مجموعة بيانات النظائر المستقرة للهطول في قارة أوراسيا Dataset of stable isotopes of precipitation in the Eurasian continent

المجلة: Earth system science data، المجلد: 16، العدد: 3
DOI: https://doi.org/10.5194/essd-16-1543-2024
تاريخ النشر: 2024-03-21

مجموعة بيانات النظائر المستقرة للهطول في قارة أوراسيا

لونغهو تشين تشينغ تشين وانغ قوفينغ زو شينروي لين دونغدونغ تشيو ينينغ جياو سيو لو روي لي قو جيا مينغ ويوهاو وانغ كلية الجغرافيا وعلوم البيئة، جامعة نورمال الشمالية، لانزهو 730070، قانسو، الصين محطة مراقبة البيئة الإيكولوجية لنهر شيانغ، جامعة نورمال الشمالية الغربية، لانزهو 730070، قانسو، الصين المختبر الرئيسي لبيئة الموارد والتنمية المستدامة للواحات، لانزهو 730000، الصين ساهم هؤلاء المؤلفون بالتساوي في هذا العمل.المراسلة: قوفينغ تشو (zhugf@nwnu.edu.cn)

تاريخ الاستلام: 20 سبتمبر 2023 – بدأت المناقشة: 27 أكتوبر 2023
تمت المراجعة: 27 يناير 2024 – تم القبول: 6 فبراير 2024 – تم النشر: 21 مارس 2024

الملخص

يمكن أن تكشف النظائر المستقرة في الهطول بشكل فعال عن عملية دوران المياه في الغلاف الجوي، مما يجعلها أداة فعالة للبحث في الهيدرولوجيا وموارد المياه، وتغير المناخ، ودراسات النظام البيئي. لقد أعاقت ندرة بيانات النظائر المستقرة في الهطول فهم الهيدرولوجيا الإقليمية والمناخ والبيئة بسبب الانقطاعات على المقياس الزمني وعدم التساوي على المقياس المكاني. لهذا الغرض، قمنا بتجميع بيانات النظائر المستقرة للهيدروجين والأكسجين في الهطول من 842 محطة في أوراسيا من عام 1961 إلى 2022، بإجمالي 51752 سجل بيانات. تنخفض النظائر المستقرة في الهطول عبر مناطق مختلفة من أوراسيا ككل مع زيادة خط العرض والمسافة عن الساحل. في الصيف، تكون النظائر المستقرة في الهطول غنية نسبيًا، بينما في الشتاء، تكون فقيرة نسبيًا. في العقود الأخيرة، تظهر قيم النظائر المستقرة لهطول الأمطار في أوراسيا اتجاهًا عامًا لزيادة التباين مع تقدم السنوات، وهو ما يرتبط بالاحترار العالمي. الموقع الجغرافي، وظروف السطح الأساسية، والفصول، ودوران الغلاف الجوي هي جميعها عوامل تحدد خصائص النظائر المستقرة في الهطول. توفر مجموعة بيانات النظائر المستقرة في هطول الأمطار في أوراسيا أداة قوية لفهم التغيرات في دوران المياه في الغلاف الجوي الإقليمي وتساعد في إجراء دراسات هيدرولوجية ومناخية وبيئية في المناطق ذات الصلة. تتوفر مجموعات البيانات علىhttps://doi.org/10.17632/rbn35yrbd2.2 (زو، 2024).

1 المقدمة

في السنوات الأخيرة، أصبحت آثار تغير المناخ العالمي أكثر حدة، لا سيما الزيادة الكبيرة في تكرار أنواع مختلفة من الأحداث المناخية والطقسية المتطرفة (فارندا وآخرون، 2023؛ ليو وآخرون، 2022؛ تشانغ وآخرون، 2016). يُظهر تقرير المنظمة العالمية للأرصاد الجوية لعام 2022 حول حالة المناخ في آسيا أن معدل الاحترار في آسيا أعلى من المتوسط العالمي، حيث تؤثر الجفاف والفيضانات وموجات الحر على معظم أجزاء العالم (WMO، 2023). يمكن أن تؤدي التقلبات الشديدة في العناصر المناخية إلى تغيير عمليات دوران المياه، وتأثير التغير المناخي الإقليمي، وحتى تغيير التطور-
أنماط بيئية معقدة. من بين هذه الأنماط، تعتبر النظائر المستقرة في الهطول مؤشراً شاملاً ممتازاً، حيث تلعب دوراً مهماً في الكشف عن عمليات دورة المياه، ومعلومات تغير المناخ، وآليات استخدام موارد المياه في النظم البيئية (باوين وآخرون، 2019؛ وانغ وآخرون، 2022). لذلك، في مواجهة الظروف المناخية المتزايدة التعقيد، نحتاج إلى بيانات أكثر شمولاً عن النظائر المستقرة في الهطول على مقاييس مكانية وزمنية متنوعة للمساعدة في فهم ظواهر تغير المناخ.
تعتبر النظائر المستقرة في الهطول وسيلة حيوية تربط بين الأنظمة الهيدرولوجية والمناخية. الهطول، كونه ناتجًا عن نظام المناخ و…
تعتبر المصدر الرئيسي للنظام الهيدرولوجي (Sun et al., 2018) دورًا محوريًا. بالإضافة إلى ذلك، فإن تباين النظائر المستقرة المصاحب لدورة المياه لا يحمل فقط معلومات مناخية غنية من خلال تقلباته، بل يسهل أيضًا تتبع المساهمات إلى مختلف المسطحات المائية السطحية (Hao et al., 2019; Ren et al., 2017; Shi et al., 2022). على الرغم من أن النظائر المستقرة في الهطول ( و تشكل نسبة صغيرة من المسطحات المائية الطبيعية، لكنها تظهر حساسية للتغيرات في العوامل المناخية (كريغ، 1961؛ دانسغارد، 1964). إن قياس نظائر الهيدروجين المستقرة في الأمطار، المتأثرة بعوامل مثل درجة الحرارة، وهطول الأمطار، وسرعة الرياح، والرطوبة النسبية، ومصادر بخار الماء (غات، 1996؛ جياو وآخرون، 2020)، يعمق فهمنا الإجرائي لدورة المياه. يوفر هذا القياس معلومات ذات صلة حول عمليات نقل بخار الماء وتكوين الأمطار (كاثايات وآخرون، 2021)، وتحديد نسب أنواع مختلفة من الأمطار (أغاروال وآخرون، 2016)، وفهم الآليات وراء الأحداث المتطرفة (سون وآخرون، 2022)، مما يقدم أدلة قوية لاستكشاف الآليات الكامنة وراء الأحداث الجوية وعمليات تغير المناخ. تعتبر استعادة المياه مكونًا مهمًا من تدفق المياه في اليابسة (جاسيشكو وآخرون، 2013)، لكن قياسها المباشر لا يزال يواجه العديد من التحديات. فائض الديوتيريوم (d excess) تظل كمية النظير المستقر، الحساسة لتأثيرات استعادة المياه، ثابتة طوال العملية بأكملها من تبخر بخار الماء إلى الغلاف الجوي إلى التكثف النهائي وتكوين الأمطار (ميرليفات وجوزيل، 1979). لذلك، في جهود تحديد كمية استعادة المياه الحالية، تُعتبر النظائر المستقرة في الهطول وسيلة رئيسية (كروبر وآخرون، 2021؛ ف. زانغ وآخرون، 2021؛ زو وآخرون، 2019). و تُعتبر نظائر الهيدروجين والأكسجين، كعلامات مناخية هامة، أيضًا أدوات تُستخدم في إعادة بناء المناخ القديم للقارات. إن الفهم الدقيق لاستجابة نظائر الماء المستقرة لهطول الأمطار للمناخ الحديث يُشكل الأساس لإعادة بناء المناخ القديم. من ناحية أخرى، يُعتبر استخدام نماذج الدورة الجوية العامة لمحاكاة دوران النظائر طريقة رئيسية لمقارنة توزيعات النظائر في هطول الأمطار تحت الظروف الحديثة والقديمة (جوسوم وآخرون، 1984؛ برادي وآخرون، 2019). في الوقت نفسه، توفر المقارنة بين نظائر الهطول المستقرة المحاكاة والملاحظة تحققًا قيمًا للمكونات الفيزيائية لنماذج الدورة الجوية (جوسوم وآخرون، 1984؛ ريوان وآخرون، 2019). في الختام، تقدم البيانات الشاملة حول النظائر المستقرة في هطول الأمطار معلومات أكثر تفصيلًا عن المناخ والأنظمة الهيدرولوجية.
في عام 1961، بدأت الوكالة الدولية للطاقة الذرية (IAEA) ومنظمة الأرصاد الجوية العالمية (WMO) في إنشاء الشبكة العالمية لنظائر الهطول (GNIP)، والتي تُعتبر النظام الرئيسي للمراقبة في العالم. حتى الآن، يعتمد البحث في النظائر المستقرة في الهطول بشكل أساسي على قاعدة بيانات GNIP. ومع ذلك، فإن ملاحظات GNIP موزعة بشكل غير متساوٍ في الزمان والمكان. يعتمد البحث على النطاقين العالمي والإقليمي حول النظائر المستقرة في الهطول بشكل رئيسي على محاكاة النماذج. العلاقة بين-
الفرق بين البيانات المتوقعة من النماذج والبيانات المقاسة الفعلية هو “مقارن” (جوسوم وآخرون، 1984). على الرغم من أن محاكاة النماذج يمكن أن تعوض عن غياب البيانات المقاسة وتكون مفيدة بشكل خاص في كشف آليات عمل أنظمة المناخ الكبيرة ودورات المياه، إلا أن النماذج الحالية للنظائر المستقرة في الهطول غالبًا ما تكون غير دقيقة بما فيه الكفاية. لا يمكنها التحقق من الاتجاهات طويلة الأجل أو خصائص التغيرات بين السنوات. من خلال دمج البيانات المستقلة لتوفير كثافة أعلى من البيانات، من الممكن تعزيز دقة محاكاة النماذج.
لقد جمعنا بيانات النظائر المستقرة في هطول الأمطار من قارة أوراسيا منذ عام 1961 بهدف توفير دعم بيانات أكثر شمولاً للمجالات البحثية التالية.
  • أبحاث المناخ: نظائر مستقرة في الهطول تظهر تباينات جغرافية وموسمية، يمكن استخدامها لدراسة تغير المناخ وتأثير الإشعاع الشمسي. من خلال مقارنة وتحليل النظائر المستقرة للهطول في مناطق مختلفة من قارة أوراسيا، يمكن الكشف عن اتجاهات المناخ على المدى الطويل، مثل التغيرات في توزيع الهطول وتطور أنظمة الرياح الموسمية.
  • أبحاث نظام الأرض: تتأثر النظائر المستقرة في الهطول ليس فقط بالمناخ ودورة المياه، ولكن أيضًا بالعمليات الجيولوجية والبيولوجية. من خلال دمج بيانات النظائر المستقرة للهطول من قارة أوراسيا، من الممكن التحقيق بعمق في التفاعلات بين مكونات نظام الأرض المختلفة، مثل التفاعل بين الغلاف الجوي والمحيط ودورة المياه في النظم البيئية الأرضية. سيساهم ذلك في فهم أفضل لوظائف وتغيرات نظام الأرض.
  • أبحاث دورة المياه: تعتبر النظائر المستقرة في الهطول مؤشرات مهمة لدورة المياه ويمكن أن تتبع المصادر، والتبخر، وعمليات الهطول للمياه. من خلال تحليل التوزيع المكاني والتباينات في النظائر المستقرة للهطول في قارة أوراسيا، من الممكن فهم عمليات تبخر المياه، والهطول، وإعادة التدوير، مما يكشف عن أنماط توزيع الموارد المائية والتغيرات. وهذا يوفر دعمًا لإدارة الموارد المائية ونمذجة الهيدرولوجيا.
  • إعادة بناء المناخ القديم: تعتبر بيانات الملاحظات للنظائر المستقرة للهطول التي تم تأسيسها جيدًا مفيدة للتحقق من صحة نماذج المناخ القديم في ظل الظروف الحديثة. في الوقت نفسه، تساهم في توفير بيانات مقارنة أغنى للنظائر المستقرة للهطول التي تم جمعها في الأرشيفات الجيولوجية.

2 منطقة الدراسة

قارة أوراسيا تمتد على مساحة شاسعة، مع تباينات كبيرة
في الظروف الجغرافية الطبيعية داخل المنطقة (الشكل 1). أدت الفروق الحرارية الكبيرة بين البحر واليابسة إلى نشوء نظام مناخي موسمي نموذجي على الساحل الجنوبي الشرقي، بينما تؤدي التفاعلات بين رطوبة المحيط الأطلسي وأنظمة الرياح الكوكبية إلى تعرض الساحل الغربي والمناطق الداخلية الواسعة بشكل دائم للرطوبة الغربية. تلعب هذان النظامان الرئيسيان أدوارًا مهمة في أنظمة المناخ العالمية (Li et al., 2022; Wang et al., 2010). علاوة على ذلك، توفر التفاعلات عبر مناطق الحرارة المتعددة مع البحر واليابسة ظروفًا ملائمة لمجموعة واسعة من أنواع المناخ. لا يؤدي ارتفاع هضبة تشينغهاي-التبت إلى تغيير أنماط المناخ التي تهيمن عليها أنظمة الرياح الكوكبية في قارة أوراسيا ومسارات حركة الرطوبة في المحيط الهندي (Zhisheng et al., 2001) فحسب، بل يغير أيضًا الظروف السطحية الطبيعية، مثل العديد من الأنهار، بما في ذلك نهر اليانغتسي، والنهر الأصفر، ونهر الغانج، ونهر الميكونغ، التي تلعب دورًا حيويًا في العمليات الهيدرولوجية وحياة الإنسان. تشكل الهضبة نفسها تمايزًا بيئيًا عموديًا نسبيًا كاملًا، مما يعزز تعقيد البيئة الطبيعية في قارة أوراسيا. لذلك، فإن بيانات البحث والدراسات حول التغيرات البيئية المناخية في أوراسيا لها تمثيلية كبيرة في معالجة التغيرات العالمية.

