DOI: https://doi.org/10.1007/s44274-024-00033-5
تاريخ النشر: 2024-02-06
معالجة التلوث البيئي العالمي باستخدام تقنيات التحكم البيئي: التركيز على السياسة البيئية وإدارة البيئة الوقائية
تم النشر على الإنترنت: 06 فبراير 2024
© المؤلفون 2024، نشر مصحح 2024 مفتوح
الملخص
يقدم التلوث البيئي العالمي عقبات هائلة لاستدامة كوكب الأرض على المدى الطويل. قامت هذه الدراسة بتجميع الأدبيات الحالية ذات الصلة مع لمحات إحصائية من إحصائيات وتقارير التلوث وقدمت توصيات قابلة للتطبيق لمعالجة تداعيات التلوث البيئي العالمي. يتم التركيز بشكل أساسي على أهمية إدارة البيئة الوقائية (PEM) والتطبيق الاستراتيجي للسياسات البيئية (EP)، مع استكشاف مفصل لتطور التاريخ وتحديات التطبيق الحالية. بشكل محدد، تركز الدراسة على أهمية السياسة البيئية وإدارة البيئة الوقائية في مكافحة التلوث العالمي. تشمل الفحص نظرة عامة على التلوث البيئي وآثاره على البيئة وصحة الإنسان. تستكشف دور السياسة البيئية في التخفيف من التلوث البيئي، وتدقق في المبادئ الأساسية لإدارة البيئة الوقائية، وتقيّم فعالية أنظمة إدارة البيئة في الحد من التلوث. علاوة على ذلك، تحدد الدراسة وتحلل التحديات المتعلقة بتنفيذ تقنيات التحكم البيئي، مقدمة توصيات للتغلب على هذه العقبات. تسهم نتائج هذا البحث في فهم أكثر شمولاً لإمكانات طرق التحكم البيئي في معالجة التلوث البيئي العالمي. تؤكد الدراسة على الطبيعة الحاسمة للسياسات البيئية القوية والنهج الاستباقية لمنع التلوث وتعزيز التنمية المستدامة. بالإضافة إلى ذلك، تقدم رؤى حول ضرورة التعاون والتنسيق بين أصحاب المصلحة على مستويات مختلفة لتحقيق التحكم الفعال في التلوث وإدارة البيئة.
1 المقدمة

2 الإدارة البيئية الوقائية
2.1 الإدارة البيئية
2.1.1 مبادئ الإدارة البيئية
2.2 أنظمة الإدارة البيئية
2.3 تقييم دورة الحياة (LCA)
2.4 تقييم المخاطر البيئية
2.5 مؤشرات الأداء البيئي
2.6 الشراء الأخضر
2.7 السياسة البيئية (EP)
2.8 السياسات البيئية العالمية الحالية
2.8.1 السياسات البيئية الدولية
2.8.2 اتفاقية الأمم المتحدة الإطارية بشأن تغير المناخ
2.8.3 بروتوكول كيوتو
2.8.4 اتفاق باريس
امتثال بعض الدول حيث يتطلب مراجعات منتظمة لتقدم الدولة نحو تحقيق أهدافها المتعلقة بالمناخ.
2.9 السياسات البيئية الوطنية
2.9.1 وكالة حماية البيئة الأمريكية (USEPA)
2.9.2 سياسة الاتحاد الأوروبي البيئية
2.9.3 سياسات حماية البيئة في الصين
2.10 السياسات البيئية الإقليمية
2.10.1 سياسة البيئة للاتحاد الأفريقي
2.10.2 سياسة البيئة لرابطة دول جنوب شرق آسيا (آسيان)
2.11 السياسات البيئية للشركات
2.12 الفجوات في السياسات البيئية الحالية
حيث غالبًا ما تفشل الممارسات المحددة في التحقق بسبب التنفيذ الضعيف والعقوبات القليلة على المخالفات. وهذا لا يسمح فقط للشركات والأفراد بتجاهل القوانين البيئية، بل يؤدي أيضًا إلى ارتفاع مستويات التلوث. إن تعزيز استراتيجيات التنفيذ أمر حاسم لضمان الامتثال وفعالية السياسات البيئية. علاوة على ذلك، فإن نقص التمويل يشكل عقبة كبيرة، مما يحد من القدرة على تنفيذ القواعد، وبناء البنية التحتية الصديقة للبيئة، والاستثمار في البحث لتقليل التلوث. يتطلب تجاوز هذه الفجوة زيادة الدعم المالي وتخصيص الموارد. كما أن أنظمة المراقبة والتقارير غير الكافية تضيف إلى التحدي، مما يجعل من الصعب تحديد مصادر التلوث وتنفيذ استراتيجيات مستهدفة. إن تعزيز تقنيات المراقبة، وتركيب هياكل تقارير قوية، وتعزيز الشفافية هي خطوات ضرورية لتعزيز فعالية السياسات. بالإضافة إلى ذلك، فإن التعاون والتنسيق الدوليين المحدودين، الناجمين عن الفجوات في الأولويات واللوائح، يشكلان عقبات أمام مكافحة التلوث على مستوى العالم. لسد هذه الفجوة، فإن تعزيز آليات التوحيد الدولي، وتحديد الأهداف المشتركة، وتعزيز الحوار بين الدول أمر ضروري لتحقيق نهج متماسك وفعال للوقاية من التلوث. من خلال تعزيز الاتفاقيات الدولية، وتحسين اللوائح البيئية الوطنية، وتعزيز ممارسات الأعمال المستدامة، والاستثمار في البحث والابتكار، يمكن جعل السياسات البيئية أكثر فعالية في التخفيف من التلوث البيئي.
2.13 لقطات إحصائية: تحليل قائم على البيانات لتحديات التلوث العالمية
2.14 تلوث الهواء
فئة | بيانات |
سنة | ٢٠٢٢ |
الفوسفات العالمي
|
10.0 غيغا طن كربون في السنة
|
التغيرات الإقليمية في الأحافير
|
|
الصين | انخفاض: 0.9% |
الاتحاد الأوروبي | انخفاض: 0.8% |
الولايات المتحدة | زيادة: 1.5% |
الهند | زيادة: 6% |
بقية العالم | زيادة: 1.7% |
التغيرات في الانبعاثات حسب المصدر (2022): | |
فحم | التغيير: 1.0% |
نفط | التغيير: 2.2% |
غاز | التغيير: – 0.2% |
انبعاثات من 24 دولة (2012-2021) | انخفاض:
|
مساهمة إزالة الغابات (2012-2021) |
|
جوي
|
51% فوق المستويات ما قبل الصناعية |
2.15 المشروع العالمي للكربون
2.16 انبعاثات الغاز
2.17 تلوث المياه
فئة | بيانات |
انبعاثات غازات الدفيئة العالمية
|
٥٧.٤ |
مساهمة احتراق الوقود الأحفوري والصناعة | ثلثي إجمالي انبعاثات غازات الدفيئة |
تحليل انبعاثات غازات الدفيئة حسب النوع | |
ثاني أكسيد الكربون (
|
(غير محدد) |
الميثان
|
زيادة سريعة |
أكسيد النيتروس
|
زيادة سريعة |
الغازات الفلورية (F-gases) | زيادة سريعة |
صافي انبعاثات غازات الدفيئة من استخدام الأراضي وتغيير استخدام الأراضي والغابات على مستوى العالم
|
ثابت |
التقدم في خفض انبعاثات غازات الدفيئة (2030) | تم تقليل الزيادة المتوقعة من 16% إلى 3% |
فئة | بيانات |
سنة | 2021 و 2022 |
أزمة المياه العالمية (2021) | يؤثر على أكثر من 2 مليار شخص في البلدان التي تعاني من نقص المياه |
تلوث مياه الشرب (2022) | 1.7 مليار شخص حول العالم استخدموا مياه شرب ملوثة بالبراز |
المخاطر الصحية الناتجة عن التلوث: | تشكل التلوث الميكروبي مخاطر على الصحة العامة، مما يؤدي إلى أمراض مثل الإسهال، والكوليرا، والدوسنتاريا، التيفوئيد، وشلل الأطفال، مما يتسبب في وفاة حوالي 505,000 شخص سنويًا بسبب الإسهال. |
الوصول إلى مياه الشرب المدارة بأمان (2022) | 73% من السكان العالميين (6 مليارات شخص) كان لديهم وصول |
الفجوات في الوصول: | 2.2 مليار شخص يفتقرون إلى خدمات مياه الشرب المدارة بشكل آمن |
2.18 التلوث العالمي
2.19 تجميع الدراسات الرائدة
فئة | بيانات |
إجمالي الوفيات المبكرة بسبب التلوث (2015) | 9 مليون |
الوفيات السنوية بسبب التلوث (التقدير الحالي) | حوالي 9 ملايين سنويًا |
الأثر العالمي للتلوث | واحد من كل ستة وفيات عالمية |
اتجاهات عوامل خطر التلوث الحديثة (منذ 2015) | زيادة بنسبة 7% في الوفيات منذ عام 2015، وارتفاع بنسبة 66% منذ عام 2000 |
2.20 فك الشفرة
ديناميات الانبعاثات: سياسات بديلة ووجهات نظر إقليمية
2.21 تخصيص السياسات للنمو المستدام في مواجهة التحديات البيئية
لتقييم الأثر البيئي للسياسات (PB-EIA) يقدم طرقًا عملية ومنهجية لتقييم الأثر البيئي للسياسات. طبقت دراسة حديثة [99] PB-EIA على استخدام موارد المياه العادمة في الصين. أظهرت النتائج قيودًا في صياغة السياسة وتنفيذها، مرتبطة بعوامل مؤسسية وتكنولوجية واقتصادية، مع تحديد آثار بيئية سلبية مرتبطة باستهلاك الطاقة وانبعاثات الكربون. سيساعد تطبيق إطار PB-EIA على الحالات الواقعية في التخفيف من فشل السياسات البيئية، مما يسلط الضوء على التفاعل المعقد للعوامل التي تؤثر على نتائج السياسات.
