعلم البيوجيوكيمياء، يينا، ألمانيا. ²قسم الهيدروجيولوجيا، معهد علوم الأرض، جامعة فريدريش شيلر، يينا، ألمانيا.
علم الأحياء الدقيقة الجيولوجية المائية، معهد التنوع البيولوجي، جامعة فريدريش شيلر، يينا، ألمانيا. المركز الألماني للبحث في التنوع البيولوجي التكاملي (iDiv) هاله-يينا-لايبزيغ، لايبزيغ، ألمانيا. توازن الميكروكون، مجموعة التميز، جامعة فريدريش شيلر، يينا، ألمانيا. قسم الأنظمة الهيدروليكية الحاسوبية، مركز هيلمهولتز لعلوم البيئة – UFZ، لايبزيغ، ألمانيا. الإيكوهيدrologie الأرضية، معهد علوم الأرض، جامعة فريدريش شيلر، يينا، ألمانيا. البريد الإلكتروني:سيمون.شروتر@bgc-jena.mpg.de
DOI: https://doi.org/10.1038/s41467-025-55890-2
PMID: https://pubmed.ncbi.nlm.nih.gov/39820002
Publication Date: 2025-01-16
Hydroclimatic extremes threaten groundwater quality and stability
Accepted: 2 January 2025
Published online: 16 January 2025
Abstract
Heavy precipitation, drought, and other hydroclimatic extremes occur more frequently than in the past climate reference period (1961-1990). Given their strong effect on groundwater recharge dynamics, these phenomena increase the vulnerability of groundwater quantity and quality. Over the course of the past decade, we have documented changes in the composition of dissolved organic matter in groundwater. We show that fractions of ingressing surfacederived organic molecules increased significantly as groundwater levels declined, whereas concentrations of dissolved organic carbon remained constant. Molecular composition changeover was accelerated following 2018’s extreme summer drought. These findings demonstrate that hydroclimatic extremes promote rapid transport between surface ecosystems and groundwaters, thereby enabling xenobiotic substances to evade microbial processing, accrue in greater abundance in groundwater, and potentially compromise the safe nature of these potable water sources. Groundwater quality is far more vulnerable to the impact of recent climate anomalies than is currently recognized, and the molecular composition of dissolved organic matter can be used as a comprehensive indicator for groundwater quality deterioration.
Results and discussion
Increasingly variable groundwater infiltration
recharge, as indicated by increases in intra-annual variances of groundwater stable isotopes (Fig. 1a, b). Stable isotope ratios of precipitation carry a seasonally varying signal into the aquifers, where many contributing water sources (temporal and spatial) accumulate and mix
Altered soil-to-groundwater transfer

interval. Significance was evaluated using Kendall’s rank correlation tau. During the extreme drought year of 2018, a nonlinear increase in variance is revealed for well H41. This well has been previously shown to respond very rapidly and strongly to recharge and recession dynamics
Implications for groundwater ecosystems

reference (
compared the similarity scores reported in Fig. 2 with the relative abundances of predicted molecular formulas in groundwater, summed by metabolic pathways via a matching to the KEGG database. A dereplicated, quality-controlled data set of 1224 metagenomeassembled genomes (MAGs) obtained from the same wells of the Hainich CZE was used to constrain metabolic pathway predictions from DOM to the functional potential of groundwater microbial communities
seepage DOM HR-MS spectra over the same set of samples. Many of the most strongly correlated pathways are involved in xenobiotics metabolism (highlighted in red) or the biosynthesis of natural antibiotics and toxins. Strong responses of xenobiotic and aromatic hydrocarbon breakdown pathways in groundwater DOM suggest that during rapid and episodic groundwater recharge, these substances evade retention and microbial processing in the (sub)soil

the Critical Zone, thereby deleteriously affecting groundwater availability and safety on a much larger scale and at a much faster rate than is currently recognized
Methods
Study sites
Sampling
Groundwater stable isotopes
Molecular composition of DOM
Radiocarbon isotopes
Metagenomes
Data availability
Code availability
References
- Margat, J. & Van der Gun, J. Groundwater around the World: A Geographic Synopsis. (CRC Press, 2013).
