DOI: https://doi.org/10.1038/s41377-023-01353-6
PMID: https://pubmed.ncbi.nlm.nih.gov/38177145
تاريخ النشر: 2024-01-05
طيفية الصوت الضوئي المزدوجة المعززة بالتجويف
الملخص
طيفية مزدوجة النبضات الضوئية (DCS)، التي تحول المعلومات الطيفية من نطاق التردد الضوئي إلى نطاق التردد الصوتي عبر تداخل متعدد الترددات، تتيح قياسات طيفية خالية من الخلفية بدقة عالية وعرض نطاق واسع. ومع ذلك، تظل حساسية الكشف محدودة بسبب انخفاض طاقة خطوط النبض الفردية وغياب الرنانات الصوتية العريضة النطاق. هنا، نطور DCS معززة بالحجرة الضوئية، التي تتغلب على هذه القيود من خلال استخدام حجرة ضوئية عالية الدقة لتكبير الطاقة لنبضات مزدوجة التردد ورنان صوتي عريض النطاق مع استجابة ترددية مسطحة. نحن نعرض قياسات طيفية عالية الدقة لكميات ضئيلة من
مقدمة
عادةً ما يستخدم ميكروفونًا لاكتشاف الموجات الصوتية، التي تتولد من الاسترخاء التصادمي غير الإشعاعي للجزيئات المثارة بعد امتصاص الضوء المعدل. أبلغ ساديك وآخرون عن أول نظام PAS باستخدام مشط ترددي وقاموا بتنفيذ مطياف تحويل فورييه (FTS) لتعديل شدة المشط الترددي.
في هذه الدراسة، نقدم تقنية الكشف الطيفي المعززة بالحجرة باستخدام الصوت الضوئي DCS للكشف فائق الحساسية، وعريض النطاق، وعالي الدقة، من خلال دمج تقنيتين متقدمتين للتغلب على العيوب المذكورة أعلاه. أولاً، من خلال استخدام رنان صوتي على شكل فلوت، نحقق الكشف الحساس بالصوت الضوئي مع
النتائج
مفهوم
تعمل التجويف بشكل فعال لتعزيز الطاقة، حيث يتسبب التداخل المتعدد بين كل زوج من خطوط المشط في تعديل سعة خط المشط المعزز بالتجويف. بعد امتصاصها بواسطة الجزيئات المستهدفة، يؤدي ذلك إلى إثارة مئات أو آلاف من الموجات الصوتية بترددات متباعدة بشكل متساوٍ، تحددها فرق معدل التكرار.
إعداد


قياس متعدد الأنواع واسع النطاق
غلاف الطاقة، وتغير جودة التجويف على مدى طيفي واسع، واستجابة التردد للرنان الصوتي (الملاحظة التكميلية 3). توضح الشكل 3 الطيف الواسع بالكامل من خلال تجميع 41 طيفًا فوتو acoustics.
