DOI: https://doi.org/10.5194/essd-17-2135-2025
تاريخ النشر: 2025-05-21
مجموعة بيانات النظائر المستقرة العالمية لمياه السطح
تمت المراجعة: 9 ديسمبر 2024 – تم القبول: 5 مارس 2025 – تم النشر: 21 مايو 2025
الملخص
تُستخدم النظائر المستقرة للهيدروجين والأكسجين على نطاق واسع كعلامات لدورة المياه، وتُعتبر المياه السطحية جزءًا لا يتجزأ من دورة المياه. مقارنةً بالمسطحات المائية الأخرى، تكون المياه السطحية أكثر عرضة لعوامل طبيعية وبشرية مختلفة، وفهم التغيرات في المياه السطحية بدقة له أهمية كبيرة في ضمان الأمن المائي الإقليمي، والحفاظ على التوازن البيئي، وتعزيز التنمية الاقتصادية والاجتماعية المستدامة. التوزيعات المكانية والزمنية لبيانات النظائر المستقرة للمياه السطحية العالمية غير متساوية للغاية على المستوى العالمي بسبب عوامل مثل ظروف المراقبة والتحليل بالأدوات. لهذا السبب، قمنا بتجميع وتحليل بيانات النظائر المستقرة للهيدروجين والأكسجين في المياه السطحية من 22389 محطة أخذ عينات حول العالم من عام 1956 إلى 2023، مع 102511 سجل بيانات. تشير النتائج إلى ما يلي: (1) تتناقص النظائر المستقرة للمياه السطحية العالمية تدريجياً من خط الاستواء إلى القطبين ومن الساحل إلى الداخل. ومع ذلك، هناك اختلافات كبيرة في التوزيعات المكانية والزمنية لنظائر المياه السطحية في مناطق مختلفة. (2) يتم التحكم في التغير في النظائر المستقرة في المياه السطحية من خلال الموقع الجغرافي، وظروف التضاريس، والعوامل المناخية (خاصة درجة الحرارة)، وتعتبر تباينها كبيرًا. توفر مجموعة بيانات النظائر المستقرة العالمية للمياه السطحية معلومات حيوية لفهم أعمق لدورة المياه وتغير المناخ. يمكن أن توفر مراجع بيانات أساسية لإدارة الموارد المائية العالمية والبحث. مجموعة بيانات النظائر المستقرة العالمية للمياه السطحية متاحة علىhttps://doi.org/10.17632/fs7rwp7fpr.2 (زو، 2024).
1 المقدمة
منظمة الأرصاد الجوية العالمية (WMO)، بهدف بناء شبكة مراقبة عالمية تركز على الدراسة المتعمقة لنظائر الهيدروجين والأكسجين في الأمطار (Aggarwal et al., 2012). مقارنةً بمراقبة النظائر المستقرة العالمية في الأمطار، فإن مراقبة المياه السطحية العالمية متأخرة. في عام 2002، بدأت الوكالة الدولية للطاقة الذرية (IAEA) في بناء الشبكة العالمية للنظائر في الأنهار (GNIR)، التي تهدف إلى دراسة التفاعلات بين المياه السطحية والمياه الجوفية باستخدام النظائر المستقرة في الجريان السطحي وتحديد آثار تغير المناخ على جريان الأنهار وآثار النشاط البشري على تباين الأنهار (Halder et al., 2015). درس العديد من الأكاديميين في جميع أنحاء العالم تركيب النظائر المستقرة في المياه السطحية. في جميع أنحاء العالم، حقق العلماء المشاركون في أبحاث النظائر المستقرة في المياه السطحية العديد من النتائج؛ على سبيل المثال، استخدم باحث بيانات النظائر المستقرة لمياه الأنهار الأمريكية لرسم توزيع النظائر لمياه الأنهار الأمريكية واستخدم النموذج لتحليل تغييرات نظائر مياه الأنهار الأمريكية (Bowen et al., 2011; Dutton et al., 2005). بالإضافة إلى ذلك، يتأثر تركيب النظائر المستقرة في المياه السطحية بمجموعة متنوعة من العمليات الهيدرولوجية مثل الأمطار، والتبخر، والجريان السطحي، وبالتالي يمكن أن توفر معلومات قيمة حول عمليات دورة المياه، وإدارة موارد المياه، وآثار تغير المناخ (Bowen et al., 2019; Darling, 2004; Schulte et al., 2011). يمكن فهم المصدر، والتدفق، والتراكم، وقاعدة التغيير للمياه السطحية بشكل شامل من خلال تحليل وتفسير بيانات النظائر المستقرة، مما يمكن أن يقدم أساسًا علميًا لإدارة موارد المياه، وتقييم موارد المياه، وحماية البيئة والبيئة (Dudley et al., 2022). بالإضافة إلى ذلك، تعتبر المياه السطحية، كـ “حلقة وصل” بين المياه الجوفية والأمطار (Cooley et al., 2021)، تقدم وجهات نظر علمية جديدة حول مجموعة متنوعة من الظواهر الهيدروجيولوجية، بما في ذلك التطور الهيدروجيولوجي للحوض (Bershaw et al., 2016)، وتفاعلات المياه الجوفية والمياه السطحية (Autio et al., 2023)، وإعادة شحن المياه الجوفية (Jameel et al., 2023) وعمليات الأمطار (Reckerth et al., 2017).