2.22 العمل المتوازن: التخفيف من العواقب غير المقصودة في سياسات التحكم في التلوث
2.23 تعزيز الاستهلاك المستدام: استراتيجيات للتخفيف من التلوث القائم على المصدر
2.24 إدارة التآزر والصراعات بين الاتفاقيات الاقتصادية والسياسات البيئية العالمية للتحكم في التلوث
بالإضافة إلى ذلك، يجب على صانعي السياسات النظر في إجراء اتفاقيات تجارية مع تركيز محدد على تعزيز الممارسات الخضراء والمستدامة. يمكن أن تقدم هذه الاتفاقيات حوافز لتبني تقنيات صديقة للبيئة، ومصادر الطاقة المتجددة، وإدارة الموارد المستدامة. تنفيذ آليات ومعايير تكافئ الدول على تبني وتطبيق تدابير صارمة للسيطرة على التلوث [108]. بمجرد تحديد المعايير، يجب إنشاء نظام مراقبة قوي لضمان التزام الدول بكل من الاتفاقيات التجارية والبيئية. تعتبر تدابير التنفيذ الفعالة، بما في ذلك العقوبات على عدم الامتثال، ضرورية لردع الدول عن إهمال مسؤولياتها البيئية. علاوة على ذلك، يجب تقديم حوافز أو مكافآت للشركات والدول التي تتجاوز معايير السيطرة على التلوث [109]. أيضًا، يعد إشراك مختلف أصحاب المصلحة، مثل المنظمات البيئية، والشركات، والمجتمعات المحلية، أمرًا حيويًا في التفاوض وتنفيذ السياسات التجارية والبيئية. يعزز هذا النهج الشامل التعاون، مع الأخذ في الاعتبار وجهات النظر واحتياجات المجموعات المختلفة [110].
3 نهج شاملة لمعالجة التلوث البيئي العالمي
- تشخيص نقاط التلوث الساخنة، والعمليات، والأنظمة: واحدة من الطرق الرئيسية لتشخيص نقاط التلوث الساخنة هي من خلال جمع وتحليل البيانات حول الملوثات في البيئة من خلال مراقبة مستويات الملوثات في الهواء والماء والتربة، بالإضافة إلى تتبع الانبعاثات من العمليات الصناعية ومصادر النقل. من خلال تحليل هذه البيانات، يمكن للباحثين تحديد الأنماط والاتجاهات في مستويات التلوث وتحديد الأماكن التي من المحتمل أن تحدث فيها نقاط التلوث الساخنة [111]. طريقة أخرى لتشخيص نقاط التلوث الساخنة هي من خلال استخدام أدوات النمذجة والتقييمات الميدانية للظروف الفيزيائية والاجتماعية في منطقة معينة من خلال فحص توزيع المنشآت الصناعية وطرق النقل، بالإضافة إلى تقييم الآثار الصحية والاقتصادية للتلوث على المجتمعات المحلية [112].
- تدخلات سريعة في تقليل النفايات من المصدر: يمكن تحقيق ذلك من خلال مجموعة متنوعة من الطرق مثل برامج المسؤولية الممتدة للمنتجين، التي تتطلب من الشركات المصنعة تحمل المسؤولية عن الآثار البيئية لمنتجاتها [113]. استراتيجية أخرى هي تقليل استخدام البلاستيك أحادي الاستخدام وغيرها من العناصر القابلة للتخلص منها، باستخدام حاويات وتغليف قابلة لإعادة الاستخدام، وتبني ممارسات الشراء المستدامة التي تعطي الأولوية للمنتجات ذات التعبئة والتغليف الحد الأدنى المصنوعة من مواد معاد تدويرها [114].
- رفع العائد وجودة المنتجات من خلال تحسين عمليات الإنتاج، يتم ذلك من خلال تحليل الخطوات المعنية في الإنتاج وتحديد المجالات التي يمكن تحقيق كفاءات فيها وتقليل الفاقد. من خلال تبسيط العمليات، وتقليل فترات التوقف، وتحسين تدفق الإنتاج، يمكن للمصنعين زيادة إنتاجهم دون زيادة استهلاكهم للموارد [115]. يعد تنفيذ تدابير مراقبة الجودة أمرًا حيويًا أيضًا لرفع العائد وجودة المنتجات، حيث يتضمن ذلك إنشاء معايير لجودة المنتج وضمان أن المنتجات تلبي هذه المعايير من خلال الفحوصات والاختبارات المنتظمة [116].
- إضافة قيمة للمنتجات من خلال الابتكار في المنتجات من خلال تطوير ميزات جديدة للمنتج، وتقنيات تحسن الأداء، والوظائف وخلق منتجات جديدة تمامًا تلبي احتياجات العملاء الناشئة ومعايير الانبعاثات [117].
- دمج مخاوف أصحاب المصلحة في المبادرات البيئية من خلال الحوار مع أصحاب المصلحة وطلب المدخلات والتعليقات حول المبادرات والسياسات البيئية. يتضمن ذلك إجراء استطلاعات، ومجموعات تركيز، أو أشكال أخرى من الاستشارة لفهم وجهات نظر ومخاوف أصحاب المصلحة، بالإضافة إلى طلب التعليقات على المبادرات البيئية المقترحة [118].
- دمج المخاوف الاقتصادية لأصحاب المصلحة في تنفيذ السياسات من خلال إجراء تقييم شامل للأثر الاقتصادي، وتحليل التكاليف والفوائد المحتملة لمبادرة ما، بالإضافة إلى المخاطر والفرص المحتملة لمختلف أصحاب المصلحة. يمكن استخدام هذه المعلومات للتأثير على اتخاذ القرار وضمان تصميم السياسات بطريقة تعظم الفوائد الاقتصادية وتقلل من الآثار البيئية السلبية [119].
- تنفيذ برامج العمل البيئي من خلال تطوير وتنفيذ استراتيجيات لمعالجة القضايا والمخاوف البيئية. تتضمن هذه البرامج عادةً سلسلة من الإجراءات والسياسات والمبادرات التي تهدف إلى تقليل الأثر السلبي للأنشطة البشرية على البيئة وتعزيز الممارسات المستدامة. عند تنفيذ برامج العمل البيئي، يجب مراعاة الخطوات التالية؛ تحديد القضية البيئية، إجراء البحث والتحليل لفهم السبب الجذري للمشكلة، ونطاقها وتأثيرها، والحلول المحتملة، وتطوير خطة عمل، وإشراك أصحاب المصلحة من خلال تضمين مجموعات متنوعة وتنفيذ الخطة تليها مراقبة وتقييم التقدم [120].
- التعاون البيئي الدولي: التعاون البيئي الدولي هو التعاون والتنسيق بين الدول، والمنظمات الدولية، وأصحاب المصلحة الآخرين لمعالجة القضايا البيئية العالمية
[121]. التعاون البيئي الدولي ضروري لمعالجة التحديات البيئية العالمية، حيث أن العديد من القضايا البيئية مثل تغير المناخ، وفقدان التنوع البيولوجي، وتلوث المحيطات هي قضايا عبر الحدود ولا يمكن حلها من قبل الدول الفردية التي تعمل بمفردها. يمكن تحقيق ذلك من خلال تبادل المعرفة والموارد وأفضل الممارسات لتطوير سياسات وبرامج فعالة [122]. - الوصول العام إلى المعلومات البيئية من السلطات، أمر ضروري لضمان الشفافية والمساءلة في عمليات اتخاذ القرار البيئي. كما أنه يمكّن المشاركة العامة في الحوكمة البيئية من خلال السماح للمواطنين باتخاذ قرارات مستنيرة والمساهمة في صنع السياسات البيئية [123].
- تحسين كفاءة الضوابط الحالية من خلال تحسين فعالية وتكلفة تدابير وأنظمة الحماية المصممة لحماية البيئة بما في ذلك استراتيجيات لتحسين تنفيذ الأنظمة الحالية، وتبسيط عمليات التنفيذ، وتعزيز آليات المراقبة والتقارير. يمكن تحسين الضوابط البيئية الحالية من خلال نهج قائم على المخاطر (استهداف جهود التنفيذ على الأنشطة التي تشكل أعلى المخاطر البيئية من خلال إعطاء الأولوية للأنشطة عالية المخاطر) ونهج قائم على الأداء (تحديد معايير الأداء لقطاعات معينة، والسماح بالمرونة في كيفية تحقيق تلك المعايير)، ومساعدة الامتثال (تقديم الدعم والإرشاد مثل المساعدة الفنية وبرامج التدريب للشركات لمساعدتها على الامتثال للوائح البيئية) وإصلاح اللوائح (مراجعة وتحديث اللوائح الحالية لضمان فعاليتها وكفاءتها وتحديثها من خلال إزالة المتطلبات الزائدة أو القديمة، وتبسيط عمليات الموافقة، وتحسين وضوح وشفافية اللوائح) [124].
- تركيب تقنيات للتحكم في التلوث: تم تصميم تقنيات التحكم في التلوث لتحسين كفاءة وفعالية العمليات الصناعية، وتقليل النفايات والانبعاثات، وحماية البيئة وصحة الإنسان [125]. يمكن تطبيق تقنيات التحكم في تلوث الهواء مثل أنظمة التحكم في الجسيمات، والمجمعات الكهروستاتيكية، والمجففات لإزالة الملوثات من غازات العادم الصناعية [126]، ويمكن استخدام تقنيات التحكم في تلوث المياه بما في ذلك أنظمة معالجة مياه الصرف الصحي، وخزانات الترسيب، وأنظمة الترشيح لإزالة الملوثات من مياه الصرف الصناعي قبل تصريفها في البيئة [127]، ويمكن استخدام تقنيات إدارة النفايات الصلبة مثل أنظمة إعادة التدوير والتسميد، ومواد تغليف المدافن، وأنظمة معالجة الرشح لتقليل كمية النفايات المتولدة وإدارة التخلص من النفايات [125، 128]. أيضًا، يجب تصميم تقنيات إدارة النفايات الخطرة مثل المحارق، وأنظمة المعالجة الكيميائية، وعمليات التثبيت والتصلب لإدارة والتخلص من النفايات الخطرة بأمان [129].
- نظام ضريبي فعال على التخلص من النفايات البلدية وموقع وإدارة المدافن بشكل فعال [124، 130]. يمكن أن يخلق فرض رسوم أو ضرائب على التخلص من النفايات البلدية حوافز اقتصادية للأفراد والشركات لتقليل توليد النفايات وزيادة إعادة التدوير وإعادة الاستخدام، مما يمكن أن يساعد في الحفاظ على الموارد الطبيعية وتقليل انبعاثات غازات الدفيئة. يجب أن يتم تحديد موقع المدافن وإدارتها بشكل صحيح باستخدام بطانات وأغطية مصممة هندسيًا، ووضع النفايات بشكل صحيح، وضغطها. يجب أخذ عوامل مثل الجيولوجيا، والهيدرولوجيا، والقرب من المناطق الحساسة في الاعتبار لتحديد موقع المدافن بشكل صحيح [131].