الاستجابة الخطية وحدود الكشف


المناقشة
بالإضافة إلى ذلك، تفضل اكتشاف الغازات النادرة القياسات الطيفية في منطقة الأشعة تحت الحمراء المتوسطة. حيث يمكن توليد المشط المزدوج في الأشعة تحت الحمراء المتوسطة باستخدام توليد الفرق الترددي (DFG) لمشطي كهربائي بصري قريب من الأشعة تحت الحمراء
في الختام، نقدم تقنية طيفية جديدة، التصوير الصوتي المعزز بالحجرة DCS، للكشف عن الجزيئات الحساسة للغاية، وعريضة النطاق، وعالية الدقة، وكشف الغازات النادرة. يظهر الرنان الصوتي عرض نطاق يتجاوز 5 كيلو هرتز، وهو أوسع بعشرات المرات من التقليدي و

أ استجابات التردد للرنانات الصوتية التقليدية مع أقطار داخلية مختلفة (IDs). ب استجابات التردد للرنانات الصوتية التقليدية مع أغطية نهائية. يتم تثبيت قطر الرنان المركزي عند 2 مم، بينما يتنوع قطر (D) الثقوب المارة في الأغطية النهائية بين 2 و 5 مم. المقتطف: رسم ثلاثي الأبعاد للرنان الصوتي. ج استجابات التردد للرنان الصوتي من نوع الفلوت مع تكوينات مختلفة من الميكروفونات. المقتطف: رسم ثلاثي الأبعاد للرنان الصوتي
المواد والطرق
مصدر المشط المزدوج
تأثير عدم التطابق بين خط المشط ووضعية التجويف
المستخدم في هذا العمل، فإن FWHM لوضعية التجويف هو 204 كيلو هرتز عند الطول الموجي بالقرب من 1531 نانومتر. باختيار فرق تردد مركزي قدره 5.5 كيلو هرتز عبر AOMs وفرق تردد تكراري قدره 30 هرتز، فإن أكبر تردد بين ضربات المشط المتعددة هو 8.6 كيلو هرتز. بشرط أن يكون أحد قطارات مشط التردد في توافق تام مع وضعيات التجويف، فإن أقصى عدم تطابق ترددي بين نظير المشط المزدوج ووضعية التجويف هو 8.6 كيلو هرتز. ومن ثم، فإن هذا يتوافق مع تضعيف الشدة بمقدار فقط
تقييم طاقة المشط المزدوج داخل التجويف
تقييم نسبة الإشارة إلى الضوضاء
الشكر والتقدير
تفاصيل المؤلف
مساهمات المؤلف
أجروا التجارب. Q.W. ساعد في بناء مصدر مشط التردد. S.B. وP.D.N. ساعدوا في تقنية قفل PDH عالية الكفاءة. Q.N. أجرى تحليل البيانات. Z.W. وW.R. أشرفوا ونسقوا المشروع.
المصالح المتنافسة
تم النشر عبر الإنترنت: 05 يناير 2024
References
- Lee, S. J. et al. Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators. Jpn. J. Appl. Phys. 40, L878-L880 (2001).
- Keilmann, F., Gohle, C. & Holzwarth, R. Time-domain mid-infrared frequencycomb spectrometer. Opt. Lett. 29, 1542-1544 (2004).
- Schliesser, A. et al. Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Opt. Express 13, 9029-9038 (2005).
- Yasui, T., Saneyoshi, E. & Araki, T. Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition. Appl. Phys. Lett. 87, 061101 (2005).
- Okubo, S. et al. Ultra-broadband dual-comb spectroscopy across 1.0-1.9
. Appl. Phys. Express 8, 082402 (2015). - Ycas, G. et al. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to
. Nat. Photonics 12, 202-208 (2018). - Muraviev, A. V. et al. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs. Nat. Photonics 12, 209-214 (2018).
- Ideguchi, T. et al. Coherent Raman spectro-imaging with laser frequency combs. Nature 502, 355-358 (2013).
- Dong, X. et al. Ultrafast time-stretch microscopy based on dual-comb asynchronous optical sampling. Opt. Lett. 43, 2118-2121 (2018).
- Baumann, E. et al. Spectroscopy of the methane
band with an accurate midinfrared coherent dual-comb spectrometer. Phys. Rev. A 84, 062513 (2011). - Zolot, A. M. et al. Broad-band frequency references in the near-infrared: accurate dual comb spectroscopy of methane and acetylene. J. Quant. Spectrosc. Radiat. Transf. 118, 26-39 (2013).
- Godbout, M., Deschênes, J. D. & Genest, J. Spectrally resolved laser ranging with frequency combs. Opt. Express 18, 15981-15989 (2010).
- Boudreau, S. et al. Chemical detection with hyperspectral lidar using dual frequency combs. Opt. Express 21, 7411-7418 (2013).
- Rieker, G. B. et al. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica 1, 290-298 (2014).
- Giorgetta, F. R. et al. Broadband phase spectroscopy over turbulent air paths. Phys. Rev. Lett. 115, 103901 (2015).
- Vicentini, E. et al. Dual-comb hyperspectral digital holography. Nat. Photonics 15, 890-894 (2021).
- Martín-Mateos, P., Khan, F. U. & Bonilla-Manrique, O. E. Direct hyperspectral dual-comb imaging. Optica 7, 199-202 (2020).