تطبيق مجموعة بيانات نظائر المياه السطحية العالمية المستقرة هذه في المجالات الهيدرولوجية، والمناخية، والبيئية وغيرها.
2 البيانات والأساليب
2.1 تكوين مجموعة البيانات

2.2 معالجة البيانات
2.2.1 تجربة
2.2.2 جودة البيانات
تاريخ أخذ العينات والفجوات والمعلومات المفقودة أو غير الصحيحة عن خطوط العرض والطول. لذلك، تم معالجة البيانات الخام المجمعة مسبقًا وتمت تصفيتها لإزالة البيانات الخاطئة.
2.3 الطرق

3 النتائج والمناقشات
3.1 حجم وتوزيع جغرافي وتغطية زمنية لمجموعات البيانات
حدد توزيع النظائر المستقرة في المياه السطحية على مستوى العالم على مدى العقود الماضية.
3.2 التغيرات المكانية والزمانية في النظائر المستقرة في المياه السطحية العالمية


3.3 المياه السطحية العالمية
و
الارتباطات
أدنى تقاطع وميل تحت مناخ جاف (

3.4 العوامل المؤثرة على النظائر المستقرة في المياه السطحية
أداء تنبؤ ممتاز لكل من
3.5 التحديات والقيود في بناء مجموعات بيانات نظائر المياه السطحية والاتجاهات البحثية المستقبلية

أصبح دراسة تغير المناخ والنظائر متكاملة بشكل متزايد ومتعددة التخصصات. على المدى الطويل، هناك إمكانية لتطوير فهم شامل وتطبيق مجموعات بيانات النظائر لمياه السطح. سيعتمد هذا التطور على دمج الخبرات من تخصصات مثل الجيولوجيا، والهيدرولوجيا، والأرصاد الجوية وغيرها، مما يعزز نهجًا شاملاً لدراسة وإدارة موارد المياه في مناخ متغير.
4 توفر البيانات
5 الخاتمة

على الرغم من استخدام هذه المجموعة من البيانات قدر الإمكان، لا تزال هناك مناطق ذات بيانات نادرة، مثل سيبيريا وشرق أوروبا. في المستقبل، يجب أن تركز الجهود على تعزيز الملاحظات في هذه المناطق الصعبة حيث تتوفر البيانات بشكل محدود. يمكن تحسين دقة بيانات نظائر المياه السطحية العالمية من خلال دمج الأساليب متعددة التخصصات واستغلال طرق الذكاء الاصطناعي. ستساعد هذه الطريقة في سد الفجوات في البيانات، وتعزيز الدقة، وتوفير رؤى أكثر شمولاً حول ديناميات المياه العالمية والتغيرات البيئية.
References
Ala-aho, P., Soulsby, C., Pokrovsky, O. S., Kirpotin, S. N., Karlsson, J., Serikova, S., Manasypov, R., Lim, A., Krickov, I., Kolesnichenko, L. G., Laudon, H., and Tetzlaff, D.: Permafrost and lakes control river isotope composition across a boreal Arctic transect in the Western Siberian lowlands, Environ. Res. Lett., 13, 034028, https://doi.org/10.1088/1748-9326/aaa4fe, 2018.
Ankor, M. J., Tyler, J. J., and Hughes, C. E.: Development of an autonomous, monthly and daily, rainfall sampler for isotope research, J. Hydrol., 575, 31-41, https://doi.org/10.1016/j.jhydrol.2019.04.074, 2019.