- Griebler, C. & Avramov, M. Groundwater ecosystem services: a review. Freshw. Sci. 34, 355-367 (2015).
- Zeder, J. & Fischer, E. M. Observed extreme precipitation trends and scaling in Central Europe. Weather Clim. Extremes 29, 100266 (2020).
- Büntgen, U. et al. Recent European drought extremes beyond Common Era background variability. Nat. Geosci. 14, 190-196 (2021).
- Freund, M. B. et al. European tree-ring isotopes indicate unusual recent hydroclimate. Commun. Earth Environ. 4, 26 (2023).
- Rohde, M. M. Floods and droughts are intensifying globally. Nat. Water 1, 226-227 (2023).
- Rodell, M. & Li, B. Changing intensity of hydroclimatic extreme events revealed by GRACE and GRACE-FO. Nat. Water 1, 241-248 (2023).
- Richts, A. & Vrba, J. Groundwater resources and hydroclimatic extremes: mapping global groundwater vulnerability to floods and droughts. Environ. Earth Sci. 75, 926 (2016).
- Hartmann, A. et al. Modeling spatiotemporal impacts of hydroclimatic extremes on groundwater recharge at a Mediterranean karst aquifer. Water Resour. Res. 50, 6507-6521 (2014).
- Aslam, R. A., Shrestha, S. & Pandey, V. P. Groundwater vulnerability to climate change: A review of the assessment methodology. Sci. Total Environ. 612, 853-875 (2018).
- Wunsch, A., Liesch, T. & Broda, S. Deep learning shows declining groundwater levels in Germany until 2100 due to climate change. Nat. Commun. 13, 1221 (2022).
- Gumuta-Kawęcka, A. et al. Impact of climate change on groundwater recharge in shallow young glacial aquifers in northern Poland. Sci. Total Environ. 877, 162904 (2023).
- Jasechko, S. et al. Rapid groundwater decline and some cases of recovery in aquifers globally. Nature 625, 715-721 (2024).
- Lehmann, K., Lehmann, R. & Totsche, K. U. Event-driven dynamics of the total mobile inventory in undisturbed soil account for significant fluxes of particulate organic carbon. Sci. Total Environ. 756, 143774 (2021).
- Totsche, K. U., Jann, S. & Kögel-Knabner, I. Release of polycyclic aromatic hydrocarbons, dissolved organic carbon, and suspended matter from disturbed NAPL-contaminated gravelly soil material. Vadose Zone J. 5, 469-479 (2006).
- Lasagna, M., Ducci, D., Sellerino, M., Mancini, S. & De Luca, D. A. Meteorological variability and groundwater quality: examples in different hydrogeological settings. Water 12, 1297 (2020).
- Green, T. R. et al. Beneath the surface of global change: Impacts of climate change on groundwater. J. Hydrol. 405, 532-560 (2011).
- Devic, G., Djordjevic, D. & Sakan, S. Natural and anthropogenic factors affecting the groundwater quality in Serbia. Sci. Total Environ. 468-469, 933-942 (2014).
- Bastiancich, L., Lasagna, M., Mancini, S., Falco, M. & De Luca, D. A. Temperature and discharge variations in natural mineral water springs due to climate variability: a case study in the Piedmont Alps (NW Italy). Environ. Geochem. Health 44, 1971-1994 (2022).
- Glassman, S. I. et al. Decomposition responses to climate depend on microbial community composition. Proc. Natl Acad. Sci. USA 115, 11994-11999 (2018).
- Kramer, M. G. & Chadwick, O. A. Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale. Nat. Clim. Change 8, 1104-1108 (2018).