- Suh, M. G. et al. Microresonator soliton dual-comb spectroscopy. Science 354, 600-603 (2016).
- Villares, G. et al. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nat. Commun. 5, 5192 (2014).
- Ideguchi, T. et al. Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy. Optica 3, 748-753 (2016).
- Link, S. M. et al. Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser. Science 356, 1164-1168 (2017).
- Coddington, I., Newbury, N. & Swann, W. Dual-comb spectroscopy. Optica 3, 414-426 (2016).
- Wildi, T. et al. Photo-acoustic dual-frequency comb spectroscopy. Nat. Commun. 11, 4164 (2020).
- Friedlein, J. T. et al. Dual-comb photoacoustic spectroscopy. Nat. Commun. 11, 3152 (2020).
- Ren, X. Y. et al. Dual-comb optomechanical spectroscopy. Nat. Commun. 14, 5037 (2023).
- Wang, Q. et al. Dual-comb photothermal spectroscopy. Nat. Commun. 13, 2181 (2022).
- Wang, F. P. et al. Techniques to enhance the photoacoustic signal for trace gas sensing: a review. Sens. Actuators A: Phys. 345, 113807 (2022).
- Shi, J. et al. Hybrid optical parametrically-oscillating emitter at 1930 nm for volumetric photoacoustic imaging of water content. eLight 2, 6 (2022).
- Sadiek, I. et al. Optical frequency comb photoacoustic spectroscopy. Phys. Chem. Chem. Phys. 20, 27849-27855 (2018).
- Ren, X. Y. et al. Dual-comb quartz-enhanced photoacoustic spectroscopy. Photoacoustics 28, 100403 (2022).
- Bernhardt, B. et al. Cavity-enhanced dual-comb spectroscopy. Nat. Photonics 4, 55-57 (2010).
- Fleisher, A. J. et al. Coherent cavity-enhanced dual-comb spectroscopy. Opt. Express 24, 10424-10434 (2016).
- Hoghooghi, N. et al. Broadband coherent cavity-enhanced dual-comb spectroscopy. Optica 6, 28-33 (2019).
- Zhang, W. P. et al. Adaptive cavity-enhanced dual-comb spectroscopy. Photonics Res. 7, 883-889 (2019).
- Millot, G. et al. Frequency-agile dual-comb spectroscopy. Nat. Photonics 10, 27-30 (2016).
- Black, E. D. An introduction to Pound-Drever-Hall laser frequency stabilization. Am. J. Phys. 69, 79-87 (2001).
- Yin, X. K. et al. Ppb-level
detection for decomposition based on a fiberamplified telecommunication diode laser and a background-gas-induced high-Q photoacoustic cell. Appl. Phys. Lett. 111, 031109 (2017). - Lang, Z. T. et al. Fabry-Perot-based phase demodulation of heterodyne lightinduced thermoelastic spectroscopy. Light. Adv. Manuf. 4, 2689-9620 (2023).
- Gordon, I. E. et al. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 203, 3-69 (2017).
- Wang, Z. et al. Ultrasensitive photoacoustic detection in a high-finesse cavity with Pound-Drever-Hall locking. Opt. Lett. 44, 1924-1927 (2019).
- Borri, S. et al. Intracavity quartz-enhanced photoacoustic sensor. Appl. Phys. Lett. 104, 091114 (2014).
- Wu, H. P. et al. Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring. Nat. Commun. 8, 15331 (2017).
- El-Busaidy, S. A. S. et al. Modelling of open photoacoustic resonators. Photoacoustics 18, 100161 (2020).
- Lee, H. et al. Chiral exceptional point and coherent suppression of backscattering in silicon microring with low loss Mie scatterer. eLight 3, 20 (2023).
- Yan, M. et al. Mid-infrared dual-comb spectroscopy with electro-optic modulators. Light Sci. Appl. 6, e17076 (2017).
- Griffith, A. G. et al. Silicon-chip mid-infrared frequency comb generation. Nat. Commun. 6, 6299 (2015).
- Guo, H. R. et al. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nat. Photonics 12, 330-335 (2018).