Araguás-Araguás, L., Froehlich, K., and Rozanski, K.: Stable isotope composition of precipitation over southeast Asia, J. Geophys. Res., 103, 28721-28742, https://doi.org/10.1029/98JD02582, 1998.
Autio, A., Ala-Aho, P., Rossi, P. M., Ronkanen, A.-K., Aurela, M., Lohila, A., Korpelainen, P., Kumpula, T., Klöve, B., and Marttila, H.: Groundwater exfiltration pattern determination in the sub-arctic catchment using thermal imaging, stable water isotopes and fully-integrated groundwater-surface water modelling, J. Hydrol., 626, 130342, https://doi.org/10.1016/j.jhydrol.2023.130342, 2023.
Bershaw, J., Saylor, J. E., Garzione, C. N., Leier, A., and Sundell, K. E.: Stable isotope variations (
Bowen, G. J., Kennedy, C. D., Liu, Z., and Stalker, J.: Water balance model for mean annual hydrogen and oxygen isotope distributions in surface waters of the contiguous United States, J. Geophys. Res., 116, G04011, https://doi.org/10.1029/2010JG001581, 2011.
Bowen, G. J., Cai, Z., Fiorella, R. P., and Putman, A. L.: Isotopes in the Water Cycle: Regional- to Global-Scale Patterns and Applications, Annu. Rev. Earth Planet. Sci., 47, 453-479, https://doi.org/10.1146/annurev-earth-053018-060220, 2019.
Breiman, L.: Random Forests, Mach. Learn., 45, 5-32, https://doi.org/10.1023/A:1010933404324, 2001.
Chahine, M. T.: The hydrological cycle and its influence on climate, Nature, 359, 373-380, https://doi.org/10.1038/359373a0, 1992.
Chen, L., Wang, Q., Zhu, G., Lin, X., Qiu, D., Jiao, Y., Lu, S., Li, R., Meng, G., and Wang, Y.: Dataset of stable isotopes of precipitation in the Eurasian continent, Earth Syst. Sci. Data, 16, 1543-1557, https://doi.org/10.5194/essd-16-1543-2024, 2024.
Chen, Y., Helliker, B. R., Tang, X., Li, F., Zhou, Y., and Song, X.: Stem water cryogenic extraction biases estimation in deuterium isotope composition of plant source water, P. Natl. Acad. Sci. USA, 117, 33345-33350, https://doi.org/10.1073/pnas.2014422117, 2020.
Cooley, S. W., Ryan, J. C., and Smith, L. C.: Human alteration of global surface water storage variability, Nature, 591, 78-81, https://doi.org/10.1038/s41586-021-03262-3, 2021.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436468, https://doi.org/10.1111/j.2153-3490.1964.tb00181.x, 1964.
Darling, W. G.: Hydrological factors in the interpretation of stable isotopic proxy data present and past: a Eu-
ropean perspective, Quaternary Sci. Rev., 23, 743-770, https://doi.org/10.1016/j.quascirev.2003.06.016, 2004.
Dudley, B. D., Yang, J., Shankar, U., and Graham, S. L.: A method for predicting hydrogen and oxygen isotope distributions across a region’s river network using reach-scale environmental attributes, Hydrol. Earth Syst. Sci., 26, 4933-4951, https://doi.org/10.5194/hess-26-4933-2022, 2022.
Dutton, A., Wilkinson, B. H., Welker, J. M., Bowen, G. J., and Lohmann, K. C.: Spatial distribution and seasonal variation in
Feng, X., Lauder, A. M., Posmentier, E. S., Kopec, B. G., and Virginia, R. A.: Evaporation and transport of water isotopologues from Greenland lakes: The lake size effect, Quaternary Sci. Rev., 131, 302-315, https://doi.org/10.1016/j.quascirev.2015.07.029, 2016.
Gierz, P., Werner, M., and Lohmann, G.: Simulating climate and stable water isotopes during the Last Interglacial using a coupled climate-isotope model, J. Adv. Model. Earth Syst., 9, 2027-2045, https://doi.org/10.1002/2017MS001056, 2017.
Halder, J., Terzer, S., Wassenaar, L. I., Araguás-Araguás, L. J., and Aggarwal, P. K.: The Global Network of Isotopes in Rivers (GNIR): integration of water isotopes in watershed observation and riverine research, Hydrol. Earth Syst. Sci., 19, 3419-3431, https://doi.org/10.5194/hess-19-3419-2015, 2015.