3 البيانات والمنهجية

3.1 مصادر البيانات وجمعها

لقد جمعنا و بيانات النظائر المستقرة من الهطول من 842 نقطة أخذ عينات عبر قارة أوراسيا من 1961 إلى 2022 (الجدول التكميلي S1). تتضمن مجموعة البيانات كل من البيانات المقاسة والبيانات المجمعة من مصادر متنوعة. البيانات المجمعة تأتي أساسًا من موقع نظائر المياه (https://wateriso.utah.edu/ waterisotopes/index.html، آخر وصول: 6 يونيو 2023) والشبكة العالمية للنظائر المستقرة في الهطول (GNIP) التي تديرها الوكالة الدولية للطاقة الذرية. في هذه الدراسة، قمنا بتجميع ما مجموعه 45782 سجل بيانات، بما في ذلك 3676 سجل من مصادر الأدبيات. تم جمع البيانات المقاسة وتحليلها وتنظيمها في محطة المراقبة المتكاملة لحوض نهر شيانغ في جامعة نورمال شمال غرب الصين، والتي تتضمن 2297 سجل بيانات. بالإضافة إلى ذلك، فإن البيانات المناخية المستخدمة في هذه الدراسة تأتي من مجموعة بيانات CRUTS v. 4.07 (https://crudata.uea.ac.uk/cru/data/hrg/، آخر وصول: 10 يوليو 2023؛ Harris et al., 2020)، مجموعة بيانات إعادة تحليل NCEP-NCAR 1 (https://psl.noaa.gov/data/gridded/data. ncep.reanalysis.html، آخر وصول: 10 يوليو 2023؛ Harris et al., 2020)، وبيانات تصنيف المناخ العالمية لكوبن (Beck et al., 2018) (الفقرة التكملية S2).

3.2 خطوات معالجة البيانات ومراقبة الجودة

جمع البيانات: تشمل البيانات المجمعة مجموعة متنوعة من القضايا مثل القيم المفقودة، والقيم الشاذة، والتكرارات بالإضافة إلى
الفجوات في التواريخ والمعلومات المفقودة أو غير الصحيحة عن خطوط العرض والطول. لذلك، خضعت البيانات الخام المجمعة لعمليات المعالجة المسبقة وتنظيف البيانات. تم استيفاء البيانات المفقودة، وتمت إزالة الإدخالات التي لم يمكن إكمالها، وتم القضاء على البيانات المكررة.
البيانات المقاسة: تم استخدام مقاييس الأمطار القياسية لجمع عينات الهطول. بعد كل حدث هطول، تم نقل العينات المجمعة على الفور إلى زجاجات عينة بسعة 100 مل عالية الكثافة. لمنع الأخطاء في البيانات الناتجة عن التبخر، تم تخزين عينات المياه المجمعة في ثلاجة عند درجة حرارة تقارب . قبل التحليل، تم إذابة عينات الهطول بشكل طبيعي في درجة حرارة الغرفة. تم تصفية الشوائب باستخدام غشاء ، وتم نقل العينات إلى زجاجات عينة سعة 2 مل. تم قياس قيم النظائر باستخدام محلل نظائر المياه السائلة (DLT-100، Los Gatos Research، الولايات المتحدة الأمريكية). بالنسبة لأي قيم غير طبيعية أو قيم لم تجتاز فحص برنامج تحليل النظائر السائلة (LWIA) بعد التحليل، تم اختيار عينات موازية لإعادة القياس لضمان دقة البيانات (Zhu et al., 2022؛ Czuppon et al., 2021). تم التعبير عن وفرة النظائر لـ و باستخدام تدوين بالنسبة لمعيار IAEA لمياه المحيط القياسية في فيينا (V-SMOW)، وفقًا للمعادلة
.
هنا، يمثل نسبة النظير الأثقل إلى النظير الأخف (أي أو ). استخدمنا معيار IAEA (V-SMOW2) للتحقق من قياسات النظائر لدينا، مما يضمن قابلية المقارنة بين قياسات النظائر عبر المختبرات والأجهزة.
في عام 1982، أجرى V. I. Ferronsky وV. A. Polyakov دراسة وجدت توزيعًا عامًا لقيم و في المواد الطبيعية، مما يشير إلى أن نطاق قيم النظائر المستقرة للهيدروجين والأكسجين في الهطول الجوي عادة ما يكون إلى و o إلى o، على التوالي (Ferronsky وPolyakov، 1982). بعد معالجة البيانات، تقع البيانات عمومًا ضمن نطاق معقول.
بالإضافة إلى ذلك، اخترنا منطقتين مناخيتين بأكبر اختلافات، وهما المناطق الاستوائية والقطبية. سبب هذا الاختيار هو أن الحدود بين المناطق المعتدلة والباردة والجافة غير واضحة نسبيًا، مع تغييرات طفيفة في الاتجاهات. تم إجراء اختبارات مان-كيندال (MK) على التغيرات الزمنية للنظائر المستقرة في الهطول لكل من المنطقتين المناخيتين (الشكل 3). بالنسبة للمناخ الاستوائي ، تظهر النظائر المستقرة للهطول ( و ) فترات متعددة غير دالة من التغيرات المفاجئة. هناك اتجاه متزايد كبير من 1971 إلى 2005، تليه فترة غير دالة من التناقص منذ 2009. بشكل عام، يظهر الفائض انخفاضًا غير دال، لكن هذا الاتجاه قد ضعف منذ 1990. في المناخ القطبي ( )، هناك اتجاه متزايد كبير قبل 1973، تليه فترات غير دالة من الزيادة والنقصان بعد 1975. ومع ذلك، بعد 2010، يتم ملاحظة اتجاه متزايد تدريجيًا.
الشكل 1. خريطة توزيع مواقع أخذ عينات النظائر المستقرة للهطول في قارة أوراسيا.
يلاحظ اتجاه متزايد كبير. منذ 1985، شهد الفائض من الديوتيريوم عملية تناقص غير دالة، وبعد 2010، يصل تدريجيًا إلى اتجاه متزايد كبير. تعود عدم اليقين في الاختبارات بشكل رئيسي إلى التوزيع المكاني والزماني وحجم البيانات.

4 النتائج والمناقشة

4.1 خصائص التغير الزمني والمكاني لنظائر الهطول المستقرة

على المقياس الزمني، تظهر النظائر المستقرة في الهطول تباينات موسمية ملحوظة، حيث تكون القيم أعلى خلال الصيف وأدنى خلال الشتاء (الشكل 4). ويعزى ذلك إلى التغيرات الموسمية في التبخر الناتجة عن تغيرات درجة الحرارة، مما يؤدي إلى تفرقة تبخيرية للنظائر المستقرة في الهطول. بالنظر إلى اكتمال سلسلة الزمن والاختلافات الإقليمية داخل قارة أوراسيا، قمنا بإنشاء سلسلة زمنية من نظائر الهطول المستقرة استنادًا إلى تصنيف المناخ كوبن “مناطق المناخ” (الشكل التكميلي S1 والجدول S2). تظهر التغيرات الزمنية في نظائر الهطول المستقرة مع أنواع المناخ المختلفة اختلافات ملحوظة. في المناخات الاستوائية ( )، تكون قيم نظائر الهطول المستقرة أعلى، مع قيم منخفضة تعكس زيادة الهطول. إن “أثر الهطول” في قارة أوراسيا له أهمية خاصة في المناخات الاستوائية (ثارامال وآخرون، 2017)، وتُعبر تركيبة نظائر الهطول المستقرة عن التغيرات المرتبطة بين درجة الحرارة و
ومع ذلك، فإن التقلبات الموسمية في نظائر الهيدروجين المستقرة لهطول الأمطار الاستوائية ضئيلة، وهناك اتجاه متقلب على مدى حوالي 20 عامًا. معظم المناخات الجافة ( ) والمناخات المعتدلة ( ) في قارة أوراسيا تحت تأثير النظام الغربي. قبل عام 1980، شهدت المناخات المعتدلة تقلبات كبيرة في نظائر الهيدروجين المستقرة في الأمطار، تلتها فترة مستقرة دامت حوالي 30 عامًا. بعد عام 2010، أصبح الاتجاه غير المستقر أكثر وضوحًا، مما يعكس زيادة في الأحداث الجوية المتطرفة (ياو وآخرون، 2021؛ تشانغ وآخرون، 2012). في المناطق ذات المناخ الجاف، شهدت نظائر الهيدروجين المستقرة في الأمطار انخفاضات كبيرة. تعتبر المنطقة الجافة في وسط آسيا منطقة جافة معتدلة نموذجية، وقد أشارت العديد من الدراسات إلى اتجاه “دافئ ورطب” في مناخ هذه المنطقة (وانغ وآخرون، 2020؛ يان وآخرون، 2019). يُعتقد أن تعزيز المرتفع المداري الغربي في المحيط الهادئ، والمرتفع المداري الشمالي في أمريكا الشمالية، والتيار الغربي المداري في آسيا يزيد من هطول الأمطار في هذه المنطقة (تشن وآخرون، 2011). يُعتبر تعزيز نقل بخار الماء في العروض العليا عاملاً رئيسيًا يؤثر على زيادة هطول الأمطار في المنطقة الجافة في وسط آسيا، وهو أيضًا السبب وراء الاتجاه التنازلي في فائض الديوتيريوم (الشكل 4c1). المناخات الباردة ( ) والمناخات القطبية ( تمتلك القيم الأصغر لنظائر الهطول المستقرة، لكنها تظهر اختلافات كبيرة على المقياس السنوي واتجاهًا متزايدًا تدريجيًا على المقياس بين السنوات. مع الاحترار العالمي، ستوفر المناطق ذات العرض العالي المزيد من مصادر بخار الماء لدورة المياه (دينغ وآخرون، 2017).
على المستوى المكاني، تعتبر الاختلافات الطبوغرافية وتغيرات خطوط العرض في المنطقة الأسباب الرئيسية لـ
الشكل 2. مخطط انسيابي لبناء مجموعة بيانات نظائر الاستقرار للهطول.
الاختلافات الطيفية في النظائر المستقرة في الهطول عبر قارة أوراسيا. القيم المتوسطة على مدى عدة سنوات لـ و في خطوط العرض المختلفة هي كما يلي: من 0 إلى هم و ; من 30 إلى هم و ; ومن 60 إلى هم و o. تشكل جبال الألب وهضبة التبت مناطق ذات نظائر مستقرة منخفضة الهطول تختلف عن تلك الموجودة في نفس خطوط العرض. يؤدي الارتفاع التدريجي لجبال هضبة التبت إلى تغييرات في أنماط الدورة الجوية على منطقة أكبر، مما يغير الخصائص الجوهرية لمناطق مصادر بخار الماء، ومسارات نقل البخار، وقيم نظائر الهطول المستقرة. تعكس استجابة نظائر الهطول المستقرة لمناخ الهضبة التغيرات في حالة الدورة الكبيرة (ياو وآخرون، 2013). تعكس التغيرات النظيرية في المناطق المحيطة بجبال الألب اختلافات في مصادر بخار الماء بسبب التضاريس الإقليمية (ناتالي وآخرون، 2021؛ ريندسبرغر وآخرون، 1983). يمكن أن تعكس التغيرات المكانية في فائض الديوتيريوم بشكل فعال اختلافات في مصادر بخار الماء الإقليمية، مع قيم متوسطة تبلغ حوالي للمناخات الاستوائية والمعتدلة. تتمتع مناطق المناخ البارد بقيم فائض الديوتيريوم المنخفضة، وبسبب تداخل المناخات الجافة مع مناطق المناخ الأخرى، فإن نطاق توزيع قيم فائض الديوتيريوم في المناخات الجافة أكبر. لذلك، يمكن أن يكون
افترض أنه إذا تم تضمين المتغيرات المتعلقة بالنظائر (مثل فائض الد) في معايير تصنيف المناطق المناخية، يمكن تحديد المزيد من المناطق المناخية المتأثرة بأنماط الدوران.