- التحول إلى تقنيات أكثر تقدمًا كبديل لتقنيات التحكم في التلوث الحالية، من خلال استخدام تقنيات جديدة وأكثر كفاءة لتقليل التلوث في العمليات الصناعية. يجب تصميم هذه التقنيات لتحل محل تقنيات التحكم في التلوث القديمة والأقل فعالية، والتي قد تكون أقل كفاءة أو فعالية في تقليل التلوث [132].
- الالتزام الصارم وتطبيق مبادئ إعلان ستوكهولم في جميع الدول المختلفة [133]. يشمل ذلك حماية الموارد الطبيعية والحياة البرية بأي ثمن، والقضاء على أسلحة الدمار الشامل، ومشاركة ومنع استنزاف الموارد الطبيعية غير المتجددة، ومساعدة الدول النامية على مواجهة التلوث، ومنع التلوث الضار في المحيطات، والقضاء على المشكلات البيئية من خلال تخطيط المستوطنات البشرية، وتطبيق العلوم والتكنولوجيا لتحسين البيئة، وتوفير التعليم البيئي الأساسي، وسياسات مناسبة من قبل الحكومات، وتعزيز البحث البيئي في الدول النامية، والتعاون الدولي في القضايا البيئية، واستغلال الموارد بشكل آمن من قبل الدول من أجل عدم تعريض الآخرين للخطر، وإنشاء معايير وطنية من قبل كل دولة [130، 134].
- الانتقال إلى اقتصاد دائري: الهدف من الانتقال إلى نموذج الاقتصاد الدائري هو تقليل النفايات وزيادة الاستخدام الفعال للموارد [135]. يتضمن ذلك تقليل استهلاك المواد الخام، وتعزيز إعادة التدوير وإعادة الاستخدام، وتصميم المنتجات لتدوم لفترة أطول وتكون قابلة لإعادة التدوير. من خلال القيام بذلك، يمكن تقليل التلوث المرتبط بالاستخراج والإنتاج والتخلص [136].
- تعزيز التعليم البيئي والوعي من خلال دمج التعليم البيئي في المناهج الدراسية، وإجراء حملات توعية، وتعزيز الشعور بالمسؤولية والرعاية بين المجتمعات [137].
- استعادة وحفظ النظم البيئية من خلال إعادة تأهيل النظم البيئية المتدهورة وإنشاء مناطق محمية للحفاظ على المواطن الحيوية الهامة [124].
- إعطاء الأولوية للبنية التحتية الخضراء والتخطيط الحضري من خلال تطوير المساحات الخضراء، والغابات الحضرية، والأسطح الخضراء، وأنظمة النقل المستدامة، والتي يمكن أن تساهم في التخفيف من التلوث وتحسين جودة الهواء والماء [124].
- تشجيع البحث والابتكار لاكتشاف حلول جديدة للتحديات البيئية العالمية [138]. يمكن تحقيق ذلك من خلال دعم البحث العلمي، والتقدم التكنولوجي، والتعاون بين التخصصات لتطوير تقنيات أنظف، ومصادر طاقة بديلة، وطرق أكثر فعالية للتحكم في التلوث [124].
- تعزيز المسؤولية الاجتماعية للشركات من خلال تشجيع الشركات على اعتماد ممارسات مستدامة، وتقليل التلوث في عملياتها، وتعزيز الشفافية والمساءلة، مما يمكن أن يؤثر بشكل كبير على التلوث البيئي العالمي [139].
4 آفاق المستقبل
5 ملخص واستنتاج
References
- Ukaogo PO, Ewuzie U, Onwuka CV. Environmental pollution: causes, effects, and the remedies. In: Chowdhary P, editor. Microorganisms for sustainable environment and health. Amsterdam: Elsevier; 2020. p. 419-29.
- Singh J. International conference on harmonization of technical requirements for registration of pharmaceuticals for human use. J Pharmacol Pharmacother. 2015;6(3):185-7.
- Nnaemeka AN. Environmental pollution and associated health hazards to host communities (case study: Niger delta region of Nigeria). Central Asian J Environ Sci Technol Innov. 2020;1(1):30-42.
- Song
, Zhou . Does the green industry policy reduce industrial pollution emissions?-Evidence from China’s national eco-industrial park. Sustainability. 2021;13(11):6343. - Haywood LK, et al. Waste disposal practices in low-income settlements of South Africa. Int J Environ Res Public Health. 2021;18(15):8176.
- Andrews RN. Managing the environment, managing ourselves: a history of American environmental policy. New Haven: Yale University Press; 2008.
- Smith ZA, Jacques P. The environmental policy paradox. New York: Taylor and Francis; 2022.
- Lenschow A. Environmental policy. Policy Mak Eur Union. 2005;5:305-27.
- Hey C. EU environmental policies: a short history of the policy strategies. EU environmental policy handbook. 2005. p. 14.
- Caldwell LK, Caldwell LK. International Environmental Policy: From the Twentieth to the Twenty-First Century. Durham: Duke University Pres; 2020.
- Ji X, et al. Reconsider policy allocation strategies: a review of environmental policy instruments and application of the CGE model. J Environ Manage. 2022;323: 116176.
- Cohen MA. Monitoring and enforcement of environmental policy. SSRN J. 1998. https://doi.org/10.2139/ssrn.120108.
- Wu Y, Zhang Y. The impact of environmental technology and environmental policy strictness on China’s green growth and analysis of development methods. J Environ Public Health. 2022;2022:1052824.
- Hill MK. Understanding environmental pollution. Cambridge: Cambridge University Press; 2020.
- Li X, Jin L, Kan H. Air pollution: a global problem needs local fixes. Nature. 2019;570(7762):437-9.
- Lu X, et al. Severe surface ozone pollution in China: a global perspective. Environ Sci Technol Lett. 2018;5(8):487-94.
- Kim D, et al. Air pollutants and early origins of respiratory diseases. Chronic Dis Transl Med. 2018;4(2):75-94.
- Weldeslassie T, et al. Chemical contaminants for soil, air and aquatic ecosystem. In: Oves M, Khan MZ, Ismail IM, editors., et al., Modern age environmental problems and their remediation. Cham: Springer; 2018. p. 1-22.
- López-Pacheco IY, et al. Anthropogenic contaminants of high concern: existence in water resources and their adverse effects. Sci Total Environ. 2019;690:1068-88.
- Prince U, Ewuzie U, Onwuka C. Environmental pollution: causes, effects, and the remedies. Amsterdam: Elsevier; 2020. p. 419-29.
- Ahmed A, Mathrani S, Jayamaha N. An integrated lean and ISO 14001 framework for environmental performance: an assessment of New Zealand meat industry. Int J Lean Six Sigma. 2021. https://doi.org/10.1108/IJLSS-05-2021-0100.
- Bronzwaer S, et al. One health collaboration with and among EU agencies-bridging research and policy. One Health. 2022;15: 100464.
- Singh B. Federated learning for envision future trajectory smart transport system for climate preservation and smart green planet: insights into global governance and SDG-9 (industry, innovation and infrastructure). Natl J Environ Law. 2023;6(2):6-17.
- Reynolds J. An economic analysis of international environmental rights. Int Environ Agreem. 2019;19:557.
- Cheremeteff F, et al. The belt and road initiative (BRI) in North Eurasia: changing geographies and the unece multilateral environmental agreements. Geogr Environ Sustain. 2021;14:94-109.
- Hassan ST, et al. Role of institutions in correcting environmental pollution: an empirical investigation. Sustain Cities Soc. 2020;53: 101901.
- Danish, Hassan ST. Investigating the interaction effect of urbanization and natural resources on environmental sustainability in Pakistan. Int J Environ Sci Technol. 2023;20(8):8477-84.
- Danish, et al. Toward achieving environmental sustainability target in organization for economic cooperation and development countries: the role of real income, research and development, and transport infrastructure. Sustain Dev. 2020;28(1):83-90.
- Danish, et al. Linking economic growth and ecological footprint through human capital and biocapacity. Sustain Cities Soc. 2019;47:101516.
- Young OR, Stokke OS. Why is it hard to solve environmental problems? The perils of institutional reductionism and institutional overload. Int Environ Agreem Politics Law Econ. 2020;20:5-19.
- Gibbs D. Sustainability entrepreneurs, ecopreneurs and the development of a sustainable economy. Milton Park: Greener management international. Taylor & Francis; 2009.
- Van der Heijden A, Driessen PP, Cramer JM. Making sense of corporate social responsibility: exploring organizational processes and strategies. J Clean Prod. 2010;18(18):1787-96.
- Hauschild MZ, Huijbregts MA. Introducing life cycle impact assessment. Amsterdam: Springer; 2015.
- Bansal P, Bogner WC. Deciding on ISO 14001: economics, institutions, and context. Long Range Plan. 2002;35(3):269-90.
- Kazancoglu YA. The effectiveness of environmental management systems: A case study in a manufacturing company. J Clean Prod. 2017;148:734-41.
- Bansal P. Deciding on preventive environmental management: a review and research agenda. J Manag. 2002;28(6):893-912.
- Das TK. Industrial environmental management: engineering, science, and policy. Hoboken: Wiley; 2020.
- Matuszak-Flejszman A. Benefits of environmental management system in polish companies compliant with ISO 14001. Polish J Environ Stud. 2009;18(3):411.
- Zutshi A, Sohal A. Environmental management system adoption by Australasian organisations: part 1: reasons, benefits and impediments. Technovation. 2004;24(4):335-57.
- Royston MG. Pollution prevention pays. Oxford: Elsevier; 2013.
- Prajogo D, Tang AKY, Lai K-H. The diffusion of environmental management system and its effect on environmental management practices. Int J Oper Prod Manag. 2014;34(5):565-85.
- Giovannoni E, Fabietti G. What is sustainability? A review of the concept and its applications. In: Busco C, Frigo M, Riccaboni A, Quattrone P, editors. Integrated reporting: concepts and cases that redefine corporate accountability. Cham: Springer; 2013. p. 21-40.
- Reed MS, et al. Five principles for the practice of knowledge exchange in environmental management. J Environ Manage. 2014;146:337-45.
- Raymond CM, et al. Integrating local and scientific knowledge for environmental management. J Environ Manage. 2010;91(8):1766-77.
- McAleer SL. Recommendations for the integration of an occupational health and safety management system and an environmental management system. Environmental Design. 2001.
- Da Fonseca LMCM. ISO 14001: 2015: an improved tool for sustainability. J Ind Eng Manag. 2015;8(1):37-50.
- Dahlström K, et al. Environmental management systems and company performance: assessing the case for extending risk-based regulation. Eur Environ. 2003;13(4):187-203.