Hu, X., Belle, J. H., Meng, X., Wildani, A., Waller, L. A., Strickland, M. J., and Liu, Y.: Estimating PM 2.5 Concentrations in the Conterminous United States Using the Random Forest Approach, Environ. Sci. Technol., 51, 6936-6944, https://doi.org/10.1021/acs.est.7b01210, 2017.
Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., Hyde, S., Brumby, S., Davies, B. J., Elmore, A. C., Emmer, A., Feng, M., Fernández, A., Haritashya, U., Kargel, J. S., Koppes, M., Kraaijenbrink, P. D. A., Kulkarni, A. V., Mayewski, P. A., Nepal, S., Pacheco, P., Painter, T. H., Pellicciotti, F., Rajaram, H., Rupper, S., Sinisalo, A., Shrestha, A. B., Viviroli, D., Wada, Y., Xiao, C., Yao, T., and Baillie, J. E. M.: Importance and vulnerability of the world’s water towers, Nature, 577, 364-369, https://doi.org/10.1038/s41586-019-1822-y, 2020.
Joussaume, S., Sadourny, R., and Jouzel, J.: A general circulation model of water isotope cycles in the atmosphere, Nature, 311, 24-29, https://doi.org/10.1038/311024a0, 1984.
Kartal, V.: Machine learning-based streamflow forecasting using CMIP6 scenarios: Assessing performance and improving hydrological projections and climate change, Hydrol. Process., 38, e15204, https://doi.org/10.1002/hyp.15204, 2024.
Liu, M., Vecchi, G., Soden, B., Yang, W., and Zhang, B.: Enhanced hydrological cycle increases ocean heat uptake and moderates transient climate change, Nat. Clim. Chang., 11, 848-853, https://doi.org/10.1038/s41558-021-01152-0, 2021.
Mehta, P., Siebert, S., Kummu, M., Deng, Q., Ali, T., Marston, L., Xie, W., and Davis, K. F.: Half of twenty-first century global irrigation expansion has been in water-stressed regions, Nat. Water, 2, 254-261, https://doi.org/10.1038/s44221-024-00206-9, 2024.
Nelson, D. B., Basler, D., and Kahmen, A.: Precipitation isotope time series predictions from machine learning applied in Europe, P. Natl. Acad. Sci. USA, 118, e2024107118, https://doi.org/10.1073/pnas.2024107118, 2021.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633-1644, https://doi.org/10.5194/hess-11-16332007, 2007.
Penna, D., Ahmad, M., Birks, S. J., Bouchaou, L., Brenčič, M., Butt, S., Holko, L., Jeelani, G., Martínez, D. E., Melikadze, G., Shanley, J. B., Sokratov, S. A., Stadnyk, T., Sugimoto, A., and Vreča, P.: A new method of snowmelt sampling for water stable isotopes, Hydrol. Process., 28, 5637-5644, https://doi.org/10.1002/hyp.10273, 2014.
Penna, D., Hopp, L., Scandellari, F., Allen, S. T., Benettin, P., Beyer, M., Geris, J., Klaus, J., Marshall, J. D., Schwendenmann, L., Volkmann, T. H. M., von Freyberg, J., Amin, A., Ceperley, N., Engel, M., Frentress, J., Giambastiani, Y., McDonnell, J. J., Zuecco, G., Llorens, P., Siegwolf, R. T. W., Dawson, T. E., and Kirchner, J. W.: Ideas and perspectives: Tracing terrestrial ecosystem water fluxes using hydrogen and oxygen stable isotopes – challenges and opportunities from an interdisciplinary perspective, Biogeosciences, 15, 6399-6415, https://doi.org/10.5194/bg-15-6399-2018, 2018.
Reckerth, A., Stichler, W., Schmidt, A., and Stumpp, C.: Long-term data set analysis of stable isotopic composition in German rivers, J. Hydrol., 552, 718-731, https://doi.org/10.1016/j.jhydrol.2017.07.022, 2017.
Satoh, Y., Yoshimura, K., Pokhrel, Y., Kim, H., Shiogama, H., Yokohata, T., Hanasaki, N., Wada, Y., Burek, P., Byers, E., Schmied, H. M., Gerten, D., Ostberg, S., Gosling, S. N., Boulange, J. E. S., and Oki, T.: The timing of unprecedented hydrological drought under climate change, Nat. Commun., 13, 3287, https://doi.org/10.1038/s41467-022-30729-2, 2022.