- Dutta, H. & Dutta, A. The microbial aspect of climate change. Energ. Ecol. Environ. 1, 209-232 (2016).
- Refaey, Y. et al. Effects of clay minerals, hydroxides, and timing of dissolved organic matter addition on the competitive sorption of copper, nickel, and zinc: A column experiment. J. Environ. Manag. 187, 273-285 (2017).
- Wu, X. et al. Microbial interactions with dissolved organic matter drive carbon dynamics and community succession. Front. Microbiol. 9, 1234 (2018).
- Schroeter, S. A. et al. Microbial community functioning during plant litter decomposition. Sci. Rep. 12, 7451 (2022).
- Kaiser, K. & Zech, W. Dissolved organic matter sorption by mineral constituents of subsoil clay fractions. J. Plant Nutr. Soil Sci. 163, 531-535 (2000).
- McDonough, L. K. et al. Changes in global groundwater organic carbon driven by climate change and urbanization. Nat. Commun. 11, 1279 (2020).
- Taubert, M., Stähly, J., Kolb, S. & Küsel, K. Divergent microbial communities in groundwater and overlying soils exhibit functional redundancy for plant-polysaccharide degradation. PLoS ONE 14, e0212937 (2019).
- Kolehmainen, R. E., Langwaldt, J. H. & Puhakka, J. A. Natural organic matter (NOM) removal and structural changes in the bacterial community during artificial groundwater recharge with humic lake water. Water Res. 41, 2715-2725 (2007).
- Schaffer, M. & Licha, T. A framework for assessing the retardation of organic molecules in groundwater: Implications of the species distribution for the sorption-influenced transport. Sci. Total Environ. 524-525, 187-194 (2015).
- Paul, E. A. The nature and dynamics of soil organic matter: plant inputs, microbial transformations, and organic matter stabilization. Soil Biol. Biochem. 98, 109-126 (2016).
- McDonough, L. K. et al. Characterisation of shallow groundwater dissolved organic matter in aeolian, alluvial and fractured rock aquifers. Geochim. Cosmochim. Acta 273, 163-176 (2020).
- Hofmann, R., Uhl, J., Hertkorn, N. & Griebler, C. Linkage between dissolved organic matter transformation, bacterial carbon production, and diversity in a shallow oligotrophic aquifer: results from flow-through sediment microcosm experiments. Front. Microbiol. 11, 543567 (2020).
- Benk, S. A. et al. Fueling diversity in the subsurface: composition and age of dissolved organic matter in the critical zone. Front. Earth Sci. 7, 296 (2019).
- Simon, C., Roth, V.-N., Dittmar, T. & Gleixner, G. Molecular signals of heterogeneous terrestrial environments identified in dissolved organic matter: a comparative analysis of orbitrap and ion cyclotron resonance mass spectrometers. Front. Earth Sci. 6, 138 (2018).
- Küsel, K. et al. How deep can surface signals be traced in the critical zone? merging biodiversity with biogeochemistry research in a central German Muschelkalk landscape. Front. Earth Sci. 4 (2016).
- Duscher, K. et al. The GIS layers of the “International Hydrogeological Map of Europe 1:1,500,000” in a vector format. Hydrogeol. J. 23, 1867-1875 (2015).
- Wendland, F. et al. European aquifer typology: a practical framework for an overview of major groundwater composition at European scale. Environ. Geol. 55, 77-85 (2008).
- Famiglietti, J. S. & Ferguson, G. The hidden crisis beneath our feet. Science 372, 344-345 (2021).
- Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4, 945-948 (2014).
- Jasechko, S. & Perrone, D. Global groundwater wells at risk of running dry. Science 372, 418-421(2021).
- Shekhar, A., Buchmann, N., Humphrey, V. & Gharun, M. More than three-fold increase in compound soil and air dryness across Europe by the end of 21st century. Weather Clim. Extrem. 44, 100666 (2024).