4.2 التغيرات الموسمية في خط المياه المترية ونظائر الهطول المستقرة

تتأثر التغيرات الزمنية والمكانية لنظائر مستقرة في الهطول بشكل كبير بالعوامل الجوية، وتكون التغيرات في نظائر الهطول متسقة مع المناطق المناخية. لذلك، استنادًا إلى تصنيف المناخ لكوبن، قمنا بإجراء تقسيم مناخي لمواقع نظائر الهطول المستقرة. استخدمنا طريقة المربعات الصغرى لتناسب خط المياه المترية لمناطق المناخ المختلفة (الشكل 6) وأخذنا في الاعتبار التغيرات الموسمية لنظائر الهطول المستقرة في مناطق المناخ المختلفة (الشكل 7). يشير خط المياه المترية لأنواع المناخ المختلفة إلى اختلافات صغيرة نسبيًا في كميات الهطول المناخي في المناخات الاستوائية. يتم تحديد التغيرات في الميل والاعتراض لخط المياه المترية من خلال التأثيرات المشتركة للهطول ودرجة الحرارة، حيث يضعف الهطول التداخلي تأثير “تأثير درجة الحرارة”. الأمطار التداخلية الشديدة والمياه المحيطية.
الشكل 3. اختبار MK لسلاسل الزمن للمناخ المعتدل ) وبارد ( ) المناخات.
نقل البخار يجلب هطولاً غزيرًا للأمطار إلى المناطق الاستوائية. آليات الفصل والتغيرات في نظائر الهيدروجين المستقرة لا تكشف فقط عن الأنماط الكامنة لحدوث وتطور أنماط الطقس (سون وآخرون، 2022) ولكنها أيضًا تربط أنماط الطقس بمصادر الإمداد، متتبعة مصادر المياه للأجسام المائية السطحية (شول ومورفي، 2014؛ يو وآخرون، 2017). تتأثر نظائر الهيدروجين المستقرة في الأمطار في المناخات الجافة بالتبخر الثانوي تحت السحب، وتؤدي عمليات الفصل غير المتوازنة الشديدة إلى إثراء نسبي لنظائر الهيدروجين المستقرة في الأمطار (وانغ وآخرون، 2021؛ زو وآخرون، 2021). تعتبر الموارد المائية العامل الأكثر تقييدًا في البيئة البيئية والاجتماعية في مناطق المناخ الجاف (غارسيا-رويز وآخرون، 2011). لذلك، مقارنةً بمناطق المناخ الأخرى، تصبح استعادة المياه أكثر أهمية. يمكن أن تحدد نظائر الهيدروجين المستقرة في الأمطار بدقة استعادة المياه وفعالية-
قم بتقييم تأثير التبخر على مختلف المسطحات المائية في المناطق الجافة. يتم توزيع غالبية السكان العالميين في المناطق المعتدلة. لذلك، مع ارتفاع درجة حرارة الأرض، فإن حالة تغير المناخ في المناطق المعتدلة تستحق مزيدًا من الاهتمام. في مناطق المناخ المعتدل، تصبح الفروق في تركيبة النظائر المستقرة بين أنواع المناخ المختلفة أكثر وضوحًا. في المنطقة المتوسطية التي تسيطر عليها المناخ الجاف الدافئ في الصيف، تكون الميل والاعتراض في أدنى مستوياتها، مما يشير إلى أن ارتفاع درجة الحرارة يهيمن على تفرقة النظائر المستقرة للهيدروجين والأكسجين في الهطول، وتظهر المنطقة اتجاهًا نحو الجفاف تحت الظروف المتوسطة على المدى الطويل. النظام الغربي هو الدورة الرئيسية المسيطرة في هذه المنطقة، وتعكس التغيرات في النظائر المستقرة للهطول اتجاه التخفيف للهجرة الرطبة من الغرب نحو الداخل في خطوط العرض المتوسطة (Zhu et al., 2023; Shi et al., 2021). في المناطق القطبية
الشكل 4. التغيرات الزمنية لسلسلة ، وزيادة في القارة الأوراسية.
تظهر خط المياه الجوية في المناخات ميلًا واحتكاكًا أعلى. تأثير عمليات الفصل غير المتوازنة بعد تكثف بخار الماء في أنظمة السحب صغير نسبيًا، مما يؤدي إلى ميل قريب من 8.
تظهر التغيرات الموسمية لنظائر الهيدروجين والأكسجين المستقرة في الأمطار في قارة أوراسيا عمومًا نمطًا من القيم الأعلى في الصيف والقيم الأدنى في الشتاء (الشكل 7) (نظائر الهيدروجين). ومع ذلك، لا تزال هناك اختلافات كبيرة في مناطق المناخ المختلفة. الاختلافات الموسمية في المناخات الاستوائية أقل وضوحًا، حيث يظهر مناخ الغابات الاستوائية المتناثرة (Aw) انخفاضًا وزيادة مع الأشهر، ربما بسبب…
زيادة في هطول الأمطار. المناخات المعتدلة والباردة تظهر عمومًا تباينات موسمية ملحوظة. يظهر فائض الديوتيريوم في قارة أوراسيا نمطًا أقل في الصيف ونمطًا أعلى في الشتاء، مما يشير إلى التغيرات الموسمية في مصادر بخار الماء ومسافات النقل (F. Zhang et al.، 2021). يشير هذا بشكل عام إلى أن المناخ الصيفي في أوراسيا أكثر رطوبة، بينما المناخ الشتوي أكثر جفافًا. عادةً ما يشير فائض الديوتيريوم إلى درجة عدم التوازن في مصادر مياه البحر خلال عملية تبخرها، وعادةً ما يعتمد فقط على الظروف البيئية لمصدر التبخر. مقارنةً بـ (الشكل التكميلي S2) و يظهر فائض الديوتيريوم
الشكل 5. التغيرات المكانية لـ ، وفائض في القارة الأوراسية. تعرض اللوحات (أ)، (ب)، و(ج) التوزيع المكاني لقيم النظائر في فصل الربيع. تعرض اللوحات (د)، (هـ)، و(و) التوزيع المكاني لقيم النظائر في فصل الصيف. تعرض اللوحات و (ط) تقدم التوزيع المكاني لقيم النظائر في فصل الخريف. تعرض اللوحات (ي)، (ك)، و(ل) التوزيع المكاني لقيم النظائر في فصل الشتاء. تعرض اللوحات (م)، (ن)، و(هـ) التوزيع المكاني لقيم النظائر المتوسطة على مدى عدة سنوات.
نمط أكثر استقرارًا ويتم توزيعه حول المتوسط العالمي ( النظم الجوية الغربية ونظام الرياح الموسمية هي الأنظمة الرئيسية للدوران الجوي فوق قارة أوراسيا، حيث تحمل بخار الماء من المحيط إلى الداخل وتضعف تدريجياً. وهذا يشير إلى أن الرطوبة في المنطقة الشاسعة من أوراسيا تتأثر بشدة بمياه المحيط.
البخار. يمكن أن تؤثر ظروف المحيطات والتغيرات في الدورة الجوية على نطاق واسع بشكل عميق على بيئة المناخ في قارة أوراسيا.
الاختلافات في نظائر الهطول المستقرة بين أنواع المناخ المختلفة ليست فقط استجابة لخصائص المناخ المختلفة ولكنها توفر أيضًا أدوات فعالة لـ
فهم أعمق للعملية، وآليات تغير المناخ، ونقل بخار الماء بين اليابسة والبحر، والعلاقات التوريدية بين المسطحات المائية. يمكن دمج مجموعة بيانات النظائر المستقرة للهطول التي أنشأناها للقارة الأوراسية مع البيانات الجوية التقليدية لتوفير مزيد من المعلومات لأبحاث المناخ والهيدرولوجيا.

4.3 عوامل تباين النظائر المستقرة في الهطول في أوراسيا

ترافق المتغيرات الجوية عملية فصل نظائر الهيدروجين والأكسجين المستقرة في الهطول، مما يؤثر على تركيبة النظائر المستقرة (Sun et al., 2019). استخدمنا نموذج الانحدار باستخدام الغابات العشوائية لتقييم أهمية المتغيرات الجوية في قارة أوراسيا بالنسبة للنظائر المستقرة. يعتبر الانحدار باستخدام الغابات العشوائية طريقة غير معلمية تُستخدم لحل مشاكل التنبؤ. يتنبأ بمشاكل الانحدار بناءً على النتائج المتوسطة لأشجار القرار العشوائية، التي تستخدم تقنية البوتستراب للقضاء على إمكانية الإفراط في التكيف (Erdélyi et al., 2023). أظهر تحليل الانحدار باستخدام الغابات العشوائية للنظائر المستقرة من الهيدروجين والأكسجين الملائمة ملاءمة جيدة لكل من مجموعة التدريب ومجموعة الاختبار، مما يشير إلى أن درجة الحرارة، والهطول، والتبخر المحتمل، وضغط البخار، وسرعة الرياح، والرطوبة النسبية لها قوة تفسيرية عالية للنظائر المستقرة من الهيدروجين والأكسجين (الشكل 8). تشير نتائج التحقق المتقاطع للنموذج إلى أداء تنبؤي متفوق للمتغير المستهدف. مقارنة بالمتغير المستهدف كما يتضح من انخفاض جذر متوسط مربع الخطأ (RMSE) ومتوسط الخطأ المطلق (MAE) لـ (الجدول التكميلي S3). يتأثر تركيب النظائر المستقرة في الهطول بشكل كبير بالمتغيرات الجوية. من بين المتغيرات الستة المدروسة، يتمتع درجة الحرارة بأقوى قدرة تفسيرية لتباين النظائر المستقرة للهيدروجين والأكسجين، كما أن التبخر والنتح المحتمل لهما قدرة تفسيرية قوية نسبياً، مما يشير إلى أن تغير درجة الحرارة هو المحرك الرئيسي لتباين النظائر المستقرة في الهطول في قارة أوراسيا. الرطوبة النسبية هي نسبة ضغط البخار الفعلي إلى ضغط البخار المشبع، ولكن هناك فرق كبير في القدرة التفسيرية لضغط البخار والرطوبة النسبية في النظائر المستقرة. يتمتع ضغط البخار بنطاق أوسع من التباين في الغلاف الجوي، وبالتالي قد يكون له تباين أكبر في نموذج الانحدار، مما يؤدي إلى تأثير أقل عند التنبؤ بالنظائر المستقرة في الهطول. من ناحية أخرى، تعتبر الرطوبة النسبية مؤشراً نسبياً بنطاق تباين أصغر نسبياً، وبالتالي قد يكون لها قدرة تنبؤية أقوى للنظائر المستقرة في الهطول في نموذج الانحدار. تشمل العوامل المحركة في تباين النظائر المستقرة في الهطول في قارة أوراسيا تغير المناخ، التغيرات الموسمية، التضاريس، الأشكال الأرضية، وعمليات دورة المياه، التي تؤثر مجتمعة على التركيب النظائري للهطول. تؤثر الدورة الجوية بشكل مباشر على-
تؤثر على مصدر بخار الماء ومسار الرطوبة، بينما تؤثر عوامل أخرى بشكل أساسي على تركيبة النظائر المستقرة في الهطول من خلال تغيير درجة الحرارة. على سبيل المثال، تلعب التبخر المحتمل دورًا حاسمًا في تفسير تباين النظائر المستقرة في الهطول. ومع ذلك، يختلف تأثير المتغيرات الجوية على النظائر المستقرة في الهطول بين المناطق. أظهرت دراسات على محطتين للهطول في القرم علاقات ضعيفة بين درجة الحرارة والهطول والنظائر المستقرة في الهطول. يحدد البيئة الطبيعية المعقدة أنه لا يوجد عامل واحد له سيطرة سائدة على النظائر المستقرة في الهطول في تلك المنطقة، وأن تركيبة النظائر المستقرة في الهطول تتأثر بعوامل محلية وبعيدة (دوبليانسكي وآخرون، 2018). في المنطقة الساحلية الشرقية من الصين، يعود الثراء النسبي للنظائر المستقرة في الهطول إلى القرب من مصدر التبخر من المحيط، مما يؤدي إلى زيادة وفرة النظائر الثقيلة (جي. زانغ وآخرون، 2021). في المنطقة الجافة من وسط آسيا، هناك علاقة قوية بين النظائر المستقرة في الهطول ودرجة الحرارة، ويعكس الثراء أو النقص في النظائر المستقرة في الهطول اتجاه تغير درجة الحرارة (تشو وآخرون، 2023). باختصار، تختلف عوامل السيطرة الجوية على تركيبة النظائر المستقرة في الهطول في مناطق مختلفة. هناك علاقة قوية بين النظائر المستقرة في الهطول والمتغيرات الجوية، ويمكن اعتبار نظائر الهيدروجين والأكسجين المستقرة متغيرات استجابة مناخية أساسية، مما سيساهم في وصف الدورة الهيدرولوجية وتوقع استجابة تغير المناخ المستقبلي وتغيرات النظام البيئي بشكل أفضل.
تعتبر النظائر المستقرة في الهطول مؤشرات على المناخ والبيئة، وتلعب دورًا فريدًا في تعزيز الفهم القائم على العمليات للأحداث الجوية المتطرفة واستكشاف الروابط الهيدرولوجية بين مختلف المسطحات المائية. ومع ذلك، لا تزال هناك قيود تتمثل في عدم كفاية الملاحظات للنظائر المستقرة في الهطول. لذلك، تم تطبيق نماذج دوران الغلاف الجوي للنظائر بناءً على آليات فيزيائية على نطاق واسع للتنبؤ بالنظائر المستقرة في الماء (Risi et al., 2012; Bowen et al., 2019). يمكن أن تلبي النماذج الفيزيائية ذات الآليات المحركة المختلفة احتياجات الاستخدام المتنوعة، بما في ذلك إعادة بناء المناخ القديم. على سبيل المثال، تنتج مخرجات محاكاة CAM3 بيانات نظائر الأكسجين في الهطول (Lin et al., 2024). يعد التعلم الآلي نهجًا جديدًا للتنبؤ بالنظائر المستقرة في الهطول، وتشير الممارسات الأوروبية في المحاكاة إلى أن محاكاة نظائر الأكسجين قد أظهرت نتائج جيدة، بينما تظل المحاكاة لنظائر الهيدروجين تمثل تحديًا (Nelson et al., 2021). بشكل عام، تحتاج الشكوك في كل من النماذج الفيزيائية والتعلم الآلي إلى تحسين مستمر وتنقيح من خلال البيانات الواقعية. بالإضافة إلى ذلك، فإن الفهم الدقيق للعوامل المؤثرة على النظائر المستقرة في الهطول أساسي لتحقيق تنبؤات ناجحة من خلال التعلم الآلي.
الشكل 6. خطوط المياه المائية المختلفة في مناطق المناخ المتنوعة.

5 توفر البيانات

البيانات التي تدعم نتائج هذه الدراسة متاحة علنًا على https://doi.org/10.17632/rbn35yrbd2.2 (Zhu, 2024).