Schulte, P., Van Geldern, R., Freitag, H., Karim, A., Négrel, P., Petelet-Giraud, E., Probst, A., Probst, J.-L., Telmer, K., Veizer, J., and Barth, J. A. C.: Applications of stable water and carbon isotopes in watershed research: Weathering, carbon cycling, and water balances, Earth-Sci. Rev., 109, 20-31, https://doi.org/10.1016/j.earscirev.2011.07.003, 2011.
Skrzypek, G., Mydłowski, A., Dogramaci, S., Hedley, P., Gibson, J. J., and Grierson, P. F.: Estimation of evaporative loss based on the stable isotope composition of water using Hydrocalculator, J. Hydrol., 523, 781-789, https://doi.org/10.1016/j.jhydrol.2015.02.010, 2015.
Sprenger, M., Leistert, H., Gimbel, K., and Weiler, M.: Illuminating hydrological processes at the soil-vegetation-atmosphere in-
terface with water stable isotopes, Rev. Geophys., 54, 674-704, https://doi.org/10.1002/2015RG000515, 2016.
Vystavna, Y., Harjung, A., Monteiro, L. R., Matiatos, I., and Wassenaar, L. I.: Stable isotopes in global lakes integrate catchment and climatic controls on evaporation, Nat. Commun., 12, 7224, https://doi.org/10.1038/s41467-021-27569-x, 2021.
Wang, S., Zhang, M., Crawford, J., Hughes, C. E., Du, M., and Liu, X.: The effect of moisture source and synoptic conditions on precipitation isotopes in arid central Asia, J. Geophys. Res.-Atmos., 122, 2667-2682, https://doi.org/10.1002/2015JD024626, 2017.
DOI: https://doi.org/10.5194/essd-17-2135-2025
Publication Date: 2025-05-21
Global Stable Isotope Dataset for Surface Water
Revised: 9 December 2024 – Accepted: 5 March 2025 – Published: 21 May 2025
Abstract
Hydrogen and oxygen stable isotopes are widely used as tracers of the water cycle, and surface water is an integral part of the water cycle. Compared with other waterbodies, surface water is more susceptible to different natural and anthropogenic factors, and an accurate understanding of surface water changes is of great significance in ensuring regional water security, maintaining ecological balance, and promoting sustainable economic and social development. The spatial and temporal distributions of global surface water stable isotope data are extremely uneven on a global scale due to factors such as observation conditions and instrumental analysis. For this reason, we have compiled and analysed the stable hydrogen and oxygen isotope data in surface water from 22389 sampling stations worldwide from 1956 to 2023, with 102511 data records. The results indicate the following: (1) global surface water stable isotopes are gradually depleted from the Equator to the poles and from the coast to the interior. However, there are significant differences in the spatial and temporal distributions of surface water isotopes in different regions. (2) The variation in stable isotopes in surface water is controlled by geographic location, topographic conditions and meteorological factors (especially temperature), and its heterogeneity is considerable. The global stable isotope dataset of surface water provides vital information for an in-depth understanding of the water cycle and climate change. It can provide essential data references for global water resource management and research. The Global Stable Isotope Dataset for Surface Water is available at https://doi.org/10.17632/fs7rwp7fpr.2 (Zhu, 2024).
1 Introduction
nization (WMO), with the aim of constructing a worldwide monitoring network focusing on the in-depth study of hydrogen and oxygen isotopes in precipitation (Aggarwal et al., 2012). Compared to the monitoring of global stable isotopes in precipitation, global surface water monitoring is lagging behind. In 2002, the IAEA started building the Global Network of Isotopes in Rivers (GNIR), which aims to study the interactions between surface water and groundwater using stable isotopes in runoff and to identify the effects of climate change on river runoff and the effects of human activity on riverine variability (Halder et al., 2015). Many academics worldwide have studied the stable isotope composition of surface water. Around the world, scholars engaging in surface water stable isotope research have achieved many results; for example, a researcher using the US river water stable isotope data mapped the isotope distribution of US river water and used the model to analyse the US river water isotope changes (Bowen et al., 2011; Dutton et al., 2005). In addition, the stable isotope composition of surface water is affected by a variety of hydrological processes such as precipitation, evaporation and surface runoff and can therefore provide valuable information on water cycle processes, water resource management and the impacts of climate change (Bowen et al., 2019; Darling, 2004; Schulte et al., 2011). The source, flow, accumulation and change rule of surface water can be thoroughly understood by analysing and interpreting stable isotope data, which can offer a scientific foundation for water resource management, water resource assessment, and ecological and environmental protection (Dudley et al., 2022). In addition, surface water, as a “link” between groundwater and precipitation (Cooley et al., 2021), offers fresh scientific perspectives on a variety of hydrogeological phenomena, including the hydrogeologic evolution of the basin (Bershaw et al., 2016), groundwater-surface water interactions(Autio et al., 2023), groundwater recharge (Jameel et al., 2023) and precipitation processes (Reckerth et al., 2017).
application of this global surface water stable isotope dataset in hydrological, meteorological, ecological and other fields.