- Prevention P, Handbook A. World bank group. Washington, DC, 1998.
- Hilson G, Nayee V. Environmental management system implementation in the mining industry: a key to achieving cleaner production. Int J Miner Process. 2002;64(1):19-41.
- Baumann H, Tillman A-M. The hitch hiker’s guide to LCA. Lund: Studentlitteratur; 2004.
- Rebitzer G, et al. Life cycle assessment: part 1: framework, goal and scope definition, inventory analysis, and applications. Environ Int. 2004;30(5):701-20.
- Chang D, Lee C, Chen C-H. Review of life cycle assessment towards sustainable product development. J Clean Prod. 2014;83:48-60.
- ISO I. 14040. Environmental management-life cycle assessment-principles and framework, 2006: p. 235-248.
- Covello VT, et al. Release assessment. Risk assessment methods: approaches for assessing health and environmental risks. London: Plenum Press; 1993. p. 35-89.
- Suter GW II. Ecological risk assessment. Boca Raton: CRC Press; 2016.
- Ecological Risk Assessment. Guidelines for ecological risk assessment. Washington: Environmental Protection Agency; 1998.
- Azapagic A, Perdan S. Indicators of sustainable development for industry: a general framework. Process Saf Environ Prot. 2000;78(4):243-61.
- UN Global Compact. Guide to corporate sustainability: shaping a sustainable future. New york: United Nations Global Compact; 2022.
- Standardization, I.O.f., ISO 20400: 2017 Sustainable procurement—guidance. 2017.
- Seuring S, Müller M. From a literature review to a conceptual framework for sustainable supply chain management. J Clean Prod. 2008;16(15):1699-710.
- Carter CR, Rogers DS. A framework of sustainable supply chain management: moving toward new theory. Int J Phys Distrib Logist Manag. 2008. https://doi.org/10.1108/09600030810882816.
- Divan S, Rosencranz A. Environmental law and policy in India: cases and materials. Oxford: Oxford University Press; 2022.
- Jaffe AB, Newell RG, Stavins RN. A tale of two market failures: Technology and environmental policy. Ecol Econ. 2005;54(2-3):164-74.
- Vijge MJ et al. Governance through global goals. Architectures of earth system governance: Institutional complexity and structural transformation. 2020: p. 254-74.
- Paglia E. The Swedish initiative and the 1972 Stockholm Conference: the decisive role of science diplomacy in the emergence of global environmental governance. Human Soc Sci Commun. 2021;8(1):1-10.
- Biermann F. The future of ‘environmental’policy in the Anthropocene: time for a paradigm shift. Environ Politics. 2021;30(1-2):61-80.
- Hickmann T, et al. The United Nations Framework convention on climate change secretariat as an orchestrator in global climate policymaking. Int Rev Adm Sci. 2021;87(1):21-38.
- Depledge J. The “top-down” Kyoto Protocol? Exploring caricature and misrepresentation in literature on global climate change governance. Int Environ Agreem Politics Law Econ. 2022;22(4):673-92.
- Meinshausen M, et al. Realization of Paris agreement pledges may limit warming just below 2 C. Nature. 2022;604(7905):304-9.
- Anastas PT, Zimmerman JB. Moving from protection to prosperity: evolving the US environmental protection agency for the next 50 years. Environ Sci Technol. 2021;55(5):2779-89.
- Hartley K, van Santen R, Kirchherr J. Policies for transitioning towards a circular economy: expectations from the European Union (EU). Resour Conserv Recycl. 2020;155: 104634.
- Zeng Y, et al. Air pollution reduction in China: recent success but great challenge for the future. Sci Total Environ. 2019;663:329-37.
- Serra-Majem L, et al. Updating the mediterranean diet pyramid towards sustainability: focus on environmental concerns. Int J Environ Res Public Health. 2020;17(23):8758.
- Elder M, Ellis G. ASEAN countries’ environmental policies for the sustainable development goals (SDGs). Environ Dev Sustain. 2023;25(10):10975-93.
- Bouabdallah F . The use of environmental management system in the production of green products (View Toyota Motor Company experience).
- Jimenez Pastrana F, Dargusch P, Hill G. How is environmental sustainability a key to innovation? Adv Environ Eng Res. 2022;3(2):1-26.
- Schirnhofer NM. Sustainability efforts in the retail industry: the case study of walmart. Webster Groves: Webster University; 2022.
- Kanter DR, et al. Gaps and opportunities in nitrogen pollution policies around the world. Nat Sustain. 2020;3(11):956-63.
- Ajibade FO, et al. Environmental pollution and their socioeconomic impacts. In: Kumar A, Singh VK, Singh P, Mishra VK, editors., et al., Microbe mediated remediation of environmental contaminants. Amsterdam: Elsevier; 2021. p. 321-54.
- Ketter W, et al. Special issue editorial: addressing societal challenges through analytics: an ESG ICE framework and research agenda. J Assoc Inf Syst. 2020;21(5):9.
- WHO. Air pollution data. Global health observatory. 2021. https://www.who.int/data/gho/data/themes/air-pollution. Accessed 20 Nov 2023.
- Friedlingstein P, et al. Global carbon budget 2022. Earth Syst Sci Data. 2022;14(11):4811-900.
- Programme, U.N.E., Emissions gap report: broken record—temperatures hit new highs, yet world fails to cut emissions (again). 2023. https://doi.org/10.59117/20.500.11822/43922.
- UN, Water Summary progress update SDG 6—water and sanitation for all. 2021. https://www.unwater.org/sites/default/files/app/uploa ds/2021/12/SDG-6-Summary-Progress-Update-2021_Version-July-2021a.pdf. Accessed 20 Nov 2023.
- WHO, Drinking water. 2023. https://www.who.int/news-room/fact-sheets/detail/drinking-water. Accessed 20 Nov 2023.
- Fuller R, et al. Pollution and health: a progress update. Lancet Planet Health. 2022;6(6):e535-47.
- Rahman MM. Impact of taxes on the 2030 agenda for sustainable development: evidence from organization for economic co-operation and development (OECD) countries. Regional Sustain. 2023;4(3):235-48.
- Zhang H, et al. A road towards ecological development in China: the nexus between green investment, natural resources, green technology innovation, and economic growth. Resour Policy. 2022;77: 102746.
- Alataş S. The role of information and communication technologies for environmental sustainability: evidence from a large panel data analysis. J Environ Manage. 2021;293: 112889.
- Alola AA, Dike GC, Alola UV. The role of legal system and socioeconomic aspects in the environmental quality drive of the global south. Soc Indic Res. 2022;163(2):953-72.
- Chen R, et al. The nonlinear effect of land freight structure on carbon emission intensity: new evidence from road and rail freight in China. Environ Sci Pollut Res. 2022;29(52):78666-82.
- Chen R , Zhang Y . Assessing freight structure and its effect on transport CO2 emissions: heterogeneous and mediating effect analysis. Environ Sci Pollut Res. 2023;30(14):42034-55.
- Qi F, et al. Moving a step closer towards environmental sustainability in Asian countries: focusing on real income, urbanization, transport infrastructure, and research and development. Econ Res. 2023;36(2):2111317.
- Jiang Q, et al. Mitigation pathways to sustainable production and consumption: examining the impact of commercial policy on carbon dioxide emissions in Australia. Sustain Prod Consumption. 2021;25:390-403.
- Qingquan J, et al. A new approach to environmental sustainability: assessing the impact of monetary policy on CO2 emissions in Asian economies. Sustain Dev. 2020;28(5):1331-46.
- Ahmad W, Ozturk I, Majeed MT. How do remittances affect environmental sustainability in Pakistan? Evidence from NARDL approach. Energy. 2022;243: 122726.
- Ullah S, et al. Advancing sustainable growth and energy transition in the United States through the lens of green energy innovations, natural resources and environmental policy. Resour Policy. 2023;85: 103848.
- Leong C, Howlett M. Policy learning, policy failure, and the mitigation of policy risks: re-thinking the lessons of policy success and failure. Adm Soc. 2022;54(7):1379-401.
- Wang Z, et al. A process-based evaluation framework for environmental impacts of policy making. Environ Impact Assess Rev. 2024;104: 107351.
- Klausbruckner C, et al. A policy review of synergies and trade-offs in South African climate change mitigation and air pollution control strategies. Environ Sci Policy. 2016;57:70-8.
- Kronenberg J, et al. The thorny path toward greening: unintended consequences, trade-offs, and constraints in green and blue infrastructure planning, implementation, and management. Ecol Soc. 2021;26(2):36.
- Valor C, Antonetti P, Merino A. The relationship between moral competences and sustainable consumption among higher education students. J Clean Prod. 2020;248: 119161.
- Mehta A, Shah T, Thomas RJ. Strategies to address environmental degradation in developing nations: a multifaceted approach. J Intell Connect Emerg Technol. 2023;8(2):17-34.
- Klein N, Ramos TB, Deutz P. Factors and strategies for circularity implementation in the public sector: an organisational change management approach for sustainability. Corp Soc Responsib Environ Manag. 2022;29(3):509-23.
- Silvestre BS, Tîrcă DM. Innovations for sustainable development: Moving toward a sustainable future. J Clean Prod. 2019;208:325-32.
- Hou L, et al. Improving the greenness of enterprise supply chains by designing government subsidy mechanisms: based on prospect theory and evolutionary games. Front Psychol. 2023;14:1283794.
- Wambwa D, Mundike J, Chirambo B. Balancing economic development, social responsibility, and environmental conservation through financial assurance programs in sub-Saharan Africa’s mining industry. Environ Dev Sustain. 2023. https://doi.org/10.1007/ s10668-023-04205-w.
- Gehring MW, et al. Climate change and sustainable energy measures in regional trade agreements (RTAs). Geneva: International Centre for Trade and Sustainable Development; 2013.
- Clapp J. The privatization of global environmental governance: ISO 14000 and the developing world. In: Haas PM, editor. International environmental governance. Milton park: Routledge; 2017. p. 399-420.
- Phillipson J, et al. Stakeholder engagement and knowledge exchange in environmental research. J Environ Manage. 2012;95(1):56-65.
- Filippelli G , et al. New approaches to identifying and reducing the global burden of disease from pollution. GeoHealth. 2020;4(4):e2018GH000167.
- Bai X, et al. Spatial-temporal variation characteristics of air pollution and apportionment of contributions by different sources in Shanxi province of China. Atmos Environ. 2021;244: 117926.