- Yeh, H.-F., Lin, H.-I., Lee, C.-H., Hsu, K.-C. & Wu, C.-S. Identifying seasonal groundwater recharge using environmental stable isotopes. Water 6, 2849-2861 (2014).
- Lehmann, R. & Totsche, K. U. Multi-directional flow dynamics shape groundwater quality in sloping bedrock strata. J. Hydrol. 580, 124291 (2020).
- Lazar, C. S. et al. The endolithic bacterial diversity of shallow bedrock ecosystems. Sci. Total Environ. 679, 35-44 (2019).
- Shen, Y., Chapelle, F. H., Strom, E. W. & Benner, R. Origins and bioavailability of dissolved organic matter in groundwater. Biogeochemistry 122, 61-78 (2015).
- Boergens, E., Güntner, A., Dobslaw, H. & Dahle, C. Quantifying the central European droughts in 2018 and 2019 with GRACE follow-on. Geophys. Res. Lett. 47, e2020GL087285 (2020).
- Bastos, A. et al. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv. 6, eaba2724 (2020).
- Vogel, M. M., Zscheischler, J., Wartenburger, R., Dee, D. & Seneviratne, S. I. Concurrent 2018 hot extremes across northern hemisphere due to human-induced climate change. Earth’s Future 7, 692-703 (2019).
- Orme, A. M. et al. Drought reduces release of plant matter into dissolved organic matter potentially restraining ecosystem recovery. Front. Soil Sci. 2, 904259 (2022).
- Gimbel, K. F., Puhlmann, H. & Weiler, M. Does drought alter hydrological functions in forest soils? Hydrol. Earth Syst. Sci. 20, 1301-1317 (2016).
- Retter, A., Karwautz, C. & Griebler, C. Groundwater microbial communities in times of climate change. Curr. Issues Mol. Biol. 41, 509-538 (2021).
- Yan, L. et al. Groundwater bacterial communities evolve over time in response to recharge. Water Res. 201, 117290 (2021).
- Overholt, W. A. et al. Carbon fixation rates in groundwater similar to those in oligotrophic marine systems. Nat. Geosci. 15, 561-567(2022).
- Mishra, S. et al. Recent advanced technologies for the characterization of xenobiotic-degrading microorganisms and microbial communities. Front. Bioeng. Biotechnol. 9, 632059 (2021).
- Roth, V.-N. et al. Persistence of dissolved organic matter explained by molecular changes during its passage through soil. Nat. Geosci. 12, 755 (2019).
- Lucas, J. M., Gora, E., Salzberg, A. & Kaspari, M. Antibiotics as chemical warfare across multiple taxonomic domains and trophic levels in brown food webs. Proc. R. Soc. B 286, 20191536 (2019).
- Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233-237 (2018).
- Longnecker, K. & Kujawinski, E. B. Composition of dissolved organic matter in groundwater. Geochim. Cosmochim. Acta 75, 2752-2761 (2011).
- Abdelsalam, N. A., Ramadan, A. T., ElRakaiby, M. T. & Aziz, R. K. Toxicomicrobiomics: the human microbiome vs. pharmaceutical,
dietary, and environmental xenobiotics. Front. Pharmacol. 11, 390 (2020). - McDonough, L. K. et al. A new conceptual framework for the transformation of groundwater dissolved organic matter. Nat. Commun. 13, 2153 (2022).
- Kraus, T. E. C. et al. How reservoirs alter drinking water quality: organic matter sources, sinks, and transformations. Lake Reserv. Manag. 27, 205-219 (2011).
- Andersson, A. et al. Selective removal of natural organic matter during drinking water production changes the composition of disinfection by-products. Environ. Sci. Water Res. Technol. 6, 779-794 (2020).
- Kundzewicz, Z. W. et al. The implications of projected climate change for freshwater resources and their management. Hydrol. Sci. J. 53, 3-10 (2008).
- Verordnung zum Schutz des Grundwassers (Grundwasserverordnung – GrwV) (2010).