6 الملخص والتطلعات

تلعب النظائر المستقرة في الهطول دورًا حاسمًا في كل من أنظمة المناخ والهيدرولوجيا، حيث تظهر حساسية
للتغيرات في كل من الزمن والمكان. تشير الأبحاث إلى وجود اختلافات كبيرة في القيم النظيرية بين الصيف والشتاء، مما يتوافق مع التغيرات الموسمية في درجة الحرارة والتبخر. تختلف التغيرات الزمنية والمكانية للنظائر المستقرة في الهطول بشكل كبير عبر أنواع المناخ المختلفة، مما يعكس تأثير خصائص المناخ على توزيع النظائر. تعتبر اختلافات التضاريس والعرض الجغرافي الأسباب الرئيسية للتغيرات المكانية في النظائر المستقرة في الهطول. للعوامل الجوية تأثير ملحوظ
الشكل 7. التوزيع الموسمي والتغيرات للنظائر المستقرة في الهطول ( الزائد).
الشكل 8. نتائج تحليل الانحدار باستخدام الغابة العشوائية لـ و فيما يتعلق بالمتغيرات الجوية. (أ) نتائج الانحدار لمجموعة التدريب لـ . (ب) نتائج الانحدار لمجموعة التدريب لـ . (ج) نتائج الانحدار لمجموعة الاختبار لـ . (د) نتائج الانحدار لمجموعة الاختبار لـ . (هـ) أهمية المتغيرات الجوية لـ و .
تأثير على النظائر المستقرة في الهطول، كما يتضح من خط المياه المائية في أنواع المناخ المختلفة، مما يكشف عن تأثير المناخ على تفرقة النظائر. تسهم ملاحظات النظائر المستقرة في الهطول في فهم أنماط الطقس، ومصادر بخار الماء، وطرق النقل، مما يوفر رؤى مهمة حول التغيرات في النظائر المستقرة في المناخات الجافة. يمكن أن توفر مجموعة البيانات المتكاملة للنظائر المستقرة في الهطول من قارة أوراسيا التي قمنا بتجميعها معلومات مناخية وهيدرولوجية أكثر تفصيلًا. ومع ذلك، يجب أن تركز جهود البحث المستقبلية على تحسين البيانات الملاحظة للنظائر المستقرة في الهطول. تحتاج الشكوك في النماذج الفيزيائية وطرق التعلم الآلي إلى تنقيح من خلال بيانات واقعية إضافية لتعزيز دقة التنبؤ بالنظائر المستقرة في الهطول.
المكمل. المكمل المتعلق بهذه المقالة متاح عبر الإنترنت على: https://doi.org/10.5194/essd-16-1543-2024-supplement.
مساهمات المؤلفين. LC: التصور والكتابة – إعداد المسودة الأصلية؛ QW: الكتابة ومعالجة البيانات؛ GZ: الكتابة – المراجعة والتحرير؛ XL: التعديل؛ DQ: التعديل؛ YJ: معالجة البيانات؛ SL: التجربة؛ RL: المنهجية؛ GM: التصور؛ YW: التصور.
المصالح المتنافسة. أعلن المؤلف المراسل أنه لا يوجد لدى أي من المؤلفين مصالح متنافسة.
إخلاء المسؤولية. ملاحظة الناشر: تظل منشورات كوبيرنيكوس محايدة فيما يتعلق بالمطالبات القضائية الواردة في النص، والخرائط المنشورة، والانتماءات المؤسسية، أو أي تمثيل جغرافي آخر في هذه الورقة. بينما تبذل منشورات كوبيرنيكوس كل جهد ممكن لتضمين أسماء الأماكن المناسبة، فإن المسؤولية النهائية تقع على عاتق المؤلفين.
الشكر. يشكر المؤلفون زملاءهم في جامعة نورث ويست نورمال على مساعدتهم في العمل الميداني، وتحليل المختبر، ومعالجة البيانات. كما نود أن نعبر عن امتناننا للمحرر، غوانيو هوانغ، والمراجعين الاثنين لتقديمهم سلسلة من التعليقات النقدية والقيمة التي ساعدتنا في تحسين المخطوطة.
الدعم المالي. تم دعم هذا البحث من قبل المؤسسة الوطنية للعلوم الطبيعية في الصين (أرقام المنح 42371040 و41971036)، ومؤسسة العلوم الطبيعية الرئيسية في مقاطعة قانسو (رقم المنحة 23JRRA698)، وبرنامج البحث والتطوير الرئيسي في مقاطعة قانسو (رقم المنحة 22YF7NA122)، وبرنامج زراعة المشاريع الرئيسية في جامعة نورث ويست نورمال (رقم المنحة NWNU-LKZD-202302)، وخطة عمل تحقيق الإنجازات العلمية في جامعة نورث ويست نورمال (رقم المنحة NWNU-LZKX-202303).
بيان المراجعة. تم تحرير هذه الورقة بواسطة غوانيو هوانغ وتم مراجعتها بواسطة عادل بهات ومراجع مجهول.