2 Data and methods
2.1 Composition of the dataset

2.2 Data processing
2.2.1 Experiment
2.2.2 Data quality
sampling date gaps and missing or incorrect latitude and longitude information. Therefore, the collected raw data were pre-processed and screened to eliminate erroneous data.
2.3 Methods

3 Results and discussions
3.1 Volume, geographic distribution and temporal coverage of datasets
acterise the global distribution of stable isotopes in surface water over the past decades.
3.2 Spatial and temporal variations in stable isotopes in global surface waters


3.3 Global surface water
and
correlations
lowest intercept and slope under an arid climate (

3.4 Controlling factors for stable isotopes in surface water
demonstrate excellent prediction performance for both
3.5 Challenges and limitations in the construction of surface water isotope datasets and future research directions

the study of climate change and of isotopes is becoming increasingly integrated and interdisciplinary. In the longer term, there is potential to develop a comprehensive understanding and application of isotope datasets for surface water. This development will rely on integrating expertise from disciplines such as geology, hydrology, meteorology and others, fostering a holistic approach to studying and managing water resources in a changing climate.
4 Data availability
5 Conclusion

this dataset as much as possible, there are still regions with sparse data, such as Siberia and eastern Europe. In the future, efforts should focus on strengthening observations in these challenging areas where data availability is limited. Improving the resolution of global surface water stable isotope data can be achieved by integrating interdisciplinary approaches and leveraging artificial intelligence methods. This approach will help fill data gaps, enhance accuracy and provide more comprehensive insights into global water dynamics and environmental changes.
References
Ala-aho, P., Soulsby, C., Pokrovsky, O. S., Kirpotin, S. N., Karlsson, J., Serikova, S., Manasypov, R., Lim, A., Krickov, I., Kolesnichenko, L. G., Laudon, H., and Tetzlaff, D.: Permafrost and lakes control river isotope composition across a boreal Arctic transect in the Western Siberian lowlands, Environ. Res. Lett., 13, 034028, https://doi.org/10.1088/1748-9326/aaa4fe, 2018.
Ankor, M. J., Tyler, J. J., and Hughes, C. E.: Development of an autonomous, monthly and daily, rainfall sampler for isotope research, J. Hydrol., 575, 31-41, https://doi.org/10.1016/j.jhydrol.2019.04.074, 2019.
Araguás-Araguás, L., Froehlich, K., and Rozanski, K.: Stable isotope composition of precipitation over southeast Asia, J. Geophys. Res., 103, 28721-28742, https://doi.org/10.1029/98JD02582, 1998.
Autio, A., Ala-Aho, P., Rossi, P. M., Ronkanen, A.-K., Aurela, M., Lohila, A., Korpelainen, P., Kumpula, T., Klöve, B., and Marttila, H.: Groundwater exfiltration pattern determination in the sub-arctic catchment using thermal imaging, stable water isotopes and fully-integrated groundwater-surface water modelling, J. Hydrol., 626, 130342, https://doi.org/10.1016/j.jhydrol.2023.130342, 2023.
Bershaw, J., Saylor, J. E., Garzione, C. N., Leier, A., and Sundell, K. E.: Stable isotope variations (
Bowen, G. J., Kennedy, C. D., Liu, Z., and Stalker, J.: Water balance model for mean annual hydrogen and oxygen isotope distributions in surface waters of the contiguous United States, J. Geophys. Res., 116, G04011, https://doi.org/10.1029/2010JG001581, 2011.
Bowen, G. J., Cai, Z., Fiorella, R. P., and Putman, A. L.: Isotopes in the Water Cycle: Regional- to Global-Scale Patterns and Applications, Annu. Rev. Earth Planet. Sci., 47, 453-479, https://doi.org/10.1146/annurev-earth-053018-060220, 2019.
Breiman, L.: Random Forests, Mach. Learn., 45, 5-32, https://doi.org/10.1023/A:1010933404324, 2001.