- Kristensen, P., Whalley, C., Néry, F., Zal, N. & Christiansen, T. European Waters: Assessment of Status and Pressures 2018 (Publications Office of the European Union, Luxembourg, 2018).
- Singha, K. & Navarre-Sitchler, A. The importance of groundwater in critical zone science. Groundwater 60, 27-34 (2022).
- Kløve, B. et al. Groundwater dependent ecosystems. Part II. Ecosystem services and management in Europe under risk of climate change and land use intensification. Environ. Sci. Policy 14, 782-793 (2011).
- Kohlhepp, B. et al. Aquifer configuration and geostructural links control the groundwater quality in thin-bedded carbonate-siliciclastic alternations of the Hainich CZE, central Germany. Hydrol. Earth Syst. Sci. 21, 6091-6116 (2017).
- Stolze, K., Barnes, A. D., Eisenhauer, N. & Totsche, K. U. Depth-differentiated, multivariate control of biopore number under different land-use practices. Geoderma 418, 115852 (2022).
- Gehre, M., Geilmann, H., Richter, J., Werner, R. A. & Brand, W. A. Continuous flow
and analysis of water samples with dual inlet precision. Rapid Commun. Mass Spectrom. 18, 2650-2660 (2004). - R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).
- Dittmar, T., Koch, B. P., Hertkorn, N. & Kattner, G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol. Oceanogr. 6, 230-235 (2008).
- Li, Y. et al. How representative are dissolved organic matter (DOM) extracts? A comprehensive study of sorbent selectivity for DOM isolation. Water Res. 116, 316-323 (2017).
- Schroeter, S. DOMAssignR. https://doi.org/10.5281/ZENODO. 14209699 (2024).
- Schum, S. K., Brown, L. E. & Mazzoleni, L. R. MFAssignR: molecular formula assignment software for ultrahigh resolution mass spectrometry analysis of environmental complex mixtures. Environ. Res. 191, 110114 (2020).
- Hafen, R. Stlplus: Enhanced Seasonal Decomposition of Time Series by Loess. (2016).
- Tenenbaum, D. KEGGREST. Bioconductor https://doi.org/10.18129/ B9.BIOC.KEGGREST (2017).
- Simon, C. et al. Mass difference matching unfolds hidden molecular structures of dissolved organic matter. Environ. Sci. Technol. 56, 11027-11040 (2022).
- Steinhof, A., Altenburg, M. & Machts, H. Sample preparation at the Jena 14C laboratory. Radiocarbon 59, 815-830 (2017).
- Benk, S. A., Li, Y., Roth, V.-N. & Gleixner, G. Lignin dimers as potential markers for
-young terrestrial dissolved organic matter in the critical zone. Front. Earth Sci. 6 (2018). - Chaudhari, N. M. et al. The economical lifestyle of CPR bacteria in groundwater allows little preference for environmental drivers. Environ. Microbiome 16, 24 (2021).
- Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).
- Aramaki, T. et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251-2252 (2020).
- Bushnell, B. BBMap: a fast, accurate, splice-aware aligner. (2014).
- Nelson, D. B., Basler, D. & Kahmen, A. Precipitation isotope time series predictions from machine learning applied in Europe. Proc. Natl Acad. Sci. USA 118, e2024107118 (2021).
Acknowledgements
Author contributions
Funding
Competing interests
Additional information
(c) The Author(s) 2025
- ¹Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany. ²Department of Hydrogeology, Institute of Geosciences, Friedrich Schiller University, Jena, Germany.
Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany. German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany. Balance of the Microverse, Cluster of Excellence, Friedrich Schiller University, Jena, Germany. Department Computational Hydrosystems, Helmholtz-Centre for Environmental Science – UFZ, Leipzig, Germany. Terrestrial Ecohydrology, Institute of Geosciences, Friedrich Schiller University, Jena, Germany. e-mail: simon.schroeter@bgc-jena.mpg.de