References

Aggarwal, P. K., Romatschke, U., Araguas-Araguas, L., Belachew, D., Longstaffe, F. J., Berg, P., Schumacher, C., and Funk, A.: Proportions of convective and stratiform precipitation revealed in water isotope ratios, Nat. Geosci., 9, 624-629, https://doi.org/10.1038/ngeo2739, 2016.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Present and future Köppen-Geiger climate classification maps at resolution, Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018.
Bowen, G. J., Cai, Z., Fiorella, R. P., and Putman, A. L.: Isotopes in the Water Cycle: Regional- to Global-Scale Patterns and Applications, Annu. Rev. Earth Planet. Sci., 47, 453-479, https://doi.org/10.1146/annurev-earth-053018-060220, 2019.
Brady, E., Stevenson, S., Bailey, D., Liu, Z., Noone, D., Nusbaumer, J., Otto-Bliesner, B. L., Tabor, C., Tomas, R., Wong, T., Zhang, J., and Zhu, J.: The Connected Isotopic Water Cycle in the Community Earth System Model Version 1, J. Adv. Model. Earth Sy., 11, 2547-2566, https://doi.org/10.1029/2019MS001663, 2019.
Chen, F., Huang, W., Jin, L., Chen, J., and Wang, J.: Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming, Sci. China Earth Sci., 54, 1812-1821, https://doi.org/10.1007/s11430-011-4333-8, 2011.
Craig, H.: Isotopic Variations in Meteoric Waters, Sci. New Ser., 133, 1702-1703, 1961.
Cropper, S., Solander, K., Newman, B. D., Tuinenburg, O. A., Staal, A., Theeuwen, J. J. E., and Xu, C.: Comparing deuterium excess to large-scale precipitation recycling models in the tropics, npj Clim. Atmos. Sci., 4, 60, https://doi.org/10.1038/s41612-021-00217-3, 2021.
Czuppon, G., Bottyán, E., Kristóf, E., Weidinger, T., Haszpra, L., and Kármán, K.: Stable isotope data of daily precipitation during the period of 2013-2017 from K-puszta (regional background monitoring station), Hungary, Data Brief, 36, 106962, https://doi.org/10.1016/j.dib.2021.106962, 2021.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436468, https://doi.org/10.3402/tellusa.v16i4.8993, 1964.
Ding, Q., Schweiger, A., L’Heureux, M., Battisti, D. S., PoChedley, S., Johnson, N. C., Blanchard-Wrigglesworth, E., Harnos, K., Zhang, Q., Eastman, R., and Steig, E. J.: Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice, Nat. Clim. Change, 7, 289-295, https://doi.org/10.1038/nclimate3241, 2017.
Dublyansky, Y. V., Klimchouk, A. B., Tokarev, S. V., Amelichev, G. N., Langhamer, L., and Spötl, C.: Stable isotopic composition of atmospheric precipitation on the Crimean Peninsula and its controlling factors, J. Hydrol., 565, 61-73, https://doi.org/10.1016/j.jhydrol.2018.08.006, 2018.
Erdélyi, D., Hatvani, I. G., Jeon, H., Jones, M., Tyler, J., and Kern, Z.: Predicting spatial distribution of stable isotopes in precipitation by classical geostatisticaland machine learning methods, J. Hydrol., 617, 129129, https://doi.org/10.1016/j.jhydrol.2023.129129, 2023.
Faranda, D., Messori, G., Jezequel, A., and Vrac, M.: Atmospheric circulation compounds anthropogenic warming and impacts of
climate extremes in Europe, P. Natl. Acad. Sci. USA, 120, e2214525120, https://doi.org/10.1073/pnas.2214525120, 2023.
Ferronsky, V. I. and Polyakov, V. A.: Environmental isotopes in the hydrosphere, [Rev. and supplemented ed.]., Wiley, Chichester [Sussex], 466 pp., ISBN 0471101141, 1982.
García-Ruiz, J. M., López-Moreno, J. I., Vicente-Serrano, S. M., Lasanta-Martínez, T., and Beguería, S.: Mediterranean water resources in a global change scenario, Earth-Sci. Rev., 105, 121139, https://doi.org/10.1016/j.earscirev.2011.01.006, 2011.
Gat, J. R.: Oxygen and Hydrogen Isotopes in the Hydrologic Cycle, Annu. Rev. Earth Planet. Sci., 24, 225-262, https://doi.org/10.1146/annurev.earth.24.1.225, 1996.
Hao, S., Li, F., Li, Y., Gu, C., Zhang, Q., Qiao, Y., Jiao, L., and Zhu, N.: Stable isotope evidence for identifying the recharge mechanisms of precipitation, surface water, and groundwater in the Ebinur Lake basin, Sci. Total Environ., 657, 1041-1050, https://doi.org/10.1016/j.scitotenv.2018.12.102, 2019.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset, Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3, 2020.
Jasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. J., Yi, Y., and Fawcett, P. J.: Terrestrial water fluxes dominated by transpiration, Nature, 496, 347-350, https://doi.org/10.1038/nature11983, 2013.
Jiao, Y., Liu, C., Liu, Z., Ding, Y., and Xu, Q.: Impacts of moisture sources on the temporal and spatial heterogeneity of monsoon precipitation isotopic altitude effects, J. Hydrol., 583, 124576, https://doi.org/10.1016/j.jhydrol.2020.124576, 2020.
Joussaume, S., Sadourny, R., and Jouzel, J.: A general circulation model of water isotope cycles in the atmosphere, Nature, 311, 24-29, https://doi.org/10.1038/311024a0, 1984.
Kathayat, G., Sinha, A., Tanoue, M., Yoshimura, K., Li, H., Zhang, H., and Cheng, H.: Interannual oxygen isotope variability in Indian summer monsoon precipitation reflects changes in moisture sources, Commun. Earth Environ., 2, 96, https://doi.org/10.1038/s43247-021-00165-z, 2021.
Li, G., Wang, X., Zhang, X., Yan, Z., Liu, Y., Yang, H., Wang, Y., Jonell, T. N., Qian, J., Gou, S., Yu, L., Wang, Z., and Chen, J.: Westerlies-Monsoon interaction drives out-of-phase precipitation and asynchronous lake level changes between Central and East Asia over the last millennium, CATENA, 218, 106568, https://doi.org/10.1016/j.catena.2022.106568, 2022.
Lin, F., Zhang, Q., Sinha, A., Wang, Z., Axelsson, J., Chen, L., Wang, T., and Tan, L.: Seasonal to decadal variations of precipitation oxygen isotopes in northern China linked to the moisture source, npj Clim. Atmos. Sci., 7, 14, https://doi.org/10.1038/s41612-024-00564-x, 2024.
Liu, Y., Cai, W., Lin, X., and Li, Z.: Increased extreme swings of Atlantic intertropical convergence zone in a warming climate, Nat. Clim. Change, 12, 828-833, https://doi.org/10.1038/s41558-022-01445-y, 2022.
Merlivat, L. and Jouzel, J.: Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation, J. Geophys. Res.-Oceans, 84, 5029-5033, https://doi.org/10.1029/JC084iC08p05029, 1979.
Natali, S., Baneschi, I., Doveri, M., Giannecchini, R., Selmo, E., and Zanchetta, G.: Meteorological and geographical control on stable isotopic signature of precipitation
in a western Mediterranean area (Tuscany, Italy): Disentangling a complex signal, J. Hydrol., 603, 126944, https://doi.org/10.1016/j.jhydrol.2021.126944, 2021.
Nelson, D. B., Basler, D., and Kahmen, A.: Precipitation isotope time series predictions from machine learning applied in Europe, P. Natl. Acad. Sci. USA, 118, e2024107118, https://doi.org/10.1073/pnas.2024107118, 2021.
Ren, W., Yao, T., Xie, S., and He, Y.: Controls on the stable isotopes in precipitation and surface waters across the southeastern Tibetan Plateau, J. Hydrol., 545, 276-287, https://doi.org/10.1016/j.jhydrol.2016.12.034, 2017.
Rindsberger, M., Magaritz, M., Carmi, I., and Gilad, D.: The relation between air mass trajectories and the water isotope composition of rain in the Mediterranean Sea area, Geophys. Res. Lett., 10, 43-46, https://doi.org/10.1029/GL010i001p00043, 1983.
Risi, C., Noone, D., Worden, J., Frankenberg, C., Stiller, G., Kiefer, M., Funke, B., Walker, K., Bernath, P., Schneider, M., Wunch, D., Sherlock, V., Deutscher, N., Griffith, D., Wennberg, P. O., Strong, K., Smale, D., Mahieu, E., Barthlott, S., Hase, F., García, O., Notholt, J., Warneke, T., Toon, G., Sayres, D., Bony, S., Lee, J., Brown, D., Uemura, R., and Sturm, C.: Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1 . Comparison between models and observations, J. Geophys. Res.-Atmos., 117, D05303, https://doi.org/10.1029/2011JD016621, 2012.
Ruan, J., Zhang, H., Cai, Z., Yang, X., and Yin, J.: Regional controls on daily to interannual variations of precipitation isotope ratios in Southeast China: Implications for paleomonsoon reconstruction, Earth Planet. Sci. Lett., 527, 115794, https://doi.org/10.1016/j.epsl.2019.115794, 2019.
Scholl, M. A. and Murphy, S. F.: Precipitation isotopes link regional climate patterns to water supply in a tropical mountain forest, eastern Puerto Rico, Water Resour. Res., 50, 4305-4322, https://doi.org/10.1002/2013WR014413, 2014.
Shi, M., Worden, J. R., Bailey, A., Noone, D., Risi, C., Fu, R., Worden, S., Herman, R., Payne, V., Pagano, T., Bowman, K., Bloom, A. A., Saatchi, S., Liu, J., and Fisher, J. B.: Amazonian terrestrial water balance inferred from satellite-observed water vapor isotopes, Nat. Commun., 13, 2686, https://doi.org/10.1038/s41467-022-30317-4, 2022.
Shi, Y., Wang, S., Wang, L., Zhang, M., Argiriou, A. A., Song, Y., and Lei, S.: Isotopic evidence in modern precipitation for the westerly meridional movement in Central Asia, Atmos. Res., 259, 105698, https://doi.org/10.1016/j.atmosres.2021.105698, 2021.
Sun, C., Chen, Y., Li, J., Chen, W., and Li, X.: Stable isotope variations in precipitation in the northwesternmost Tibetan Plateau related to various meteorological controlling factors, Atmos. Res., 227, 66-78, https://doi.org/10.1016/j.atmosres.2019.04.026, 2019.
Sun, C., Tian, L., Shanahan, T. M., Partin, J. W., Gao, Y., Piatrunia, N., and Banner, J.: Isotopic variability in tropical cyclone precipitation is controlled by Rayleigh distillation and cloud microphysics, Commun. Earth Environ., 3, 50, https://doi.org/10.1038/s43247-022-00381-1, 2022.
Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., and Hsu, K.-L.: A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons, Rev. Geophys., 56, 79-107, https://doi.org/10.1002/2017RG000574, 2018.
Tharammal, T., Bala, G., and Noone, D.: Impact of deep convection on the isotopic amount effect in tropical precipitation, J. Geophys. Res.-Atmos., 122, 1505-1523, https://doi.org/10.1002/2016JD025555, 2017.
Wang, Q., Zhai, P.-M., and Qin, D.-H.: New perspectives on ‘warming-wetting’ trend in Xinjiang, China, Advances in Climate Change Research, 11, 252-260, https://doi.org/10.1016/j.accre.2020.09.004, 2020.
Wang, S., Jiao, R., Zhang, M., Crawford, J., Hughes, C. E., and Chen, F.: Changes in Below-Cloud Evaporation Affect Precipitation Isotopes During Five Decades of Warming Across China, J. Geophys. Res.-Atmos., 126, e2020JD033075, https://doi.org/10.1029/2020JD033075, 2021.
Wang, S., Lei, S., Zhang, M., Hughes, C., Crawford, J., Liu, Z., and Qu, D.: Spatial and Seasonal Isotope Variability in Precipitation across China: Monthly Isoscapes Based on Regionalized Fuzzy Clustering, J. Climate, 35, 3411-3425, https://doi.org/10.1175/JCLI-D-21-0451.1, 2022.
Wang, Y., Liu, X., and Herzschuh, U.: Asynchronous evolution of the Indian and East Asian Summer Monsoon indicated by Holocene moisture patterns in monsoonal central Asia, Earth-Sci. Rev., 103, 135-153, https://doi.org/10.1016/j.earscirev.2010.09.004, 2010.
World Meteorological Organization (WMO): State of the Climate in Asia 2022, WMO-No. 1321, Geneva, 39 p., https://library.wmo. int/idurl/4/66314, last access: 28 July 2023.
Yan, D., Xu, H., Lan, J., Zhou, K., Ye, Y., Zhang, J., An, Z., and Yeager, K. M.: Solar activity and the westerlies dominate decadal hydroclimatic changes over arid Central Asia, Global Planet. Change, 173, 53-60, https://doi.org/10.1016/j.gloplacha.2018.12.006, 2019.
Yao, J., Chen, Y., Chen, J., Zhao, Y., Tuoliewubieke, D., Li, J., Yang, L., and Mao, W.: Intensification of extreme precipitation in arid Central Asia, J. Hydrol., 598, 125760, https://doi.org/10.1016/j.jhydrol.2020.125760, 2021.
Yao, T., Masson-Delmotte, V., Gao, J., Yu, W., Yang, X., Risi, C., Sturm, C., Werner, M., Zhao, H., He, Y., Ren, W., Tian, L., Shi, C., and Hou, S.: A review of climatic controls on in precipitation over the Tibetan Plateau: Observations and simulations, Rev. Geophys., 51, 525-548, https://doi.org/10.1002/rog.20023, 2013.
Yu, W., Tian, L., Yao, T., Xu, B., Wei, F., Ma, Y., Zhu, H., Luo, L., and Qu, D.: Precipitation stable isotope records from the northern Hengduan Mountains in China capture signals of the winter India-Burma Trough and the Indian Summer Monsoon, Earth Planet. Sci. Lett., 477, 123-133, https://doi.org/10.1016/j.epsl.2017.08.018, 2017.
Zhang, F., Huang, T., Man, W., Hu, H., Long, Y., Li, Z., and Pang, Z.: Contribution of Recycled Moisture to Precipitation: A Modified D-Excess-Based Model, Geophys. Res. Lett., 48, e2021GL095909, https://doi.org/10.1029/2021GL095909, 2021.
Zhang, J., Yu, W., Jing, Z., Lewis, S., Xu, B., Ma, Y., Wei, F., Luo, L., and Qu, D.: Coupled Effects of Moisture Transport Pathway and Convection on Stable Isotopes in Precipitation across the East Asian Monsoon Region: Implications for Paleoclimate Reconstruction, J. Climate, 34, 9811-9822, https://doi.org/10.1175/JCLI-D-21-0271.1, 2021.
Zhang, Q., Gu, X., Singh, V. P., Sun, P., Chen, X., and Kong, D.: Magnitude, frequency and timing of floods in the Tarim River basin, China: Changes, causes and implications, Global Planet. Change, 139, 44-55, https://doi.org/10.1016/j.gloplacha.2015.10.005, 2016.
Zhang, X., Lu, C., and Guan, Z.: Weakened cyclones, intensified anticyclones and recent extreme cold winter weather events in Eurasia, Environ. Res. Lett., 7, 044044, https://doi.org/10.1088/1748-9326/7/4/044044, 2012.
Zhisheng, A., Kutzbach, J. E., Prell, W. L., and Porter, S. C.: Evolution of Asian monsoons and phased uplift of the HimalayaTibetan plateau since Late Miocene times, Nature, 411, 62-66, https://doi.org/10.1038/35075035, 2001.
Zhu, G.: Dataset of Stable Isotopes of Precipitation in the Eurasian Continent, Mendeley Data [data set], https://doi.org/10.17632/rbn35yrbd2.2, 2024.
Zhu, G., Guo, H., Qin, D., Pan, H., Zhang, Y., Jia, W., and Contribution of recycled moisture to precipitation in the monsoon marginal zone: Estimate based on stable isotope data, J. Hydrol., 569, 423-435, https://doi.org/10.1016/j.jhydrol.2018.12.014, 2019.
Zhu, G., Zhang, Z., Guo, H., Zhang, Y., Yong, L., Wan, Q., Sun, Z., and Ma, H.: Below-Cloud Evaporation of Precipitation Isotopes over Mountains, Oases, and Deserts in Arid Areas, J. Hydrometeorol., 22, 2533-2545, https://doi.org/10.1175/JHM-D-20-0170.1, 2021.
Zhu, G., Liu, Y., Shi, P., Jia, W., Zhou, J., Liu, Y., Ma, X., Pan, H., Zhang, Y., Zhang, Z., Sun, Z., Yong, L., and Zhao, K.: Stable water isotope monitoring network of different water bodies in Shiyang River basin, a typical arid river in China, Earth Syst. Sci. Data, 14, 3773-3789, https://doi.org/10.5194/essd-14-37732022, 2022.
Zhu, G., Liu, Y., Wang, L., Sang, L., Zhao, K., Zhang, Z., Lin, X., and Qiu, D.: The isotopes of precipitation have climate change signal in arid Central Asia, Global Planet. Change, 225, 104103, https://doi.org/10.1016/j.gloplacha.2023.104103, 2023.

Journal: Earth system science data, Volume: 16, Issue: 3
DOI: https://doi.org/10.5194/essd-16-1543-2024
Publication Date: 2024-03-21

Dataset of stable isotopes of precipitation in the Eurasian continent

Longhu Chen , Qinqin Wang , Guofeng Zhu , Xinrui Lin , Dongdong Qiu , Yinying Jiao , Siyu Lu , Rui Li , Gaojia Meng , and Yuhao Wang College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu, China Shiyang River Ecological Environment Observation Station, Northwest Normal University, Lanzhou 730070, Gansu, China Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou 730000, China These authors contributed equally to this work.Correspondence: Guofeng Zhu (zhugf@nwnu.edu.cn)

Received: 20 September 2023 – Discussion started: 27 October 2023
Revised: 27 January 2024 – Accepted: 6 February 2024 – Published: 21 March 2024

Abstract

Stable isotopes in precipitation can effectively reveal the process of atmospheric water circulation, serving as an effective tool for hydrological and water resource research, climate change, and ecosystem studies. The scarcity of stable isotope data in precipitation has hindered comprehension of the regional hydrology, climate, and ecology due to discontinuities on a temporal scale and unevenness on a spatial scale. To this end, we collated stable hydrogen and oxygen isotope data in precipitation from 842 stations in Eurasia from 1961 to 2022, totalling 51752 data records. Stable isotopes in precipitation across various regions of Eurasia, as a whole, decrease with increasing latitude and distance from the coast. In the summer, stable isotopes in precipitation are relatively enriched, while in the winter, they are relatively depleted. In recent decades, the stable isotope values of Eurasian precipitation show an overall trend of increasing variation with the advancement of years, which is associated with global warming. Geographical location, underlying surface conditions, seasons, and atmospheric circulation are all factors that determine the characteristics of stable isotopes in precipitation. The dataset of stable isotopes in Eurasian precipitation provides a powerful tool for understanding changes in regional atmospheric water circulation and assists in conducting hydrological, meteorological, and ecological studies in related regions. The datasets are available at https://doi.org/10.17632/rbn35yrbd2.2 (Zhu, 2024).

1 Introduction

In recent years, the impacts of global climate change have become increasingly severe, particularly the significant increase in the frequency of various types of extreme weather and climate events (Faranda et al., 2023; Liu et al., 2022; Zhang et al., 2016). The World Meteorological Organization’s 2022 report on the state of the climate in Asia shows that the rate of warming in Asia is higher than the global average, with droughts, floods, and heatwaves affecting most parts of the world (WMO, 2023). Severe fluctuations in climatic elements can alter water circulation processes, affect regional climate change, and even change the evolution-
ary patterns of ecological environments. Among these, stable isotopes in precipitation are an excellent comprehensive tracer, playing an important role in revealing water cycle processes, climate change information, and mechanisms of water resource use in ecosystems (Bowen et al., 2019; Wang et al., 2022). Therefore, in the face of increasingly complex climate conditions, we need more comprehensive data on stable isotopes in precipitation at various space scales and timescales to help understand climate change phenomena.
Stable isotopes in precipitation serve as a crucial medium connecting the hydrological and climatic systems. Precipitation, being both a product of the climate system and a pri-
mary source for the hydrological system (Sun et al., 2018), plays a pivotal role. Additionally, stable isotope fractionation accompanying the water cycle not only carries rich climate information throughout its variations but also facilitates the tracing of contributions to various surface water bodies (Hao et al., 2019; Ren et al., 2017; Shi et al., 2022). Although stable isotopes in precipitation ( and ) constitute a small proportion of natural water bodies, they exhibit sensitivity to changes in climatic factors (Craig, 1961; Dansgaard, 1964). The quantification of precipitation stable isotopes, influenced by factors such as temperature, precipitation, wind speed, relative humidity, and water vapour sources (Gat, 1996; Jiao et al., 2020), deepens our procedural understanding of the water cycle. This quantification provides relevant information about water vapour transport processes and precipitation formation (Kathayat et al., 2021), determination of the proportions of different types of precipitation (Aggarwal et al., 2016), and comprehension of the mechanisms behind extreme events (Sun et al., 2022), offering robust evidence to explore the inherent mechanisms of meteorological events and climate change processes. Water recovery is a significant component of land water flux (Jasechko et al., 2013), but its direct measurement still faces numerous challenges. Deuterium excess ( d excess) , a stable isotope quantity sensitive to water recovery effects, remains constant throughout the entire process from water vapour evaporation into the atmosphere to final condensation and rain formation (Merlivat and Jouzel, 1979). Therefore, in current water recovery quantification efforts, precipitation stable isotopes are a primary means (Cropper et al., 2021; F. Zhang et al., 2021; Zhu et al., 2019). and , as important climate tracers, are also employed in reconstructing the continental paleoclimate. Accurate understanding of precipitation stable isotopes’ response to modern climate lays the foundation for paleoclimate reconstruction. On the other hand, using general atmospheric circulation models to simulate isotope circulation is a major method for comparing isotope distributions in precipitation under both modern and ancient conditions (Joussaume et al., 1984; Brady et al., 2019). Simultaneously, the comparison between simulated and observed precipitation stable isotopes provides valuable validation for the physical components of atmospheric circulation models (Joussaume et al., 1984; Ruan et al., 2019). In conclusion, the comprehensive data on stable isotopes in precipitation offer more detailed information about the climate and hydrological systems.
In 1961, the International Atomic Energy Agency (IAEA) and the World Meteorological Organization (WMO) began establishing the Global Network for Isotopes in Precipitation (GNIP), which is the world’s primary observation system. To date, research on stable isotopes in precipitation primarily relies on the GNIP database. However, the GNIP’s observations are very unevenly distributed in time and space. Global and regional-scale research on stable isotopes in precipitation mainly depends on model simulations. The relationship be-
tween predicted data from models and actual measured data is “comparative” (Joussaume et al., 1984). Although model simulations can compensate for the absence of measured data and are particularly advantageous in revealing the operating mechanisms of large-scale climate systems and water cycles, existing models for stable isotopes in precipitation are often insufficiently accurate. They cannot check long-term trends or characteristics of interannual variation. By integrating independent data to provide a higher density of data, it is possible to enhance the precision of model simulations.
We have compiled stable isotopes in precipitation data from the Eurasian continent since 1961 with the aim of providing more comprehensive data support for the following research areas.
  • Climate research: stable isotopes in precipitation exhibit geographical and seasonal variations, which can be used to study climate change and the impact of solar radiation. By comparing and analysing the stable isotopes of precipitation in different regions of the Eurasian continent, long-term climate trends can be revealed, such as changes in precipitation distribution and the evolution of monsoon systems.
  • Earth system research: stable isotopes in precipitation are influenced not only by the climate and water cycle, but also by geological and biological processes. By integrating precipitation stable isotope data from the Eurasian continent, it is possible to investigate in depth the interactions between different components of the Earth system, such as the interaction between the atmosphere, the ocean, and the water cycle in terrestrial ecosystems. This will contribute to a better understanding of the functioning and changes in the Earth system.
  • Water cycle research: stable isotopes in precipitation serve as important indicators of the water cycle and can track the sources, evaporation, and precipitation processes of water. By analysing the spatial distribution and variations of precipitation stable isotopes in the Eurasian continent, it is possible to understand the processes of water evaporation, precipitation, and recycling, revealing the patterns of water resource distribution and changes. This provides support for water resource management and hydrological modelling.
  • Paleoclimate reconstruction: well-established precipitation stable isotope observational data are advantageous for validating paleoclimate models under modern conditions. Simultaneously, they contribute to richer comparative data for stable isotopes in precipitation collected in geological archives.