- Schwarz, B. et al. Monolithic frequency comb platform based on interband cascade lasers and detectors. Optica 6, 890-895 (2019).
- Adler, F. et al. Phase-stabilized, 1.5 W frequency comb at
. Opt. Lett. 34, 1330-1332 (2009). - Jouy, P. et al. Dual comb operation of
quantum cascade laser frequency comb with 1 W optical power. Appl. Phys. Lett. 111, 141102 (2017). - Consolino, L. et al. Fully phase-stabilized quantum cascade laser frequency comb. Nat. Commun. 10, 2938 (2019).
- Correspondence: Zhen Wang (wangzhen@link.cuhk.edu.hk) or Qiang Wang (wangqiang@ciomp.ac.cn) or Wei Ren (renwei@mae.cuhk.edu.hk)
Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130033 Changchun, China
Full list of author information is available at the end of the article These authors contributed equally: Zhen Wang, Qinxue Nie
DOI: https://doi.org/10.1038/s41377-023-01353-6
PMID: https://pubmed.ncbi.nlm.nih.gov/38177145
Publication Date: 2024-01-05
Cavity-enhanced photoacoustic dual-comb spectroscopy
Abstract
Photoacoustic dual-comb spectroscopy (DCS), converting spectral information in the optical frequency domain to the audio frequency domain via multi-heterodyne beating, enables background-free spectral measurements with high resolution and broad bandwidth. However, the detection sensitivity remains limited due to the low power of individual comb lines and the lack of broadband acoustic resonators. Here, we develop cavity-enhanced photoacoustic DCS, which overcomes these limitations by using a high-finesse optical cavity for the power amplification of dual-frequency combs and a broadband acoustic resonator with a flat-top frequency response. We demonstrate high-resolution spectroscopic measurements of trace amounts of
Introduction
normally uses a microphone to detect acoustic waves, which are generated by the non-radiative collisional relaxation of the excited molecules after absorbing the modulated light. Sadiek et al. reported the first PAS using a frequency comb and implemented a Fourier transform spectrometer (FTS) to modulate the intensity of the frequency comb
In this study, we introduce cavity-enhanced photoacoustic DCS for ultrasensitive, broadband, and highresolution spectroscopic detection, by combining two cutting-edge technologies to overcome the aforementioned shortcomings. First, employing a flute-type acoustic resonator, we realize sensitive photoacoustic detection with a
Results
Concept
cavity effectively for power enhancement, the multiheterodyne beating between each comb-line pair causes an amplitude modulation of the cavity-enhanced comb line. After absorption by the target molecules, this leads to the excitation of hundreds or thousands of acoustic waves with evenly spaced frequencies, determined by the repetition rate difference (
Setup


Broadband multi-species measurement
power envelope, the variation of cavity finesse over the wide spectral range, and the frequency response of the acoustic resonator (Supplementary Note 3). Figure 3 shows the entire wide spectra by stitching 41 photoacoustic spectra of
Linear response and detection limit


Discussion
Additionally, trace gas detection favors spectral measurements in the mid-infrared region. As mid-infrared dual-combs can be generated using the difference frequency generation (DFG) of a near-infrared electro-optic comb
In conclusion, we present a novel spectroscopic technique, cavity-enhanced photoacoustic DCS, for ultrasensitive, broadband, and high-resolution molecular spectroscopy and trace gas detection. The acoustic resonator shows a bandwidth beyond 5 kHz which is tens of times broader than the traditional one and

a Frequency responses of the traditional acoustic resonators with different inner diameters (IDs). b Frequency responses of the traditional acoustic resonators with end caps. The ID of the central resonator is fixed at 2 mm , while the diameter (D) of the through holes in the end caps is varied between 2 and 5 mm . Inset: 3D drawing of the acoustic resonator. c Frequency responses of the flutetype acoustic resonator with different configurations of microphones. Inset: 3D drawing of the acoustic resonator
Materials and methods
Dual-comb source
Influence of the mismatch between the comb line and cavity mode
cavity used in this work, the FWHM of the cavity mode is 204 kHz at the wavelength near 1531 nm . Selecting a center frequency difference of 5.5 kHz via AOMs and a repetition frequency difference of 30 Hz , the largest frequency among the dual-comb multiheterodyne beats is 8.6 kHz . Provided that one train of frequency combs is in perfect resonance with the cavity modes, the maximum frequency mismatch between the counterpart of the dualcomb and the cavity mode is 8.6 kHz . Hence, this corresponds to the intensity attenuation of only
Evaluation of intracavity dual-comb power
Signal-to-noise ratio evaluation
Acknowledgements
Author details
Author contributions
conducted the experiments. Q.W. assisted in building the frequency comb source. S.B. and P.D.N. assisted in the high-efficiency PDH locking technique. Q.N. conducted the data analysis. Z.W. and W.R. supervised and coordinated the project.