- Nnorom IC, Osibanjo O. Overview of electronic waste (e-waste) management practices and legislations, and their poor applications in the developing countries. Resour Conserv Recycl. 2008;52(6):843-58.
- Molloy S, Varkey P, Walker TR. Opportunities for single-use plastic reduction in the food service sector during COVID-19. Sustain Prod Consum. 2022;30:1082-94.
- Cai W, et al. A review on the selection of raw materials and reactors for biomass fast pyrolysis in China. Fuel Process Technol. 2021;221: 106919.
- Broughton El, Walker DG. Policies and practices for aquaculture food safety in China. Food Policy. 2010;35(5):471-8.
- Chege SM, Wang D. The influence of technology innovation on SME performance through environmental sustainability practices in Kenya. Technol Soc. 2020;60: 101210.
- Herremans IM, Nazari JA, Mahmoudian F. Stakeholder relationships, engagement, and sustainability reporting. J Bus Ethics. 2016;138:417-35.
- Santos J, Flintsch G, Ferreira A. Environmental and economic assessment of pavement construction and management practices for enhancing pavement sustainability. Resour Conserv Recycl. 2017;116:15-31.
- Torriti J, Hassan MG, Leach M. Demand response experience in Europe: policies, programmes and implementation. Energy. 2010;35(4):1575-83.
- Hisschemöller M, Gupta J. Problem-solving through international environmental agreements: the issue of regime effectiveness. Int Polit Sci Rev. 1999;20(2):151-74.
- Ourbak T, Magnan AK. The Paris Agreement and climate change negotiations: small Islands, big players. Reg Environ Change. 2018;18:2201-7.
- Sun D , et al. Monitoring effect of transparency: how does government environmental disclosure facilitate corporate environmentalism? Bus Strateg Environ. 2019;28(8):1594-607.
- Weber CL, Peters GP. Climate change policy and international trade: policy considerations in the US. Energy Policy. 2009;37(2):432-40.
- Russell CS, Harrington W, Vaughn WJ. Enforcing pollution control laws. Milton Park: Routledge; 2013.
- Leson G, Winer AM. Biofiltration: an innovative air pollution control technology for VOC emissions. J Air Waste Manag Assoc. 1991;41(8):1045-54.
- Topare NS, Attar S, Manfe MM. Sewage/wastewater treatment technologies: a review. Sci Revs Chem Commun. 2011;1(1):18-24.
- Rana R, Ganguly R, Gupta AK. An assessment of solid waste management system in Chandigarh City, India. Electron J Geotech Eng. 2015;20(6):1547-72.
- Białowiec A. Hazardous emissions from municipal solid waste landfills. Contemp Prob Manag Environ Prot. 2011;9(9):7-28.
- Kumar P. The economics of ecosystems and biodiversity: ecological and economic foundations. Milton park: Routledge; 2012.
- Porter ME, Linde CV. Toward a new conception of the environment-competitiveness relationship. J Econ Perspect. 1995;9(4):97-118.
- Bhander G, Jozewicz W. Analysis of emission reduction strategies for power boilers in the US pulp and paper industry. Energy Emiss Control Technol. 2017;5:27.
- Conca K, Dabelko GD. Environmental peacemaking. Washington: Woodrow Wilson Center Press; 2002.
- Stockholm C. United Nations Conference on the Human Environment: Stockholm, Sweden, June 5-16, 1972: a Guide to the Microfiche Edition of the Conference Bibliography. Ann Arbor: Xerox University Microfilms; 1973.
- Ghisellini P, Cialani C, Ulgiati S. A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. J Clean Prod. 2016;114:11-32.
- Geissdoerfer M, et al. The circular economy-a new sustainability paradigm? J Clean Prod. 2017;143:757-68.
- Tilbury D, Stevenson RB. Education and sustainability: responding to the global challenge. Geneva: IUCN; 2002.
- Pielke RA Jr. The honest broker: making sense of science in policy and politics. Cambridge: Cambridge University Press; 2007.
- Bansal P, Roth K. Why companies go green: a model of ecological responsiveness. Acad Manag J. 2000;43(4):717-36.
- Jonathan Awewomom, jonathankeinzie8a154@gmail.com |
College of Natural Sciences, Department of Earth and Environmental Science, Michigan State University, East Lansing, USA. Faculty of Biosciences, Department of Environmental Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. Faculty of Biosciences, Department of Biochemistry and Biotechnology, Human Nutrition and Dietetics Unit, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. Faculty of Physical and Computational Sciences, Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. Faculty of Mathematics and Natural Sciences, Department of Chemistry, University of Bonn, Bonn, Germany. - Author contributions The study was conceptualized, written, reviewed, designed and administered by JA; the manuscript was initially drafted by FD, YDT, PEA, ENYO and WBA, and later edited by LNAS, FO and OA.Data Availability Not applicable.
Declarations
Consent for publication All authors participated in the development of the manuscript and consent to publication.
DOI: https://doi.org/10.1007/s44274-024-00033-5
Publication Date: 2024-02-06
Addressing global environmental pollution using environmental control techniques: a focus on environmental policy and preventive environmental management
Published online: 06 February 2024
© The Author(s) 2024, corrected publication 2024 OPEN
Abstract
Global environmental pollution presents formidable obstacles to the long-term viability of the planet. This study synthesized current relevant literature with statistical snapshots from pollution statistics and reports and presented feasible recommendations to address the ramifications of global environmental pollution. A central focus is laid on the importance of preventive environmental management (PEM) and the strategic enforcement of environmental policies (EP), with a detailed exploration of history evolution and current application challenges. Specifically, the study centers on the significance of environmental policy and preventive environmental management in combatting global pollution. The examination encompasses an overview of environmental pollution and its implications for the environment and human health. It explores the role of environmental policy in mitigating environmental pollution, scrutinizes the principles underlying preventive environmental management, and evaluates the effectiveness of environmental management systems in curbing pollution. Furthermore, the study identifies and analyzes the challenges of implementing environmental control techniques, offering recommendations to overcome these obstacles. The outcomes of this research contribute to a more comprehensive understanding of the potential of environmental control methods in tackling global environmental pollution. The study underscores the crucial nature of robust environmental policies and proactive approaches to prevent pollution and foster sustainable development. Additionally, it offers insights into the necessity for collaboration and cooperation among stakeholders at various levels to attain effective pollution control and environmental management.
1 Introduction

2 Preventive environmental management
2.1 Environmental management
2.1.1 Principles of environmental management
2.2 Environmental management systems (EMS)
2.3 Life cycle assessment (LCA)
2.4 Environmental risk assessment
2.5 Environmental performance indicators
2.6 Green procurement
2.7 Environmental policy (EP)
2.8 Current global environmental policies
2.8.1 International environmental policies
2.8.2 United nations framework convention on climate change
2.8.3 Kyoto protocol
2.8.4 Paris agreement
compliance by some nations as it requires regular reviews of a country’s progress towards meeting their climate-related goals [69].
2.9 National environmental policies
2.9.1 United States environmental protection agency (USEPA)
2.9.2 European Union environmental policy
2.9.3 China’s environmental protection policies
2.10 Regional environmental policies
2.10.1 African Union environmental policy
2.10.2 Association of Southeast Asian Nations (ASEAN) environmental policy
2.11 Corporate environmental policies
2.12 Gaps in current environmental policies
where outlined practices often fail to materialize due to lax execution and minimal penalties for contravention. This not only allows corporations and individuals to disregard environmental statutes but also leads to elevated pollution levels. Augmenting enforcement strategies is crucial to ensuring compliance and the efficacy of environmental policies. Furthermore, insufficient funding poses a considerable obstacle, limiting the capacity to enforce rules, construct ecofriendly infrastructure, and invest in research for pollution reduction. Overcoming this gap requires increased financial backing and resource allocation. Inadequate monitoring and reporting systems add to the challenge, making it formidable to pinpoint pollution sources and implement targeted strategies. Enriching monitoring technologies, installing robust reporting structures, and promoting transparency are indispensable steps to bolster policy effectiveness. Additionally, limited international cooperation and coordination, stemming from disparities in priorities and regulations, pose obstacles to combating pollution globally. To bridge this gap, reinforcing international consolidation mechanisms, setting shared objectives, and promoting discourse among nations are essential for a cohesive and effective approach to pollution prevention. By strengthening international agreements, enhancing national environmental regulations, promoting sustainable business practices, and investing in research and innovation, EP can be made more effective in mitigating environmental pollution [78, 79].
2.13 Statistical snapshots: data-driven analysis of global pollution challenges
2.14 Air pollution
Category | Data |
Year | 2022 |
Global fossil
|
10.0 GtC yr
|
Regional changes in fossil
|
|
China | Decrease: 0.9% |
European Union | Decrease: 0.8% |
United States | Increase: 1.5% |
India | Increase: 6% |
Rest of the world | Increase: 1.7% |
Changes in emissions by source (2022): | |
Coal | Change: 1.0% |
Oil | Change: 2.2% |
Gas | Change: – 0.2% |
Emissions from 24 countries (2012-2021) | Decrease:
|
Deforestation contribution (2012-2021) |
|
Atmospheric
|
51% above pre-industrial levels |
2.15 Global carbon project
2.16 Gas emissions
2.17 Water pollution
Category | Data |
Global GHG emissions (
|
57.4 |
Contribution of fossil fuel combustion and industry | 2/3 of total GHG emissions |
Breakdown of GHG emissions by type | |
Carbon dioxide (
|
(Not specified) |
Methane (
|
Rapid increase |
Nitrous oxide (
|
Rapid increase |
Fluorinated gases (F-gases) | Rapid increase |
Global net LULUCF CO
|
Steady |
Progress in GHG emissions reduction (2030) | Reduced projected increase from 16 to 3% |
Category | Data |
Year | 2021 and 2022 |
Global water crisis (2021) | Affecting over 2 billion people in water-stressed countries |
Drinking water contamination (2022) | 1.7 billion people globally utilized drinking water contaminated with feces |
Health risks from contamination: | Microbial contamination poses risks to public health, leading to diseases such as diarrhea, cholera, dysentery, typhoid, and polio, causing an estimated 505,000 diarrheal deaths annually |
Access to safely managed drinking water (2022) | 73% of the global population (6 billion people) had access |
Disparities in access: | 2.2 billion people lacked safely managed drinking water services |
2.18 Global pollution
2.19 Synthesis of landmark studies
Category | Data |
Total premature deaths due to pollution (2015) | 9 million |
Annual deaths due to pollution (current estimate) | Approximately 9 million annually |
Global impact of pollution | One in six global fatalities |
Trends in modern pollution risk factors (since 2015) | 7% increase in deaths since 2015, 66% surge since 2000 |
2.20 Unraveling
emission dynamics: alternative policies and regional perspectives
2.21 Tailoring policies for sustainable growth in the face of environmental challenges
for policy environmental impact assessment (PB-EIA) approach presents practical and systematic methods to evaluate the environmental impact of policies. A recent study [99] applied PB-EIA to the use of wastewater resources in China. Findings showed constraints in the policy’s formulation and implementation, tied to institutional, technological, and economic factors, with identified negative environmental impacts related to energy consumption and carbon emissions. Application of the PB-EIA framework to real-world cases will help mitigate environmental policy failures, shedding light on the complex interplay of factors influencing policy outcomes.