2 Study area

The Eurasian continent spans a vast territory, with considerable
variations in natural geographic conditions within the region (Fig. 1). Significant thermal differences between sea and land have given rise to a typical monsoon climate system on the south-eastern coast, while interactions between Atlantic moisture and planetary wind systems result in the western coast and wide inland areas being perennially subject to westerly moisture. These two major systems play significant roles in global climate systems (Li et al., 2022; Wang et al., 2010). Moreover, the interactions across multiple heat zones with sea and land provide conditions conducive to a wide variety of climate types. The uplift of the Qinghai-Tibet Plateau not only alters the climate patterns dominated by the planetary wind system in the Eurasian continent and the moisture movement paths in the Indian Ocean (Zhisheng et al., 2001) but also changes the natural surface conditions, such as numerous rivers, including the Yangtze, Yellow, Ganges, and Mekong rivers, which play a vital role in hydrological processes and human life. The plateau itself forms a relatively complete vertical ecological environment differentiation, enhancing the complexity of the natural environment in the Eurasian continent. Therefore, the research data and studies on climate environmental changes in Eurasia have significant representativeness in addressing global changes.

3 Data and methodology

3.1 Data sources and collection

We have collected and stable isotope data from precipitation at 842 sampling points across the Eurasian continent from 1961 to 2022 (Supplement Table S1). The dataset includes both measured data and data collected from various sources. The data collected are primarily from the Water Isotopes website (https://wateriso.utah.edu/ waterisotopes/index.html, last access: 6 June 2023) and the Global Network of Stable Isotopes in Precipitation (GNIP) operated by the IAEA. In this study, we have compiled a total of 45782 data records, including 3676 records from literature sources. The measured data were collected, analysed, and organized at the Shiyang River Basin Integrated Observation Station of Northwest Normal University in China, comprising 2297 data records. Additionally, the meteorological data used in this study are from the CRUTS v. 4.07 dataset (https://crudata.uea.ac.uk/cru/data/hrg/, last access: 10 July 2023; Harris et al., 2020), the NCEP-NCAR Reanalysis 1 dataset (https://psl.noaa.gov/data/gridded/data. ncep.reanalysis.html, last access: 10 July 2023); Harris et al., 2020), and the global climate classification data of Köppen (Beck et al., 2018) (Supplement Sect. S2).

3.2 Data processing steps and quality control

Data collection: the data collected include a variety of issues such as missing values, outliers, and duplicates as well as
gaps in dates and missing or incorrect latitude and longitude information. Therefore, the collected raw data underwent pre-processing and data cleaning. Missing data were interpolated, entries that could not be completed were removed, and duplicate data were eliminated.
Measured data: standard rain gauges were used to collect precipitation samples. After each precipitation event, the collected samples were immediately transferred to 100 mL high-density sample bottles. To prevent data errors caused by evaporation, the collected water samples were stored in a refrigerator at a temperature of approximately . Prior to analysis, the precipitation samples were naturally thawed at room temperature. Impurities were filtered out using a filter membrane, and the samples were transferred to 2 mL sample bottles. Isotope values were measured using a liquid water isotope analyser (DLT-100, Los Gatos Research, USA). For any abnormal values or values that did not pass the liquid water isotope analyzer (LWIA) post-analysis software check, parallel samples were selected for re-measurement to ensure data accuracy (Zhu et al., 2022; Czuppon et al., 2021). The isotopic abundances of and were expressed using the notation relative to the IAEA Vienna Standard Mean Ocean Water (V-SMOW) reference, following the equation
.
Here, represents the ratio of the heavier isotope to the lighter isotope (i.e. or ). We used the IAEA standard (V-SMOW2) to validate our isotope measurements, ensuring comparability between isotopic measurements across laboratories and instruments.
In 1982, V. I. Ferronsky and V. A. Polyakov conducted a study that found a general distribution of and values in natural substances, indicating that the range of stable isotope values for hydrogen and oxygen in atmospheric precipitation is typically to and o to o, respectively (Ferronsky and Polyakov, 1982). After data processing, the data generally fall within a reasonable range.
In addition, we selected the two climatic zones with the most significant differences, namely the tropical and polar zones. The reason for this choice is that the boundaries between temperate, frigid, and arid zones are relatively unclear, with subtle changes in trends. Mann-Kendall (MK) tests were conducted on the temporal variations of stable isotopes in precipitation for both climatic zones (Fig. 3). For the tropical climate , the stable isotopes of precipitation ( and ) exhibit multiple non-significant periods of abrupt changes. There is a significant increasing trend from 1971 to 2005, followed by a non-significant decreasing trend since 2009. Overall, the dexcess shows a non-significant decreasing trend, but this trend has weakened since 1990. In the polar climate ( ), there is a significant increasing trend before 1973, followed by non-significant periods of both increase and decrease after 1975. However, after 2010, a gradu-
Figure 1. Distribution map of the precipitation stable isotope sampling sites in the Eurasian continent.
ally significant increasing trend is observed. Since 1985, the deuterium excess has undergone a non-significant decreasing process, and after 2010, it gradually reaches a significant increasing trend. The uncertainty of the tests is mainly attributed to the spatiotemporal distribution and volume of the data.

4 Results and discussion

4.1 Temporal and spatial variation characteristics of precipitation stable isotopes

On a temporal scale, stable isotopes in precipitation exhibit pronounced seasonal variations, with higher values during the summer and lower values during the winter (Fig. 4). This is attributed to seasonal variations in evaporation caused by temperature changes, resulting in the evaporative fractionation of stable isotopes in precipitation. Considering the completeness of the time series and regional differences within the Eurasian continent, we constructed a time series of precipitation stable isotopes based on the Köppen climate classification “climate zones” (Supplement Fig. S1 and Table S2). The temporal changes in precipitation stable isotopes with different climate types show significant differences. In tropical climates ( ), the values of precipitation stable isotopes are higher, with low values reflecting enhanced precipitation. The “precipitation effect” in the Eurasian continent is particularly significant in tropical climates (Tharammal et al., 2017), and the composition of precipitation stable isotopes reflects the correlated changes between temperature and pre-
cipitation. However, the seasonal fluctuations in tropical precipitation stable isotopes are minimal, and there is a fluctuating trend over approximately 20 years. Most arid climates ( ) and temperate climates ( ) in the Eurasian continent are under the influence of the westerly system. Before 1980, temperate climates experienced significant fluctuations in precipitation stable isotopes, followed by a stable period of about 30 years. After 2010, an unstable trend has become more pronounced, reflecting an increase in extreme weather events (Yao et al., 2021; Zhang et al., 2012). In arid climate regions, precipitation stable isotopes have undergone significant decreases. The Central Asian arid region is a typical temperate arid region, and numerous studies have pointed out a “warm and humid” trend in the climate of this region (Wang et al., 2020; Yan et al., 2019). The strengthening of the West Pacific subtropical high, North American subtropical high, and Asian subtropical westerly jet is believed to increase precipitation in this region (Chen et al., 2011). The enhancement of high-latitude water vapour transport is a major factor influencing the increase in precipitation in the Central Asian arid region, which is also the reason for the decreasing trend in deuterium excess (Fig. 4c1). Cold climates ( ) and polar climates ( ) have the smallest values of precipitation stable isotopes, but they exhibit significant differences on an annual scale and a gradually increasing trend on an interannual scale. With global warming, high-latitude regions will provide more sources of water vapour for the water cycle (Ding et al., 2017).
On a spatial scale, the topographic differences and latitude variations in the region are the primary causes of spa-
Figure 2. Flowchart of precipitation stable isotope dataset construction.
tial differences in stable isotopes in precipitation across the Eurasian continent. The multiyear average values of and at different latitudes are as follows: from 0 to , they are and ; from 30 to , they are and ; and from 60 to , they are and o. The Alps and the Tibetan Plateau form regions of low-precipitation stable isotopes that differ from those at the same latitudes. The gradual uplift of the Tibetan Plateau’s mountains leads to changes in the atmospheric circulation patterns over a larger area, altering the inherent characteristics of water vapour source regions, vapour transport paths, and precipitation stable isotope values. The response of precipitation stable isotopes to the plateau’s climate reflects changes in the large-scale circulation state (Yao et al., 2013). The isotopic variations in the surrounding regions of the Alps reflect differences in water vapour sources due to regional topography (Natali et al., 2021; Rindsberger et al., 1983). Spatial variations in deuterium excess can effectively reflect differences in regional water vapour sources, with average values of approximately for tropical and temperate climates. Cold climate regions have lower deuterium excess values, and due to the overlap of arid climates with other climate zones, the distribution range of deuterium excess values in arid climates is larger. Therefore, it can be
hypothesized that if isotope-related variables (e.g. d excess) are included in climate zone classification criteria, more climate zones influenced by circulation patterns could be identified.