Competing interests
Published online: 05 January 2024
References
- Lee, S. J. et al. Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators. Jpn. J. Appl. Phys. 40, L878-L880 (2001).
- Keilmann, F., Gohle, C. & Holzwarth, R. Time-domain mid-infrared frequencycomb spectrometer. Opt. Lett. 29, 1542-1544 (2004).
- Schliesser, A. et al. Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Opt. Express 13, 9029-9038 (2005).
- Yasui, T., Saneyoshi, E. & Araki, T. Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition. Appl. Phys. Lett. 87, 061101 (2005).
- Okubo, S. et al. Ultra-broadband dual-comb spectroscopy across 1.0-1.9
. Appl. Phys. Express 8, 082402 (2015). - Ycas, G. et al. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to
. Nat. Photonics 12, 202-208 (2018). - Muraviev, A. V. et al. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs. Nat. Photonics 12, 209-214 (2018).
- Ideguchi, T. et al. Coherent Raman spectro-imaging with laser frequency combs. Nature 502, 355-358 (2013).
- Dong, X. et al. Ultrafast time-stretch microscopy based on dual-comb asynchronous optical sampling. Opt. Lett. 43, 2118-2121 (2018).
- Baumann, E. et al. Spectroscopy of the methane
band with an accurate midinfrared coherent dual-comb spectrometer. Phys. Rev. A 84, 062513 (2011). - Zolot, A. M. et al. Broad-band frequency references in the near-infrared: accurate dual comb spectroscopy of methane and acetylene. J. Quant. Spectrosc. Radiat. Transf. 118, 26-39 (2013).
- Godbout, M., Deschênes, J. D. & Genest, J. Spectrally resolved laser ranging with frequency combs. Opt. Express 18, 15981-15989 (2010).
- Boudreau, S. et al. Chemical detection with hyperspectral lidar using dual frequency combs. Opt. Express 21, 7411-7418 (2013).
- Rieker, G. B. et al. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica 1, 290-298 (2014).
- Giorgetta, F. R. et al. Broadband phase spectroscopy over turbulent air paths. Phys. Rev. Lett. 115, 103901 (2015).
- Vicentini, E. et al. Dual-comb hyperspectral digital holography. Nat. Photonics 15, 890-894 (2021).
- Martín-Mateos, P., Khan, F. U. & Bonilla-Manrique, O. E. Direct hyperspectral dual-comb imaging. Optica 7, 199-202 (2020).
- Suh, M. G. et al. Microresonator soliton dual-comb spectroscopy. Science 354, 600-603 (2016).
- Villares, G. et al. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nat. Commun. 5, 5192 (2014).
- Ideguchi, T. et al. Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy. Optica 3, 748-753 (2016).
- Link, S. M. et al. Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser. Science 356, 1164-1168 (2017).
- Coddington, I., Newbury, N. & Swann, W. Dual-comb spectroscopy. Optica 3, 414-426 (2016).
- Wildi, T. et al. Photo-acoustic dual-frequency comb spectroscopy. Nat. Commun. 11, 4164 (2020).
- Friedlein, J. T. et al. Dual-comb photoacoustic spectroscopy. Nat. Commun. 11, 3152 (2020).
- Ren, X. Y. et al. Dual-comb optomechanical spectroscopy. Nat. Commun. 14, 5037 (2023).