Chahine, M. T.: The hydrological cycle and its influence on climate, Nature, 359, 373-380, https://doi.org/10.1038/359373a0, 1992.
Chen, L., Wang, Q., Zhu, G., Lin, X., Qiu, D., Jiao, Y., Lu, S., Li, R., Meng, G., and Wang, Y.: Dataset of stable isotopes of precipitation in the Eurasian continent, Earth Syst. Sci. Data, 16, 1543-1557, https://doi.org/10.5194/essd-16-1543-2024, 2024.
Chen, Y., Helliker, B. R., Tang, X., Li, F., Zhou, Y., and Song, X.: Stem water cryogenic extraction biases estimation in deuterium isotope composition of plant source water, P. Natl. Acad. Sci. USA, 117, 33345-33350, https://doi.org/10.1073/pnas.2014422117, 2020.
Cooley, S. W., Ryan, J. C., and Smith, L. C.: Human alteration of global surface water storage variability, Nature, 591, 78-81, https://doi.org/10.1038/s41586-021-03262-3, 2021.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436468, https://doi.org/10.1111/j.2153-3490.1964.tb00181.x, 1964.
Darling, W. G.: Hydrological factors in the interpretation of stable isotopic proxy data present and past: a Eu-
ropean perspective, Quaternary Sci. Rev., 23, 743-770, https://doi.org/10.1016/j.quascirev.2003.06.016, 2004.
Dudley, B. D., Yang, J., Shankar, U., and Graham, S. L.: A method for predicting hydrogen and oxygen isotope distributions across a region’s river network using reach-scale environmental attributes, Hydrol. Earth Syst. Sci., 26, 4933-4951, https://doi.org/10.5194/hess-26-4933-2022, 2022.
Dutton, A., Wilkinson, B. H., Welker, J. M., Bowen, G. J., and Lohmann, K. C.: Spatial distribution and seasonal variation in
Feng, X., Lauder, A. M., Posmentier, E. S., Kopec, B. G., and Virginia, R. A.: Evaporation and transport of water isotopologues from Greenland lakes: The lake size effect, Quaternary Sci. Rev., 131, 302-315, https://doi.org/10.1016/j.quascirev.2015.07.029, 2016.
Gierz, P., Werner, M., and Lohmann, G.: Simulating climate and stable water isotopes during the Last Interglacial using a coupled climate-isotope model, J. Adv. Model. Earth Syst., 9, 2027-2045, https://doi.org/10.1002/2017MS001056, 2017.
Halder, J., Terzer, S., Wassenaar, L. I., Araguás-Araguás, L. J., and Aggarwal, P. K.: The Global Network of Isotopes in Rivers (GNIR): integration of water isotopes in watershed observation and riverine research, Hydrol. Earth Syst. Sci., 19, 3419-3431, https://doi.org/10.5194/hess-19-3419-2015, 2015.
Hu, X., Belle, J. H., Meng, X., Wildani, A., Waller, L. A., Strickland, M. J., and Liu, Y.: Estimating PM 2.5 Concentrations in the Conterminous United States Using the Random Forest Approach, Environ. Sci. Technol., 51, 6936-6944, https://doi.org/10.1021/acs.est.7b01210, 2017.
Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., Hyde, S., Brumby, S., Davies, B. J., Elmore, A. C., Emmer, A., Feng, M., Fernández, A., Haritashya, U., Kargel, J. S., Koppes, M., Kraaijenbrink, P. D. A., Kulkarni, A. V., Mayewski, P. A., Nepal, S., Pacheco, P., Painter, T. H., Pellicciotti, F., Rajaram, H., Rupper, S., Sinisalo, A., Shrestha, A. B., Viviroli, D., Wada, Y., Xiao, C., Yao, T., and Baillie, J. E. M.: Importance and vulnerability of the world’s water towers, Nature, 577, 364-369, https://doi.org/10.1038/s41586-019-1822-y, 2020.
Joussaume, S., Sadourny, R., and Jouzel, J.: A general circulation model of water isotope cycles in the atmosphere, Nature, 311, 24-29, https://doi.org/10.1038/311024a0, 1984.
Kartal, V.: Machine learning-based streamflow forecasting using CMIP6 scenarios: Assessing performance and improving hydrological projections and climate change, Hydrol. Process., 38, e15204, https://doi.org/10.1002/hyp.15204, 2024.
Liu, M., Vecchi, G., Soden, B., Yang, W., and Zhang, B.: Enhanced hydrological cycle increases ocean heat uptake and moderates transient climate change, Nat. Clim. Chang., 11, 848-853, https://doi.org/10.1038/s41558-021-01152-0, 2021.