4.2 Seasonal changes in the meteoric water line and precipitation stable isotopes

The temporal and spatial variations of stable isotopes in precipitation are greatly influenced by meteorological factors, and the changes in the precipitation isotopes are consistent with the climatic regions. Therefore, based on the Köppen climate classification, we performed climate zoning for stable isotopes in precipitation sites. We used the least-squares method to fit the meteoric water line for different climate regions (Fig. 6) and considered the seasonal variations of precipitation stable isotopes in different climate regions (Fig. 7). The meteoric water line for different climate types indicates relatively small differences in various climate precipitation amounts in tropical climates. The variations in the slope and intercept of the meteoric water line are determined by the combined effects of precipitation and temperature, with convective precipitation weakening the impact of the “temperature effect”. Intense convective rainfall and oceanic water
Figure 3. Time series MK test for temperate ( ) and cold ( ) climates.
vapour transport bring abundant precipitation to tropical regions. The fractionation mechanisms and variations of precipitation stable isotopes not only reveal the inherent patterns of weather pattern occurrence and development (Sun et al., 2022) but also correlate weather patterns with supply sources, tracing the water sources of surface water bodies (Scholl and Murphy, 2014; Yu et al., 2017). Stable isotopes in precipitation in arid climates are influenced by secondary evaporation below clouds, and intense unbalanced fractionation processes lead to relative enrichment of stable isotopes in precipitation (Wang et al., 2021; Zhu et al., 2021). Water resources are the most limiting factor in the ecological and social environment in arid climate regions (García-Ruiz et al., 2011). Therefore, compared to other climate regions, water recovery becomes more critical. Stable isotopes in precipitation can accurately quantify water recovery and effec-
tively assess the impact of evaporation on different water bodies in arid regions. The majority of the global population is distributed in temperate regions. Therefore, with the global temperature rise, the climate change situation in temperate regions deserves more attention. In temperate climate zones, the differences in the stable isotope composition between different climate types become more significant. In the Mediterranean region controlled by the summer dry warm climate, the slope and intercept are the lowest, indicating that the temperature rise dominates the fractionation of hydrogen and oxygen stable isotopes in precipitation, and the region shows a trend of aridification under long-term average conditions. The westerly system is the main controlling circulation in this region, and the changes in precipitation stable isotopes reflect the attenuation trend of mid-latitude westerly moisture inward migration (Zhu et al., 2023; Shi et al., 2021). In polar
Figure 4. The time series variations of , and d excess in the Eurasian continent.
climates, the atmospheric water line exhibits a higher slope and intercept. The influence of unbalanced fractionation processes after water vapour condensation in cloud systems is relatively small, resulting in a slope close to 8 .
The seasonal variation of hydrogen and oxygen stable isotopes in precipitation in the Eurasian continent generally exhibits a pattern of higher values in summer and lower values in winter (Fig. 7) (hydrogen isotopes. However, there are still significant differences in different climate zones. The seasonal differences in tropical climates are less pronounced, with the Tropical Sparse Forest Climate (Aw) showing a decrease and increase with the months, possibly due to an in-
crease in precipitation. Temperate and cold climates generally exhibit significant seasonal variations. The deuterium excess in the Eurasian continent shows a lower pattern in summer and a higher pattern in winter, indicating seasonal changes in water vapour sources and transport distances (F. Zhang et al., 2021). This overall suggests that the summer climate in Eurasia is more humid, while the winter climate is drier. Deuterium excess usually indicates the degree of imbalance in seawater sources during their evaporation process, and it typically only depends on the environmental conditions of the evaporation source. Compared to (Supplement Fig. S2) and , deuterium excess displays a
Figure 5. The spatial variations of , and d excess in the Eurasian continent. Panels (a), (b), and (c) display the spatial distribution of isotope values in the spring season. Panels (d), (e), and (f) show the spatial distribution of isotope values in the summer season. Panels , and (i) present the spatial distribution of isotope values in the autumn season. Panels (j), (k), and (l) exhibit the spatial distribution of isotope values in the winter season. Panels (m), (n), and (o) display the spatial distribution of isotope values averaged over multiple years.
more stable pattern and is distributed around the global average ( o). The westerly and monsoon systems are the primary atmospheric circulation systems over the Eurasian continent, carrying water vapour from the ocean inland and gradually weakening. This indicates that the humidity in the vast region of Eurasia is strongly influenced by ocean water
vapour. Ocean conditions and large-scale atmospheric circulation changes can have profound effects on the climate environment of the Eurasian continent.
The differences in precipitation stable isotopes among different climate types are not only responses to different climate characteristics but also provide effective tools for a
deeper understanding of the process, climate change mechanisms, water vapour transport between land and sea, and supply relationships between water bodies. The precipitation stable isotope dataset we have constructed for the Eurasian continent can be combined with traditional meteorological data to provide more information for climate and hydrological research.

4.3 Drivers of stable isotope variation in precipitation in Eurasia

Meteorological variables accompany the fractionation process of stable hydrogen and oxygen isotopes in precipitation, impacting the composition of stable isotopes (Sun et al., 2019). We utilized a random forest regression model to assess the importance of meteorological variables in the Eurasian continent for stable isotopes. Random forest regression is a non-parametric method used to solve prediction problems. It predicts regression problems based on the average results of random decision trees, which use bootstrapping to eliminate the possibility of overfitting (Erdélyi et al., 2023). The random forest regression analysis of the fitted stable isotopes of hydrogen and oxygen showed good goodness of fit for both the training and testing sets, indicating that temperature, precipitation, potential evapotranspiration, vapour pressure, wind speed, and relative humidity have a high explanatory power for stable isotopes of hydrogen and oxygen (Fig. 8). The results of cross-validation for the model indicate superior predictive performance for the target variable compared to the target variable , as reflected in the smaller root mean square error (RMSE) and mean absolute error (MAE) for (Supplement Table S3). The composition of stable isotopes in precipitation is greatly influenced by meteorological variables. Among the six variables considered, temperature has the strongest explanatory power for the variation of stable isotopes of hydrogen and oxygen, and potential evapotranspiration also has a relatively strong explanatory ability, indicating that temperature change primarily drives the variation of stable isotopes in precipitation in the Eurasian continent. The relative humidity is the ratio of actual vapour pressure to saturated vapour pressure, but there is a significant difference in the explanatory power of vapour pressure and relative humidity in stable isotopes. Vapour pressure has a wider range of variation in the atmosphere, and thus it may have greater variability in the regression model, leading to a smaller impact when predicting stable isotopes in precipitation. Relative humidity, on the other hand, is a relative indicator with a relatively smaller range of variation, and so it may have a stronger predictive ability for stable isotopes in precipitation in the regression model. The driving factors in the variation of stable isotopes in precipitation in the Eurasian continent include climate change, seasonal variations, topography, landforms, and water cycle processes, which collectively influence the isotopic composition of precipitation. Atmospheric circulation directly af-
fects the source of water vapour and the path of moisture, while other factors primarily influence the composition of stable isotopes in precipitation by altering temperature. For example, potential evapotranspiration plays a crucial role in explaining the variation of stable isotopes in precipitation. However, the control of meteorological variables on stable isotopes in precipitation varies between regions. Studies on two precipitation stations in Crimea have shown weak correlations between temperature, precipitation, and stable isotopes in precipitation. The complex natural environment determines that no single factor has a dominant control over the stable isotopes in precipitation in that region, and the composition of stable isotopes in precipitation is influenced by both local and distant factors (Dublyansky et al., 2018). In the eastern coastal region of China, the relative enrichment of stable isotopes in precipitation is due to the proximity to the evaporative source of the ocean, leading to an increased abundance of heavy isotopes (J. Zhang et al., 2021). In the arid region of Central Asia, there is a strong correlation between stable isotopes in precipitation and temperature, and the enrichment or depletion of stable isotopes in precipitation reflects the trend of temperature change (Zhu et al., 2023). In summary, the meteorological control factors of the composition of stable isotopes in precipitation vary in different regions. There is a strong relationship between stable isotopes in precipitation and meteorological variables, and stable hydrogen and oxygen isotopes may be considered essential climate response variables, which will contribute to describing the hydrological cycle and better predicting the response of future climate change and ecosystem changes.
Stable isotopes in precipitation, serving as indicators of the climate and the environment, play a unique role in enhancing the process-oriented understanding of extreme weather events and exploring hydrological connections between different water bodies. However, a limitation remains in the insufficient observation of stable isotopes in precipitation. Therefore, isotope atmospheric circulation models based on physical mechanisms have been widely applied to predict stable isotopes in water (Risi et al., 2012; Bowen et al., 2019). Physical models with different driving mechanisms can meet various usage needs, including paleoclimate reconstruction. For example, CAM3 simulation outputs precipitation oxygen isotope data (Lin et al., 2024). Machine learning is a novel approach for predicting stable isotopes in precipitation, and European simulation practices indicate that oxygen isotope simulations have shown good results, while simulations for hydrogen isotopes remain challenging (Nelson et al., 2021). In general, uncertainties in both physical models and machine learning need continuous improvement and refinement through real-world data. Additionally, an accurate understanding of the influencing factors of stable isotopes in precipitation is fundamental for achieving successful predictions through machine learning.
Figure 6. Different meteoric water lines in various climate zones.

5 Data availability

The data that support the findings of this study are openly available at https://doi.org/10.17632/rbn35yrbd2.2 (Zhu, 2024).

6 Summary and outlook

Stable isotopes in precipitation play a crucial role in both the climate and hydrological systems, exhibiting sensitivity
to variations in both time and space. Research indicates significant differences in isotopic values between summer and winter, correlating with seasonal changes in temperature and evaporation. The temporal and spatial variations of precipitation stable isotopes vary significantly across different climate types, reflecting the influence of climate characteristics on isotopic distribution. Terrain and latitude differences are the primary reasons for spatial variations in stable isotopes in precipitation. Meteorological factors have a notable
Figure 7. Seasonal distribution and variations of stable isotopes in precipitation ( excess).
Figure 8. Results of random forest regression analysis for and in relation to meteorological variables. (a) Regression results for the training set of . (b) Regression results for the training set of . (c) Regression results for the testing set of . (d) Regression results for the testing set of . (e) Importance of meteorological variables for and .
impact on precipitation stable isotopes, as evidenced by the meteoric water line in different climate types, revealing the influence of climate on isotopic fractionation. Observations of precipitation stable isotopes contribute to understanding weather patterns, water vapour sources, and transport pathways, providing important insights into stable isotope variations in arid climates. The integrated dataset of stable isotopes in precipitation from the Eurasian continent that we have compiled can offer more detailed climate and hydrological information. However, future research efforts should focus on improving observational data for stable isotopes in precipitation. The uncertainties in physical models and machine learning methods need refinement through additional real-world data to enhance the accuracy of predicting precipitation stable isotopes.
Supplement. The supplement related to this article is available online at: https://doi.org/10.5194/essd-16-1543-2024-supplement.
Author contributions. LC: conceptualization and writing – original draft preparation; QW: writing and data processing; GZ: writing – review and editing; XL: modification; DQ: modification; YJ: data processing; SL: experiment; RL: methodology; GM: visualization; YW: visualization.
Competing interests. The contact author has declared that none of the authors has any competing interests.
Disclaimer. Publisher’s note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors.
Acknowledgements. The authors thank their colleagues at Northwest Normal University for their assistance in fieldwork, laboratory analysis, and data processing. We would also like to express our gratitude to the editor, Guanyu Huang, and the two reviewers for providing a series of critical and valuable comments that have helped us improve the manuscript.
Financial support. This research has been supported by the National Natural Science Foundation of China (grant nos. 42371040 and 41971036), the Key Natural Science Foundation of Gansu Province (grant no. 23JRRA698), the Key Research and Development Program of Gansu Province (grant no. 22YF7NA122), the Cultivation Program of Major Key Projects of Northwest Normal University (grant no. NWNU-LKZD-202302), and the Oasis Scientific Research Achievements Breakthrough Action Plan Project of Northwest Normal University (grant no. NWNU-LZKX-202303).
Review statement. This paper was edited by Guanyu Huang and reviewed by Aadil Bhat and one anonymous referee.