2.22 Balancing act: mitigating unintended consequences in pollution control policies
2.23 Promoting sustainable consumption: strategies for source-based pollution mitigation
2.24 Managing synergies and conflicts between economic agreements and global environmental policies for pollution control
addition, policymakers should consider making trade agreements with a specific focus on advancing green and sustainable practices. These agreements can offer incentives for adopting environmentally friendly technologies, renewable energy sources, and sustainable resource management. Implement mechanisms and standards that reward countries for adopting and enforcing stringent pollution control measures [108]. Once standards are set, a robust monitoring system should be established to ensure countries adhere to both trade and environmental agreements. Effective enforcement measures, including penalties for non-compliance, are essential to dissuade countries from neglecting their environmental responsibilities. Moreover, incentives or rewards should be provided to businesses and countries that exceed pollution control standards [109]. Also, engaging various stakeholders, such as environmental organizations, businesses, and local communities, is critical in the negotiation and implementation of trade and environmental policies. This inclusive approach fosters collaboration, considering the diverse perspectives and needs of different groups [110].
3 Holistic approaches to addressing global environmental pollution
- Diagnosis of pollution hotspots, processes, and systems: One of the primary methods for diagnosing pollution hotspots is through the collection and analysis of data on pollutants in the environment by monitoring the levels of pollutants in air, water, and soil, as well as tracking emissions from industrial processes and transportation sources. By analyzing this data, researchers can identify patterns and trends in pollution levels and determine where pollution hotspots are likely to occur [111]. Another method for diagnosing pollution hotspots is through the use of modeling tools and on-the-ground assessments of the physical and social conditions in a given area by examining the distribution of industrial facilities and transportation routes, as well as assessing the health and economic impacts of pollution on local communities [112].
- Swift interventions in reducing wastes at source: This can be achieved through a variety of methods such as extended producer responsibility programs, which require manufacturers to take responsibility for the environmental impacts of their products [113]. Another strategy is to reduce the use of single-use plastics and other disposable items, using reusable containers and packaging, and adopting sustainable procurement practices that prioritize products with minimal packaging made from recycled materials [114].
- Elevating the yield and quality of products by optimizing production processes, is done by analyzing the steps involved in production and identifying areas where efficiencies can be gained and waste can be minimized. By streamlining processes, reducing downtime, and improving production flow, manufacturers can increase their output without increasing their resource consumption [115]. Implementing quality control measures is also critical to elevating the yield and quality of products, this involves the establishment of standards for product quality and ensuring that products meet these standards through regular inspections and testing [116].
- Value addition to products through product innovation by developing new product features, and technologies that improve performance, and functionality and creating entirely new products that meet emerging customer needs and emission standards [117].
- Integration of concerns of stakeholders on environmental initiatives by dialoguing with stakeholders and seeking inputs and feedback on environmental initiatives and policies. This involves conducting surveys, focus groups, or other forms of consultation to understand stakeholder perspectives and concerns, as well as soliciting feedback on proposed environmental initiatives [118].
- Integration of economic concerns of stakeholders in rolling out policies by conducting a thorough economic impact assessment, analyzing the potential costs and benefits of an initiative, as well as the potential risks and opportunities for different stakeholders. This information can be used to influence decision-making and ensure that policies are designed in a way that maximizes economic benefits and minimizes negative environmental impacts [119].
- Rolling out environmental action programs by developing and implementing strategies to address environmental issues and concerns. These programs typically involve a series of actions, policies, and initiatives aimed at reducing the negative impact of human activities on the environment and promoting sustainable practices. In rolling out environmental action programs, the following steps should be considered; Identifying the environmental issue, conducting research and analysis to understand the root cause of the problem, its scope and impact, and potential solutions, developing a plan of action, engaging stakeholders by involving diverse groups and implementation of plan followed by monitoring and evaluation of progress [120].
- International environmental cooperation: International environmental cooperation is the collaboration and coordination between countries, international organizations, and other stakeholders to address global environmental
issues [121]. International environmental cooperation is essential for addressing global environmental challenges, as many environmental issues such as climate change, biodiversity loss, and ocean pollution are transboundary and cannot be solved by individual countries acting alone. This can be achieved by sharing of knowledge, resources, and best practices to develop effective policies and programs [122]. - Public accessibility of environmental information from authorities, is essential for ensuring transparency and accountability in environmental decision-making processes. It also enables public participation in environmental governance by allowing citizens to make informed decisions and contribute to environmental policy-making [123].
- Improving the efficiency of existing controls by optimizing the effectiveness and cost-effectiveness of measures and regulations designed to protect the environment including strategies to improve the implementation of existing regulations, streamline enforcement processes, and enhance monitoring and reporting mechanisms. Existing environmental controls can be improved through risk-based approaches (targeting enforcement efforts on activities that pose the highest environmental risks by prioritizing high-risk activities) and performance-based approaches (setting performance standards for specific sectors, and allowing flexibility in how those standards are achieved), compliance assistance (providing support and guidance such as technical assistance and training programs to businesses to help them comply with environmental regulations.) and Regulatory reform (reviewing and updating existing regulations to ensure they are effective, efficient, and up-to-date by removing redundant or outdated requirements, streamlining approval processes, and improving the clarity and transparency of regulations) [124].
- Installation of technologies to control pollution: Pollution control technologies are designed to improve the efficiency and effectiveness of industrial processes, reduce waste and emissions, and protect the environment and human health [125]. Air pollution control technologies such as particulate control systems, electrostatic precipitators, and scrubbers could be applied to remove pollutants from industrial exhaust gases [126], water pollution control technologies including wastewater treatment systems, sedimentation tanks, and filtration systems can be used to remove pollutants from industrial wastewater before it is discharged into the environment [127] and solid waste management technologies such as recycling and composting systems, landfill liners, and leachate treatment systems can be used to reduce the amount of waste generated and manage the disposal of waste [125, 128]. Also, hazardous waste management technologies such as incinerators, chemical treatment systems, and stabilization and solidification processes should be designed to safely manage and dispose of hazardous waste [129].
- Efficient system of taxation on municipal waste disposal and effective landfill location and management [124, 130]. The imposition of fees or taxes on the disposal of municipal waste can create economic incentives for individuals and businesses to reduce waste generation and increase recycling and reuse, which can help to conserve natural resources and reduce greenhouse gas emissions. Proper landfill siting and management by using engineered liners and caps, proper waste placement, and compaction. Factors such as geology, hydrology, and proximity to sensitive areas should be considered for proper siting of landfills [131].
- Switching to more advanced technologies as a replacement for existing pollution control techniques, by using newer and more efficient technologies to reduce pollution in industrial processes. These technologies should be designed to replace older, less effective pollution control techniques, which may be less efficient or effective at reducing pollution [132].
- Strict adherence and application of the principles of the Stockholm declaration in all various nations [133]. This includes safeguarding natural resources and wildlife at all cost, eliminating of weapons of mass destruction, sharing and preventing the exhaustion of non-renewable natural resources, assisting developing countries to tackle pollution, preventing of damaging pollution in oceans, eliminating environmental problems by planning human settlements, application of science and technology to improve the environment, making essential environmental education, appropriate policies by governments, promotion of environmental research in developing countries, international cooperation on environmental issues, safe exploitation of resources by states in order not to endanger others and establishment of national standards by each nation [130, 134].
- Transitioning to a Circular Economy: The goal of transitioning to a circular economy model is to minimize waste and maximize the efficient use of resources [135]. This involves reducing the consumption of raw materials, promoting recycling and reuse, and designing products to last longer and be recyclable. By doing so, pollution associated with extraction, production, and disposal can be reduced [136].
- Promoting environmental education and awareness by integrating environmental education into school curricula, conducting awareness campaigns, and fostering a sense of responsibility and stewardship among communities [137].
- Restoring and Conserving Ecosystems by rehabilitating degraded ecosystems and establishing protected areas to preserve crucial habitats [124].
- Prioritizing green infrastructure and urban planning by developing green spaces, urban forests, green roofs, and sustainable transportation systems, which can contribute to pollution mitigation and, improve air and water quality [124].
- Encouraging research and innovation to discover new solutions to global environmental challenges [138]. This can be achieved by supporting scientific research, technological advancements, and interdisciplinary collaborations to develop cleaner technologies, alternative energy sources, and more effective methods for controlling pollution [124].
- Promoting corporate and social responsibility by encouraging businesses to adopt sustainable practices, reduce pollution in their operations, and promote transparency and accountability, which can significantly impact global environmental pollution [139].
4 Future perspectives
5 Summary and conclusion
References
- Ukaogo PO, Ewuzie U, Onwuka CV. Environmental pollution: causes, effects, and the remedies. In: Chowdhary P, editor. Microorganisms for sustainable environment and health. Amsterdam: Elsevier; 2020. p. 419-29.
- Singh J. International conference on harmonization of technical requirements for registration of pharmaceuticals for human use. J Pharmacol Pharmacother. 2015;6(3):185-7.
- Nnaemeka AN. Environmental pollution and associated health hazards to host communities (case study: Niger delta region of Nigeria). Central Asian J Environ Sci Technol Innov. 2020;1(1):30-42.
- Song
, Zhou . Does the green industry policy reduce industrial pollution emissions?-Evidence from China’s national eco-industrial park. Sustainability. 2021;13(11):6343. - Haywood LK, et al. Waste disposal practices in low-income settlements of South Africa. Int J Environ Res Public Health. 2021;18(15):8176.
- Andrews RN. Managing the environment, managing ourselves: a history of American environmental policy. New Haven: Yale University Press; 2008.
- Smith ZA, Jacques P. The environmental policy paradox. New York: Taylor and Francis; 2022.
- Lenschow A. Environmental policy. Policy Mak Eur Union. 2005;5:305-27.
- Hey C. EU environmental policies: a short history of the policy strategies. EU environmental policy handbook. 2005. p. 14.