Mehta, P., Siebert, S., Kummu, M., Deng, Q., Ali, T., Marston, L., Xie, W., and Davis, K. F.: Half of twenty-first century global irrigation expansion has been in water-stressed regions, Nat. Water, 2, 254-261, https://doi.org/10.1038/s44221-024-00206-9, 2024.
Nelson, D. B., Basler, D., and Kahmen, A.: Precipitation isotope time series predictions from machine learning applied in Europe, P. Natl. Acad. Sci. USA, 118, e2024107118, https://doi.org/10.1073/pnas.2024107118, 2021.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633-1644, https://doi.org/10.5194/hess-11-16332007, 2007.
Penna, D., Ahmad, M., Birks, S. J., Bouchaou, L., Brenčič, M., Butt, S., Holko, L., Jeelani, G., Martínez, D. E., Melikadze, G., Shanley, J. B., Sokratov, S. A., Stadnyk, T., Sugimoto, A., and Vreča, P.: A new method of snowmelt sampling for water stable isotopes, Hydrol. Process., 28, 5637-5644, https://doi.org/10.1002/hyp.10273, 2014.
Penna, D., Hopp, L., Scandellari, F., Allen, S. T., Benettin, P., Beyer, M., Geris, J., Klaus, J., Marshall, J. D., Schwendenmann, L., Volkmann, T. H. M., von Freyberg, J., Amin, A., Ceperley, N., Engel, M., Frentress, J., Giambastiani, Y., McDonnell, J. J., Zuecco, G., Llorens, P., Siegwolf, R. T. W., Dawson, T. E., and Kirchner, J. W.: Ideas and perspectives: Tracing terrestrial ecosystem water fluxes using hydrogen and oxygen stable isotopes – challenges and opportunities from an interdisciplinary perspective, Biogeosciences, 15, 6399-6415, https://doi.org/10.5194/bg-15-6399-2018, 2018.
Reckerth, A., Stichler, W., Schmidt, A., and Stumpp, C.: Long-term data set analysis of stable isotopic composition in German rivers, J. Hydrol., 552, 718-731, https://doi.org/10.1016/j.jhydrol.2017.07.022, 2017.
Satoh, Y., Yoshimura, K., Pokhrel, Y., Kim, H., Shiogama, H., Yokohata, T., Hanasaki, N., Wada, Y., Burek, P., Byers, E., Schmied, H. M., Gerten, D., Ostberg, S., Gosling, S. N., Boulange, J. E. S., and Oki, T.: The timing of unprecedented hydrological drought under climate change, Nat. Commun., 13, 3287, https://doi.org/10.1038/s41467-022-30729-2, 2022.
Schulte, P., Van Geldern, R., Freitag, H., Karim, A., Négrel, P., Petelet-Giraud, E., Probst, A., Probst, J.-L., Telmer, K., Veizer, J., and Barth, J. A. C.: Applications of stable water and carbon isotopes in watershed research: Weathering, carbon cycling, and water balances, Earth-Sci. Rev., 109, 20-31, https://doi.org/10.1016/j.earscirev.2011.07.003, 2011.
Skrzypek, G., Mydłowski, A., Dogramaci, S., Hedley, P., Gibson, J. J., and Grierson, P. F.: Estimation of evaporative loss based on the stable isotope composition of water using Hydrocalculator, J. Hydrol., 523, 781-789, https://doi.org/10.1016/j.jhydrol.2015.02.010, 2015.
Sprenger, M., Leistert, H., Gimbel, K., and Weiler, M.: Illuminating hydrological processes at the soil-vegetation-atmosphere in-
terface with water stable isotopes, Rev. Geophys., 54, 674-704, https://doi.org/10.1002/2015RG000515, 2016.
Vystavna, Y., Harjung, A., Monteiro, L. R., Matiatos, I., and Wassenaar, L. I.: Stable isotopes in global lakes integrate catchment and climatic controls on evaporation, Nat. Commun., 12, 7224, https://doi.org/10.1038/s41467-021-27569-x, 2021.
Wang, S., Zhang, M., Crawford, J., Hughes, C. E., Du, M., and Liu, X.: The effect of moisture source and synoptic conditions on precipitation isotopes in arid central Asia, J. Geophys. Res.-Atmos., 122, 2667-2682, https://doi.org/10.1002/2015JD024626, 2017.