- Wang, Q. et al. Dual-comb photothermal spectroscopy. Nat. Commun. 13, 2181 (2022).
- Wang, F. P. et al. Techniques to enhance the photoacoustic signal for trace gas sensing: a review. Sens. Actuators A: Phys. 345, 113807 (2022).
- Shi, J. et al. Hybrid optical parametrically-oscillating emitter at 1930 nm for volumetric photoacoustic imaging of water content. eLight 2, 6 (2022).
- Sadiek, I. et al. Optical frequency comb photoacoustic spectroscopy. Phys. Chem. Chem. Phys. 20, 27849-27855 (2018).
- Ren, X. Y. et al. Dual-comb quartz-enhanced photoacoustic spectroscopy. Photoacoustics 28, 100403 (2022).
- Bernhardt, B. et al. Cavity-enhanced dual-comb spectroscopy. Nat. Photonics 4, 55-57 (2010).
- Fleisher, A. J. et al. Coherent cavity-enhanced dual-comb spectroscopy. Opt. Express 24, 10424-10434 (2016).
- Hoghooghi, N. et al. Broadband coherent cavity-enhanced dual-comb spectroscopy. Optica 6, 28-33 (2019).
- Zhang, W. P. et al. Adaptive cavity-enhanced dual-comb spectroscopy. Photonics Res. 7, 883-889 (2019).
- Millot, G. et al. Frequency-agile dual-comb spectroscopy. Nat. Photonics 10, 27-30 (2016).
- Black, E. D. An introduction to Pound-Drever-Hall laser frequency stabilization. Am. J. Phys. 69, 79-87 (2001).
- Yin, X. K. et al. Ppb-level
detection for decomposition based on a fiberamplified telecommunication diode laser and a background-gas-induced high-Q photoacoustic cell. Appl. Phys. Lett. 111, 031109 (2017). - Lang, Z. T. et al. Fabry-Perot-based phase demodulation of heterodyne lightinduced thermoelastic spectroscopy. Light. Adv. Manuf. 4, 2689-9620 (2023).
- Gordon, I. E. et al. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 203, 3-69 (2017).
- Wang, Z. et al. Ultrasensitive photoacoustic detection in a high-finesse cavity with Pound-Drever-Hall locking. Opt. Lett. 44, 1924-1927 (2019).
- Borri, S. et al. Intracavity quartz-enhanced photoacoustic sensor. Appl. Phys. Lett. 104, 091114 (2014).
- Wu, H. P. et al. Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring. Nat. Commun. 8, 15331 (2017).
- El-Busaidy, S. A. S. et al. Modelling of open photoacoustic resonators. Photoacoustics 18, 100161 (2020).
- Lee, H. et al. Chiral exceptional point and coherent suppression of backscattering in silicon microring with low loss Mie scatterer. eLight 3, 20 (2023).
- Yan, M. et al. Mid-infrared dual-comb spectroscopy with electro-optic modulators. Light Sci. Appl. 6, e17076 (2017).
- Griffith, A. G. et al. Silicon-chip mid-infrared frequency comb generation. Nat. Commun. 6, 6299 (2015).
- Guo, H. R. et al. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nat. Photonics 12, 330-335 (2018).
- Schwarz, B. et al. Monolithic frequency comb platform based on interband cascade lasers and detectors. Optica 6, 890-895 (2019).
- Adler, F. et al. Phase-stabilized, 1.5 W frequency comb at
. Opt. Lett. 34, 1330-1332 (2009). - Jouy, P. et al. Dual comb operation of
quantum cascade laser frequency comb with 1 W optical power. Appl. Phys. Lett. 111, 141102 (2017). - Consolino, L. et al. Fully phase-stabilized quantum cascade laser frequency comb. Nat. Commun. 10, 2938 (2019).
- Correspondence: Zhen Wang (wangzhen@link.cuhk.edu.hk) or Qiang Wang (wangqiang@ciomp.ac.cn) or Wei Ren (renwei@mae.cuhk.edu.hk)
Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130033 Changchun, China
Full list of author information is available at the end of the article These authors contributed equally: Zhen Wang, Qinxue Nie