- Caldwell LK, Caldwell LK. International Environmental Policy: From the Twentieth to the Twenty-First Century. Durham: Duke University Pres; 2020.
- Ji X, et al. Reconsider policy allocation strategies: a review of environmental policy instruments and application of the CGE model. J Environ Manage. 2022;323: 116176.
- Cohen MA. Monitoring and enforcement of environmental policy. SSRN J. 1998. https://doi.org/10.2139/ssrn.120108.
- Wu Y, Zhang Y. The impact of environmental technology and environmental policy strictness on China’s green growth and analysis of development methods. J Environ Public Health. 2022;2022:1052824.
- Hill MK. Understanding environmental pollution. Cambridge: Cambridge University Press; 2020.
- Li X, Jin L, Kan H. Air pollution: a global problem needs local fixes. Nature. 2019;570(7762):437-9.
- Lu X, et al. Severe surface ozone pollution in China: a global perspective. Environ Sci Technol Lett. 2018;5(8):487-94.
- Kim D, et al. Air pollutants and early origins of respiratory diseases. Chronic Dis Transl Med. 2018;4(2):75-94.
- Weldeslassie T, et al. Chemical contaminants for soil, air and aquatic ecosystem. In: Oves M, Khan MZ, Ismail IM, editors., et al., Modern age environmental problems and their remediation. Cham: Springer; 2018. p. 1-22.
- López-Pacheco IY, et al. Anthropogenic contaminants of high concern: existence in water resources and their adverse effects. Sci Total Environ. 2019;690:1068-88.
- Prince U, Ewuzie U, Onwuka C. Environmental pollution: causes, effects, and the remedies. Amsterdam: Elsevier; 2020. p. 419-29.
- Ahmed A, Mathrani S, Jayamaha N. An integrated lean and ISO 14001 framework for environmental performance: an assessment of New Zealand meat industry. Int J Lean Six Sigma. 2021. https://doi.org/10.1108/IJLSS-05-2021-0100.
- Bronzwaer S, et al. One health collaboration with and among EU agencies-bridging research and policy. One Health. 2022;15: 100464.
- Singh B. Federated learning for envision future trajectory smart transport system for climate preservation and smart green planet: insights into global governance and SDG-9 (industry, innovation and infrastructure). Natl J Environ Law. 2023;6(2):6-17.
- Reynolds J. An economic analysis of international environmental rights. Int Environ Agreem. 2019;19:557.
- Cheremeteff F, et al. The belt and road initiative (BRI) in North Eurasia: changing geographies and the unece multilateral environmental agreements. Geogr Environ Sustain. 2021;14:94-109.
- Hassan ST, et al. Role of institutions in correcting environmental pollution: an empirical investigation. Sustain Cities Soc. 2020;53: 101901.
- Danish, Hassan ST. Investigating the interaction effect of urbanization and natural resources on environmental sustainability in Pakistan. Int J Environ Sci Technol. 2023;20(8):8477-84.
- Danish, et al. Toward achieving environmental sustainability target in organization for economic cooperation and development countries: the role of real income, research and development, and transport infrastructure. Sustain Dev. 2020;28(1):83-90.
- Danish, et al. Linking economic growth and ecological footprint through human capital and biocapacity. Sustain Cities Soc. 2019;47:101516.
- Young OR, Stokke OS. Why is it hard to solve environmental problems? The perils of institutional reductionism and institutional overload. Int Environ Agreem Politics Law Econ. 2020;20:5-19.
- Gibbs D. Sustainability entrepreneurs, ecopreneurs and the development of a sustainable economy. Milton Park: Greener management international. Taylor & Francis; 2009.
- Van der Heijden A, Driessen PP, Cramer JM. Making sense of corporate social responsibility: exploring organizational processes and strategies. J Clean Prod. 2010;18(18):1787-96.
- Hauschild MZ, Huijbregts MA. Introducing life cycle impact assessment. Amsterdam: Springer; 2015.
- Bansal P, Bogner WC. Deciding on ISO 14001: economics, institutions, and context. Long Range Plan. 2002;35(3):269-90.
- Kazancoglu YA. The effectiveness of environmental management systems: A case study in a manufacturing company. J Clean Prod. 2017;148:734-41.
- Bansal P. Deciding on preventive environmental management: a review and research agenda. J Manag. 2002;28(6):893-912.
- Das TK. Industrial environmental management: engineering, science, and policy. Hoboken: Wiley; 2020.
- Matuszak-Flejszman A. Benefits of environmental management system in polish companies compliant with ISO 14001. Polish J Environ Stud. 2009;18(3):411.
- Zutshi A, Sohal A. Environmental management system adoption by Australasian organisations: part 1: reasons, benefits and impediments. Technovation. 2004;24(4):335-57.
- Royston MG. Pollution prevention pays. Oxford: Elsevier; 2013.
- Prajogo D, Tang AKY, Lai K-H. The diffusion of environmental management system and its effect on environmental management practices. Int J Oper Prod Manag. 2014;34(5):565-85.
- Giovannoni E, Fabietti G. What is sustainability? A review of the concept and its applications. In: Busco C, Frigo M, Riccaboni A, Quattrone P, editors. Integrated reporting: concepts and cases that redefine corporate accountability. Cham: Springer; 2013. p. 21-40.
- Reed MS, et al. Five principles for the practice of knowledge exchange in environmental management. J Environ Manage. 2014;146:337-45.
- Raymond CM, et al. Integrating local and scientific knowledge for environmental management. J Environ Manage. 2010;91(8):1766-77.
- McAleer SL. Recommendations for the integration of an occupational health and safety management system and an environmental management system. Environmental Design. 2001.
- Da Fonseca LMCM. ISO 14001: 2015: an improved tool for sustainability. J Ind Eng Manag. 2015;8(1):37-50.
- Dahlström K, et al. Environmental management systems and company performance: assessing the case for extending risk-based regulation. Eur Environ. 2003;13(4):187-203.
- Prevention P, Handbook A. World bank group. Washington, DC, 1998.
- Hilson G, Nayee V. Environmental management system implementation in the mining industry: a key to achieving cleaner production. Int J Miner Process. 2002;64(1):19-41.
- Baumann H, Tillman A-M. The hitch hiker’s guide to LCA. Lund: Studentlitteratur; 2004.
- Rebitzer G, et al. Life cycle assessment: part 1: framework, goal and scope definition, inventory analysis, and applications. Environ Int. 2004;30(5):701-20.
- Chang D, Lee C, Chen C-H. Review of life cycle assessment towards sustainable product development. J Clean Prod. 2014;83:48-60.
- ISO I. 14040. Environmental management-life cycle assessment-principles and framework, 2006: p. 235-248.
- Covello VT, et al. Release assessment. Risk assessment methods: approaches for assessing health and environmental risks. London: Plenum Press; 1993. p. 35-89.
- Suter GW II. Ecological risk assessment. Boca Raton: CRC Press; 2016.
- Ecological Risk Assessment. Guidelines for ecological risk assessment. Washington: Environmental Protection Agency; 1998.
- Azapagic A, Perdan S. Indicators of sustainable development for industry: a general framework. Process Saf Environ Prot. 2000;78(4):243-61.
- UN Global Compact. Guide to corporate sustainability: shaping a sustainable future. New york: United Nations Global Compact; 2022.
- Standardization, I.O.f., ISO 20400: 2017 Sustainable procurement—guidance. 2017.
- Seuring S, Müller M. From a literature review to a conceptual framework for sustainable supply chain management. J Clean Prod. 2008;16(15):1699-710.
- Carter CR, Rogers DS. A framework of sustainable supply chain management: moving toward new theory. Int J Phys Distrib Logist Manag. 2008. https://doi.org/10.1108/09600030810882816.
- Divan S, Rosencranz A. Environmental law and policy in India: cases and materials. Oxford: Oxford University Press; 2022.
- Jaffe AB, Newell RG, Stavins RN. A tale of two market failures: Technology and environmental policy. Ecol Econ. 2005;54(2-3):164-74.
- Vijge MJ et al. Governance through global goals. Architectures of earth system governance: Institutional complexity and structural transformation. 2020: p. 254-74.
- Paglia E. The Swedish initiative and the 1972 Stockholm Conference: the decisive role of science diplomacy in the emergence of global environmental governance. Human Soc Sci Commun. 2021;8(1):1-10.
- Biermann F. The future of ‘environmental’policy in the Anthropocene: time for a paradigm shift. Environ Politics. 2021;30(1-2):61-80.
- Hickmann T, et al. The United Nations Framework convention on climate change secretariat as an orchestrator in global climate policymaking. Int Rev Adm Sci. 2021;87(1):21-38.
- Depledge J. The “top-down” Kyoto Protocol? Exploring caricature and misrepresentation in literature on global climate change governance. Int Environ Agreem Politics Law Econ. 2022;22(4):673-92.
- Meinshausen M, et al. Realization of Paris agreement pledges may limit warming just below 2 C. Nature. 2022;604(7905):304-9.
- Anastas PT, Zimmerman JB. Moving from protection to prosperity: evolving the US environmental protection agency for the next 50 years. Environ Sci Technol. 2021;55(5):2779-89.
- Hartley K, van Santen R, Kirchherr J. Policies for transitioning towards a circular economy: expectations from the European Union (EU). Resour Conserv Recycl. 2020;155: 104634.
- Zeng Y, et al. Air pollution reduction in China: recent success but great challenge for the future. Sci Total Environ. 2019;663:329-37.
- Serra-Majem L, et al. Updating the mediterranean diet pyramid towards sustainability: focus on environmental concerns. Int J Environ Res Public Health. 2020;17(23):8758.
- Elder M, Ellis G. ASEAN countries’ environmental policies for the sustainable development goals (SDGs). Environ Dev Sustain. 2023;25(10):10975-93.
- Bouabdallah F . The use of environmental management system in the production of green products (View Toyota Motor Company experience).
- Jimenez Pastrana F, Dargusch P, Hill G. How is environmental sustainability a key to innovation? Adv Environ Eng Res. 2022;3(2):1-26.
- Schirnhofer NM. Sustainability efforts in the retail industry: the case study of walmart. Webster Groves: Webster University; 2022.
- Kanter DR, et al. Gaps and opportunities in nitrogen pollution policies around the world. Nat Sustain. 2020;3(11):956-63.
- Ajibade FO, et al. Environmental pollution and their socioeconomic impacts. In: Kumar A, Singh VK, Singh P, Mishra VK, editors., et al., Microbe mediated remediation of environmental contaminants. Amsterdam: Elsevier; 2021. p. 321-54.