References

Aggarwal, P. K., Romatschke, U., Araguas-Araguas, L., Belachew, D., Longstaffe, F. J., Berg, P., Schumacher, C., and Funk, A.: Proportions of convective and stratiform precipitation revealed in water isotope ratios, Nat. Geosci., 9, 624-629, https://doi.org/10.1038/ngeo2739, 2016.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Present and future Köppen-Geiger climate classification maps at resolution, Sci. Data, 5, 180214, https://doi.org/10.1038/sdata.2018.214, 2018.
Bowen, G. J., Cai, Z., Fiorella, R. P., and Putman, A. L.: Isotopes in the Water Cycle: Regional- to Global-Scale Patterns and Applications, Annu. Rev. Earth Planet. Sci., 47, 453-479, https://doi.org/10.1146/annurev-earth-053018-060220, 2019.
Brady, E., Stevenson, S., Bailey, D., Liu, Z., Noone, D., Nusbaumer, J., Otto-Bliesner, B. L., Tabor, C., Tomas, R., Wong, T., Zhang, J., and Zhu, J.: The Connected Isotopic Water Cycle in the Community Earth System Model Version 1, J. Adv. Model. Earth Sy., 11, 2547-2566, https://doi.org/10.1029/2019MS001663, 2019.
Chen, F., Huang, W., Jin, L., Chen, J., and Wang, J.: Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming, Sci. China Earth Sci., 54, 1812-1821, https://doi.org/10.1007/s11430-011-4333-8, 2011.
Craig, H.: Isotopic Variations in Meteoric Waters, Sci. New Ser., 133, 1702-1703, 1961.
Cropper, S., Solander, K., Newman, B. D., Tuinenburg, O. A., Staal, A., Theeuwen, J. J. E., and Xu, C.: Comparing deuterium excess to large-scale precipitation recycling models in the tropics, npj Clim. Atmos. Sci., 4, 60, https://doi.org/10.1038/s41612-021-00217-3, 2021.
Czuppon, G., Bottyán, E., Kristóf, E., Weidinger, T., Haszpra, L., and Kármán, K.: Stable isotope data of daily precipitation during the period of 2013-2017 from K-puszta (regional background monitoring station), Hungary, Data Brief, 36, 106962, https://doi.org/10.1016/j.dib.2021.106962, 2021.
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436468, https://doi.org/10.3402/tellusa.v16i4.8993, 1964.
Ding, Q., Schweiger, A., L’Heureux, M., Battisti, D. S., PoChedley, S., Johnson, N. C., Blanchard-Wrigglesworth, E., Harnos, K., Zhang, Q., Eastman, R., and Steig, E. J.: Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice, Nat. Clim. Change, 7, 289-295, https://doi.org/10.1038/nclimate3241, 2017.
Dublyansky, Y. V., Klimchouk, A. B., Tokarev, S. V., Amelichev, G. N., Langhamer, L., and Spötl, C.: Stable isotopic composition of atmospheric precipitation on the Crimean Peninsula and its controlling factors, J. Hydrol., 565, 61-73, https://doi.org/10.1016/j.jhydrol.2018.08.006, 2018.
Erdélyi, D., Hatvani, I. G., Jeon, H., Jones, M., Tyler, J., and Kern, Z.: Predicting spatial distribution of stable isotopes in precipitation by classical geostatisticaland machine learning methods, J. Hydrol., 617, 129129, https://doi.org/10.1016/j.jhydrol.2023.129129, 2023.
Faranda, D., Messori, G., Jezequel, A., and Vrac, M.: Atmospheric circulation compounds anthropogenic warming and impacts of
climate extremes in Europe, P. Natl. Acad. Sci. USA, 120, e2214525120, https://doi.org/10.1073/pnas.2214525120, 2023.
Ferronsky, V. I. and Polyakov, V. A.: Environmental isotopes in the hydrosphere, [Rev. and supplemented ed.]., Wiley, Chichester [Sussex], 466 pp., ISBN 0471101141, 1982.
García-Ruiz, J. M., López-Moreno, J. I., Vicente-Serrano, S. M., Lasanta-Martínez, T., and Beguería, S.: Mediterranean water resources in a global change scenario, Earth-Sci. Rev., 105, 121139, https://doi.org/10.1016/j.earscirev.2011.01.006, 2011.
Gat, J. R.: Oxygen and Hydrogen Isotopes in the Hydrologic Cycle, Annu. Rev. Earth Planet. Sci., 24, 225-262, https://doi.org/10.1146/annurev.earth.24.1.225, 1996.
Hao, S., Li, F., Li, Y., Gu, C., Zhang, Q., Qiao, Y., Jiao, L., and Zhu, N.: Stable isotope evidence for identifying the recharge mechanisms of precipitation, surface water, and groundwater in the Ebinur Lake basin, Sci. Total Environ., 657, 1041-1050, https://doi.org/10.1016/j.scitotenv.2018.12.102, 2019.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset, Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3, 2020.
Jasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. J., Yi, Y., and Fawcett, P. J.: Terrestrial water fluxes dominated by transpiration, Nature, 496, 347-350, https://doi.org/10.1038/nature11983, 2013.
Jiao, Y., Liu, C., Liu, Z., Ding, Y., and Xu, Q.: Impacts of moisture sources on the temporal and spatial heterogeneity of monsoon precipitation isotopic altitude effects, J. Hydrol., 583, 124576, https://doi.org/10.1016/j.jhydrol.2020.124576, 2020.
Joussaume, S., Sadourny, R., and Jouzel, J.: A general circulation model of water isotope cycles in the atmosphere, Nature, 311, 24-29, https://doi.org/10.1038/311024a0, 1984.
Kathayat, G., Sinha, A., Tanoue, M., Yoshimura, K., Li, H., Zhang, H., and Cheng, H.: Interannual oxygen isotope variability in Indian summer monsoon precipitation reflects changes in moisture sources, Commun. Earth Environ., 2, 96, https://doi.org/10.1038/s43247-021-00165-z, 2021.
Li, G., Wang, X., Zhang, X., Yan, Z., Liu, Y., Yang, H., Wang, Y., Jonell, T. N., Qian, J., Gou, S., Yu, L., Wang, Z., and Chen, J.: Westerlies-Monsoon interaction drives out-of-phase precipitation and asynchronous lake level changes between Central and East Asia over the last millennium, CATENA, 218, 106568, https://doi.org/10.1016/j.catena.2022.106568, 2022.
Lin, F., Zhang, Q., Sinha, A., Wang, Z., Axelsson, J., Chen, L., Wang, T., and Tan, L.: Seasonal to decadal variations of precipitation oxygen isotopes in northern China linked to the moisture source, npj Clim. Atmos. Sci., 7, 14, https://doi.org/10.1038/s41612-024-00564-x, 2024.
Liu, Y., Cai, W., Lin, X., and Li, Z.: Increased extreme swings of Atlantic intertropical convergence zone in a warming climate, Nat. Clim. Change, 12, 828-833, https://doi.org/10.1038/s41558-022-01445-y, 2022.
Merlivat, L. and Jouzel, J.: Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation, J. Geophys. Res.-Oceans, 84, 5029-5033, https://doi.org/10.1029/JC084iC08p05029, 1979.
Natali, S., Baneschi, I., Doveri, M., Giannecchini, R., Selmo, E., and Zanchetta, G.: Meteorological and geographical control on stable isotopic signature of precipitation
in a western Mediterranean area (Tuscany, Italy): Disentangling a complex signal, J. Hydrol., 603, 126944, https://doi.org/10.1016/j.jhydrol.2021.126944, 2021.
Nelson, D. B., Basler, D., and Kahmen, A.: Precipitation isotope time series predictions from machine learning applied in Europe, P. Natl. Acad. Sci. USA, 118, e2024107118, https://doi.org/10.1073/pnas.2024107118, 2021.
Ren, W., Yao, T., Xie, S., and He, Y.: Controls on the stable isotopes in precipitation and surface waters across the southeastern Tibetan Plateau, J. Hydrol., 545, 276-287, https://doi.org/10.1016/j.jhydrol.2016.12.034, 2017.
Rindsberger, M., Magaritz, M., Carmi, I., and Gilad, D.: The relation between air mass trajectories and the water isotope composition of rain in the Mediterranean Sea area, Geophys. Res. Lett., 10, 43-46, https://doi.org/10.1029/GL010i001p00043, 1983.
Risi, C., Noone, D., Worden, J., Frankenberg, C., Stiller, G., Kiefer, M., Funke, B., Walker, K., Bernath, P., Schneider, M., Wunch, D., Sherlock, V., Deutscher, N., Griffith, D., Wennberg, P. O., Strong, K., Smale, D., Mahieu, E., Barthlott, S., Hase, F., García, O., Notholt, J., Warneke, T., Toon, G., Sayres, D., Bony, S., Lee, J., Brown, D., Uemura, R., and Sturm, C.: Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1 . Comparison between models and observations, J. Geophys. Res.-Atmos., 117, D05303, https://doi.org/10.1029/2011JD016621, 2012.
Ruan, J., Zhang, H., Cai, Z., Yang, X., and Yin, J.: Regional controls on daily to interannual variations of precipitation isotope ratios in Southeast China: Implications for paleomonsoon reconstruction, Earth Planet. Sci. Lett., 527, 115794, https://doi.org/10.1016/j.epsl.2019.115794, 2019.
Scholl, M. A. and Murphy, S. F.: Precipitation isotopes link regional climate patterns to water supply in a tropical mountain forest, eastern Puerto Rico, Water Resour. Res., 50, 4305-4322, https://doi.org/10.1002/2013WR014413, 2014.
Shi, M., Worden, J. R., Bailey, A., Noone, D., Risi, C., Fu, R., Worden, S., Herman, R., Payne, V., Pagano, T., Bowman, K., Bloom, A. A., Saatchi, S., Liu, J., and Fisher, J. B.: Amazonian terrestrial water balance inferred from satellite-observed water vapor isotopes, Nat. Commun., 13, 2686, https://doi.org/10.1038/s41467-022-30317-4, 2022.
Shi, Y., Wang, S., Wang, L., Zhang, M., Argiriou, A. A., Song, Y., and Lei, S.: Isotopic evidence in modern precipitation for the westerly meridional movement in Central Asia, Atmos. Res., 259, 105698, https://doi.org/10.1016/j.atmosres.2021.105698, 2021.
Sun, C., Chen, Y., Li, J., Chen, W., and Li, X.: Stable isotope variations in precipitation in the northwesternmost Tibetan Plateau related to various meteorological controlling factors, Atmos. Res., 227, 66-78, https://doi.org/10.1016/j.atmosres.2019.04.026, 2019.
Sun, C., Tian, L., Shanahan, T. M., Partin, J. W., Gao, Y., Piatrunia, N., and Banner, J.: Isotopic variability in tropical cyclone precipitation is controlled by Rayleigh distillation and cloud microphysics, Commun. Earth Environ., 3, 50, https://doi.org/10.1038/s43247-022-00381-1, 2022.
Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., and Hsu, K.-L.: A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons, Rev. Geophys., 56, 79-107, https://doi.org/10.1002/2017RG000574, 2018.
Tharammal, T., Bala, G., and Noone, D.: Impact of deep convection on the isotopic amount effect in tropical precipitation, J. Geophys. Res.-Atmos., 122, 1505-1523, https://doi.org/10.1002/2016JD025555, 2017.
Wang, Q., Zhai, P.-M., and Qin, D.-H.: New perspectives on ‘warming-wetting’ trend in Xinjiang, China, Advances in Climate Change Research, 11, 252-260, https://doi.org/10.1016/j.accre.2020.09.004, 2020.
Wang, S., Jiao, R., Zhang, M., Crawford, J., Hughes, C. E., and Chen, F.: Changes in Below-Cloud Evaporation Affect Precipitation Isotopes During Five Decades of Warming Across China, J. Geophys. Res.-Atmos., 126, e2020JD033075, https://doi.org/10.1029/2020JD033075, 2021.
Wang, S., Lei, S., Zhang, M., Hughes, C., Crawford, J., Liu, Z., and Qu, D.: Spatial and Seasonal Isotope Variability in Precipitation across China: Monthly Isoscapes Based on Regionalized Fuzzy Clustering, J. Climate, 35, 3411-3425, https://doi.org/10.1175/JCLI-D-21-0451.1, 2022.
Wang, Y., Liu, X., and Herzschuh, U.: Asynchronous evolution of the Indian and East Asian Summer Monsoon indicated by Holocene moisture patterns in monsoonal central Asia, Earth-Sci. Rev., 103, 135-153, https://doi.org/10.1016/j.earscirev.2010.09.004, 2010.
World Meteorological Organization (WMO): State of the Climate in Asia 2022, WMO-No. 1321, Geneva, 39 p., https://library.wmo. int/idurl/4/66314, last access: 28 July 2023.
Yan, D., Xu, H., Lan, J., Zhou, K., Ye, Y., Zhang, J., An, Z., and Yeager, K. M.: Solar activity and the westerlies dominate decadal hydroclimatic changes over arid Central Asia, Global Planet. Change, 173, 53-60, https://doi.org/10.1016/j.gloplacha.2018.12.006, 2019.
Yao, J., Chen, Y., Chen, J., Zhao, Y., Tuoliewubieke, D., Li, J., Yang, L., and Mao, W.: Intensification of extreme precipitation in arid Central Asia, J. Hydrol., 598, 125760, https://doi.org/10.1016/j.jhydrol.2020.125760, 2021.
Yao, T., Masson-Delmotte, V., Gao, J., Yu, W., Yang, X., Risi, C., Sturm, C., Werner, M., Zhao, H., He, Y., Ren, W., Tian, L., Shi, C., and Hou, S.: A review of climatic controls on in precipitation over the Tibetan Plateau: Observations and simulations, Rev. Geophys., 51, 525-548, https://doi.org/10.1002/rog.20023, 2013.
Yu, W., Tian, L., Yao, T., Xu, B., Wei, F., Ma, Y., Zhu, H., Luo, L., and Qu, D.: Precipitation stable isotope records from the northern Hengduan Mountains in China capture signals of the winter India-Burma Trough and the Indian Summer Monsoon, Earth Planet. Sci. Lett., 477, 123-133, https://doi.org/10.1016/j.epsl.2017.08.018, 2017.
Zhang, F., Huang, T., Man, W., Hu, H., Long, Y., Li, Z., and Pang, Z.: Contribution of Recycled Moisture to Precipitation: A Modified D-Excess-Based Model, Geophys. Res. Lett., 48, e2021GL095909, https://doi.org/10.1029/2021GL095909, 2021.
Zhang, J., Yu, W., Jing, Z., Lewis, S., Xu, B., Ma, Y., Wei, F., Luo, L., and Qu, D.: Coupled Effects of Moisture Transport Pathway and Convection on Stable Isotopes in Precipitation across the East Asian Monsoon Region: Implications for Paleoclimate Reconstruction, J. Climate, 34, 9811-9822, https://doi.org/10.1175/JCLI-D-21-0271.1, 2021.
Zhang, Q., Gu, X., Singh, V. P., Sun, P., Chen, X., and Kong, D.: Magnitude, frequency and timing of floods in the Tarim River basin, China: Changes, causes and implications, Global Planet. Change, 139, 44-55, https://doi.org/10.1016/j.gloplacha.2015.10.005, 2016.
Zhang, X., Lu, C., and Guan, Z.: Weakened cyclones, intensified anticyclones and recent extreme cold winter weather events in Eurasia, Environ. Res. Lett., 7, 044044, https://doi.org/10.1088/1748-9326/7/4/044044, 2012.
Zhisheng, A., Kutzbach, J. E., Prell, W. L., and Porter, S. C.: Evolution of Asian monsoons and phased uplift of the HimalayaTibetan plateau since Late Miocene times, Nature, 411, 62-66, https://doi.org/10.1038/35075035, 2001.
Zhu, G.: Dataset of Stable Isotopes of Precipitation in the Eurasian Continent, Mendeley Data [data set], https://doi.org/10.17632/rbn35yrbd2.2, 2024.
Zhu, G., Guo, H., Qin, D., Pan, H., Zhang, Y., Jia, W., and Contribution of recycled moisture to precipitation in the monsoon marginal zone: Estimate based on stable isotope data, J. Hydrol., 569, 423-435, https://doi.org/10.1016/j.jhydrol.2018.12.014, 2019.
Zhu, G., Zhang, Z., Guo, H., Zhang, Y., Yong, L., Wan, Q., Sun, Z., and Ma, H.: Below-Cloud Evaporation of Precipitation Isotopes over Mountains, Oases, and Deserts in Arid Areas, J. Hydrometeorol., 22, 2533-2545, https://doi.org/10.1175/JHM-D-20-0170.1, 2021.
Zhu, G., Liu, Y., Shi, P., Jia, W., Zhou, J., Liu, Y., Ma, X., Pan, H., Zhang, Y., Zhang, Z., Sun, Z., Yong, L., and Zhao, K.: Stable water isotope monitoring network of different water bodies in Shiyang River basin, a typical arid river in China, Earth Syst. Sci. Data, 14, 3773-3789, https://doi.org/10.5194/essd-14-37732022, 2022.
Zhu, G., Liu, Y., Wang, L., Sang, L., Zhao, K., Zhang, Z., Lin, X., and Qiu, D.: The isotopes of precipitation have climate change signal in arid Central Asia, Global Planet. Change, 225, 104103, https://doi.org/10.1016/j.gloplacha.2023.104103, 2023.