- Ketter W, et al. Special issue editorial: addressing societal challenges through analytics: an ESG ICE framework and research agenda. J Assoc Inf Syst. 2020;21(5):9.
- WHO. Air pollution data. Global health observatory. 2021. https://www.who.int/data/gho/data/themes/air-pollution. Accessed 20 Nov 2023.
- Friedlingstein P, et al. Global carbon budget 2022. Earth Syst Sci Data. 2022;14(11):4811-900.
- Programme, U.N.E., Emissions gap report: broken record—temperatures hit new highs, yet world fails to cut emissions (again). 2023. https://doi.org/10.59117/20.500.11822/43922.
- UN, Water Summary progress update SDG 6—water and sanitation for all. 2021. https://www.unwater.org/sites/default/files/app/uploa ds/2021/12/SDG-6-Summary-Progress-Update-2021_Version-July-2021a.pdf. Accessed 20 Nov 2023.
- WHO, Drinking water. 2023. https://www.who.int/news-room/fact-sheets/detail/drinking-water. Accessed 20 Nov 2023.
- Fuller R, et al. Pollution and health: a progress update. Lancet Planet Health. 2022;6(6):e535-47.
- Rahman MM. Impact of taxes on the 2030 agenda for sustainable development: evidence from organization for economic co-operation and development (OECD) countries. Regional Sustain. 2023;4(3):235-48.
- Zhang H, et al. A road towards ecological development in China: the nexus between green investment, natural resources, green technology innovation, and economic growth. Resour Policy. 2022;77: 102746.
- Alataş S. The role of information and communication technologies for environmental sustainability: evidence from a large panel data analysis. J Environ Manage. 2021;293: 112889.
- Alola AA, Dike GC, Alola UV. The role of legal system and socioeconomic aspects in the environmental quality drive of the global south. Soc Indic Res. 2022;163(2):953-72.
- Chen R, et al. The nonlinear effect of land freight structure on carbon emission intensity: new evidence from road and rail freight in China. Environ Sci Pollut Res. 2022;29(52):78666-82.
- Chen R , Zhang Y . Assessing freight structure and its effect on transport CO2 emissions: heterogeneous and mediating effect analysis. Environ Sci Pollut Res. 2023;30(14):42034-55.
- Qi F, et al. Moving a step closer towards environmental sustainability in Asian countries: focusing on real income, urbanization, transport infrastructure, and research and development. Econ Res. 2023;36(2):2111317.
- Jiang Q, et al. Mitigation pathways to sustainable production and consumption: examining the impact of commercial policy on carbon dioxide emissions in Australia. Sustain Prod Consumption. 2021;25:390-403.
- Qingquan J, et al. A new approach to environmental sustainability: assessing the impact of monetary policy on CO2 emissions in Asian economies. Sustain Dev. 2020;28(5):1331-46.
- Ahmad W, Ozturk I, Majeed MT. How do remittances affect environmental sustainability in Pakistan? Evidence from NARDL approach. Energy. 2022;243: 122726.
- Ullah S, et al. Advancing sustainable growth and energy transition in the United States through the lens of green energy innovations, natural resources and environmental policy. Resour Policy. 2023;85: 103848.
- Leong C, Howlett M. Policy learning, policy failure, and the mitigation of policy risks: re-thinking the lessons of policy success and failure. Adm Soc. 2022;54(7):1379-401.
- Wang Z, et al. A process-based evaluation framework for environmental impacts of policy making. Environ Impact Assess Rev. 2024;104: 107351.
- Klausbruckner C, et al. A policy review of synergies and trade-offs in South African climate change mitigation and air pollution control strategies. Environ Sci Policy. 2016;57:70-8.
- Kronenberg J, et al. The thorny path toward greening: unintended consequences, trade-offs, and constraints in green and blue infrastructure planning, implementation, and management. Ecol Soc. 2021;26(2):36.
- Valor C, Antonetti P, Merino A. The relationship between moral competences and sustainable consumption among higher education students. J Clean Prod. 2020;248: 119161.
- Mehta A, Shah T, Thomas RJ. Strategies to address environmental degradation in developing nations: a multifaceted approach. J Intell Connect Emerg Technol. 2023;8(2):17-34.
- Klein N, Ramos TB, Deutz P. Factors and strategies for circularity implementation in the public sector: an organisational change management approach for sustainability. Corp Soc Responsib Environ Manag. 2022;29(3):509-23.
- Silvestre BS, Tîrcă DM. Innovations for sustainable development: Moving toward a sustainable future. J Clean Prod. 2019;208:325-32.
- Hou L, et al. Improving the greenness of enterprise supply chains by designing government subsidy mechanisms: based on prospect theory and evolutionary games. Front Psychol. 2023;14:1283794.
- Wambwa D, Mundike J, Chirambo B. Balancing economic development, social responsibility, and environmental conservation through financial assurance programs in sub-Saharan Africa’s mining industry. Environ Dev Sustain. 2023. https://doi.org/10.1007/ s10668-023-04205-w.
- Gehring MW, et al. Climate change and sustainable energy measures in regional trade agreements (RTAs). Geneva: International Centre for Trade and Sustainable Development; 2013.
- Clapp J. The privatization of global environmental governance: ISO 14000 and the developing world. In: Haas PM, editor. International environmental governance. Milton park: Routledge; 2017. p. 399-420.
- Phillipson J, et al. Stakeholder engagement and knowledge exchange in environmental research. J Environ Manage. 2012;95(1):56-65.
- Filippelli G , et al. New approaches to identifying and reducing the global burden of disease from pollution. GeoHealth. 2020;4(4):e2018GH000167.
- Bai X, et al. Spatial-temporal variation characteristics of air pollution and apportionment of contributions by different sources in Shanxi province of China. Atmos Environ. 2021;244: 117926.
- Nnorom IC, Osibanjo O. Overview of electronic waste (e-waste) management practices and legislations, and their poor applications in the developing countries. Resour Conserv Recycl. 2008;52(6):843-58.
- Molloy S, Varkey P, Walker TR. Opportunities for single-use plastic reduction in the food service sector during COVID-19. Sustain Prod Consum. 2022;30:1082-94.
- Cai W, et al. A review on the selection of raw materials and reactors for biomass fast pyrolysis in China. Fuel Process Technol. 2021;221: 106919.
- Broughton El, Walker DG. Policies and practices for aquaculture food safety in China. Food Policy. 2010;35(5):471-8.
- Chege SM, Wang D. The influence of technology innovation on SME performance through environmental sustainability practices in Kenya. Technol Soc. 2020;60: 101210.
- Herremans IM, Nazari JA, Mahmoudian F. Stakeholder relationships, engagement, and sustainability reporting. J Bus Ethics. 2016;138:417-35.
- Santos J, Flintsch G, Ferreira A. Environmental and economic assessment of pavement construction and management practices for enhancing pavement sustainability. Resour Conserv Recycl. 2017;116:15-31.
- Torriti J, Hassan MG, Leach M. Demand response experience in Europe: policies, programmes and implementation. Energy. 2010;35(4):1575-83.
- Hisschemöller M, Gupta J. Problem-solving through international environmental agreements: the issue of regime effectiveness. Int Polit Sci Rev. 1999;20(2):151-74.
- Ourbak T, Magnan AK. The Paris Agreement and climate change negotiations: small Islands, big players. Reg Environ Change. 2018;18:2201-7.
- Sun D , et al. Monitoring effect of transparency: how does government environmental disclosure facilitate corporate environmentalism? Bus Strateg Environ. 2019;28(8):1594-607.
- Weber CL, Peters GP. Climate change policy and international trade: policy considerations in the US. Energy Policy. 2009;37(2):432-40.
- Russell CS, Harrington W, Vaughn WJ. Enforcing pollution control laws. Milton Park: Routledge; 2013.
- Leson G, Winer AM. Biofiltration: an innovative air pollution control technology for VOC emissions. J Air Waste Manag Assoc. 1991;41(8):1045-54.
- Topare NS, Attar S, Manfe MM. Sewage/wastewater treatment technologies: a review. Sci Revs Chem Commun. 2011;1(1):18-24.
- Rana R, Ganguly R, Gupta AK. An assessment of solid waste management system in Chandigarh City, India. Electron J Geotech Eng. 2015;20(6):1547-72.
- Białowiec A. Hazardous emissions from municipal solid waste landfills. Contemp Prob Manag Environ Prot. 2011;9(9):7-28.
- Kumar P. The economics of ecosystems and biodiversity: ecological and economic foundations. Milton park: Routledge; 2012.
- Porter ME, Linde CV. Toward a new conception of the environment-competitiveness relationship. J Econ Perspect. 1995;9(4):97-118.
- Bhander G, Jozewicz W. Analysis of emission reduction strategies for power boilers in the US pulp and paper industry. Energy Emiss Control Technol. 2017;5:27.
- Conca K, Dabelko GD. Environmental peacemaking. Washington: Woodrow Wilson Center Press; 2002.
- Stockholm C. United Nations Conference on the Human Environment: Stockholm, Sweden, June 5-16, 1972: a Guide to the Microfiche Edition of the Conference Bibliography. Ann Arbor: Xerox University Microfilms; 1973.
- Ghisellini P, Cialani C, Ulgiati S. A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. J Clean Prod. 2016;114:11-32.
- Geissdoerfer M, et al. The circular economy-a new sustainability paradigm? J Clean Prod. 2017;143:757-68.
- Tilbury D, Stevenson RB. Education and sustainability: responding to the global challenge. Geneva: IUCN; 2002.
- Pielke RA Jr. The honest broker: making sense of science in policy and politics. Cambridge: Cambridge University Press; 2007.
- Bansal P, Roth K. Why companies go green: a model of ecological responsiveness. Acad Manag J. 2000;43(4):717-36.
- Jonathan Awewomom, jonathankeinzie8a154@gmail.com |
College of Natural Sciences, Department of Earth and Environmental Science, Michigan State University, East Lansing, USA. Faculty of Biosciences, Department of Environmental Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. Faculty of Biosciences, Department of Biochemistry and Biotechnology, Human Nutrition and Dietetics Unit, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. Faculty of Physical and Computational Sciences, Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. Faculty of Mathematics and Natural Sciences, Department of Chemistry, University of Bonn, Bonn, Germany. - Author contributions The study was conceptualized, written, reviewed, designed and administered by JA; the manuscript was initially drafted by FD, YDT, PEA, ENYO and WBA, and later edited by LNAS, FO and OA.Data Availability Not applicable.
Declarations
Consent for publication All authors participated in the development of the manuscript and consent to publication.