DOI: https://doi.org/10.5194/essd-16-1353-2024
تاريخ النشر: 2024-03-15
GLC_FCS30D: أول منتج عالمي لمراقبة ديناميات تغطية الأرض بدقة 30 مترًا مع نظام تصنيف دقيق للفترة من 1985 إلى 2022 تم إنشاؤه باستخدام صور لاندسات ذات سلسلة زمنية كثيفة وطريقة الكشف المستمر عن التغيرات
تمت المراجعة: 15 يناير 2024 – تم القبول: 31 يناير 2024 – تم النشر: 15 مارس 2024
الملخص
تم تحديد تغيير استخدام الأراضي كسبب مهم أو قوة دافعة لتغير المناخ العالمي وهو موضوع بحثي كبير. على مدى العقود القليلة الماضية، تقدم رسم خرائط استخدام الأراضي العالمي؛ ومع ذلك، لا تزال بيانات مراقبة تغيير استخدام الأراضي العالمية على مدى فترات زمنية طويلة نادرة، خاصة تلك التي بدقة 30 مترًا. في هذه الدراسة، نصف مجموعة بيانات جديدة لمراقبة ديناميات استخدام الأراضي العالمية بدقة 30 مترًا، والتي تحتوي على 35 فئة فرعية من استخدام الأراضي وتغطي الفترة من 1985 إلى 2022 في 26 نقطة زمنية (تم تحديث الخرائط كل 5 سنوات قبل عام 2000 وسنويًا بعد عام 2000). تم تطوير GLC_FCS30D باستخدام نموذج الكشف عن التغيير المستمر وجميع صور لاندسات المتاحة استنادًا إلى منصة Google Earth Engine. على وجه التحديد، نستفيد أولاً من نموذج الكشف عن التغيير المستمر والسلسلة الزمنية الكاملة لملاحظات لاندسات لالتقاط نقاط الزمن للبكسلات المتغيرة وتحديد المناطق المستقرة زمنياً. ثم، نطبق طريقة تحسين مكاني زمني لاشتقاق عينات تدريب موزعة عالميًا وعالية الثقة من هذه المناطق المستقرة زمنياً. بعد ذلك، تُستخدم نماذج التصنيف التكيفية المحلية لتحديث معلومات استخدام الأراضي للبكسلات المتغيرة، ويتم اعتماد خوارزمية تحسين التناسق الزمني لتحسين استقرارها الزمني وكبح بعض التغيرات الزائفة. علاوة على ذلك، يتم التحقق من صحة منتج GLC_FCS30D باستخدام 84526 عينة تحقق موزعة عالميًا من عام 2020. ويحقق دقة عامة من
1 المقدمة
الفترة من 1992 إلى 2020 بدقة عامة تبلغ
لمراقبة اضطراب الغابات (Huang et al., 2009; Jin et al., 2023; Kennedy et al., 2007, 2010; Qin et al., 2021)، التوسع الحضري (Liu et al., 2019; X. Zhang et al., 2021a)، ديناميات الأراضي الزراعية (Dong et al., 2015; Potapov et al., 2021)، وتغييرات تغطية الأراضي (Bullock et al., 2019; Jin et al., 2017; Verbesselt et al., 2010; Zhu et al., 2019). ومع ذلك، فإن معظمها مناسب فقط لمراقبة تغيير تغطية الأراضي على المستوى الإقليمي، وبعض الخوارزميات تحتاج إلى معرفة مسبقة (مثل تلك الخاصة بالتوسع الحضري). استعرض Zhu (2017) بشكل منهجي أداء وقيود طرق الكشف عن التغيير المختلفة بناءً على بيانات الأقمار الصناعية متعددة الأوقات وشرح بشكل أكبر أن خوارزميات الكشف عن التغيير ذات التردد الزمني العالي والمتعددة المتغيرات أكثر ملاءمة لسلسلة زمنية طويلة من تغييرات تغطية الأراضي في منطقة واسعة، بشرط أن يتم حل مشكلة الكمية الهائلة من الحسابات المعنية. وبالمثل، استنتج Xian et al. (2022) وLiu et al. (2019) أن طرق الكشف عن التغيير الكثيفة والمستمرة توفر دقة أعلى وموثوقية أكبر من طرق الكشف عن التغيير التقليدية لالتقاط تغييرات متعددة ومعقدة.
GLC_FCS30D قبل عام 2000)؛ (2) قياس تغييرات تغطية الأراضي وتحليل أنماط التغيير الزماني والمكاني لمختلف أنواع تغطية الأراضي بناءً على مجموعة بيانات GLC_FCS30D المطورة؛ و(3) تحليل أداء منتج GLC_FCS30D بشكل كمي باستخدام مجموعات بيانات تحقق متعددة المصادر.
2 مجموعات البيانات
2.1 صور Landsat المستمرة من 1984 إلى 2022
2.2 مجموعة بيانات تغطية الأراضي العالمية بدقة 30 متر لعام 2020
2.3 مجموعة بيانات ديناميات السطح غير المنفذ بدقة 30 متر من 1985 إلى 2022
أسطح غير متجانسة غير نفاذة. وبالتالي، قمنا بشكل مستقل بإنتاج مجموعة بيانات زمنية عالمية لديناميات الأسطح غير النفاذة بدقة 30 متر (GISD30) للفترة من 1985 إلى 2022، ثم قمنا بتراكب هذه المجموعة الموضوعية على مجموعة بيانات GLC_FCS30D لضمان ثقة عالية في ديناميات الأسطح غير النفاذة. تم تطوير مجموعة بيانات GISD30 من خلال دمج طرق هجرة العينات، والتعميم الطيفي، ونمذجة التكيف المحلي، ثم تم تحسينها بواسطة طريقة تصحيح التناسق الزماني والمكاني (Zhang et al.، 2022). تم التحقق منها ووجد أنها تحقق دقة عامة متوسطة تبلغ
2.4 مجموعات بيانات الأراضي الرطبة العالمية بارتفاع 30 متر من 1985 إلى 2022
2.5 مجموعات بيانات التحقق
2.5.1 مجموعة بيانات التحقق العالمية
2.5.2 مجموعات بيانات السلاسل الزمنية الإقليمية من طرف ثالث المستخدمة للتحقق

3 طرق
تغييرات مفاجئة في بكسلات تغطية الأرض الأخرى باستخدام نموذج الكشف عن التغير المستمر؛ (2) اشتقاق عينات تدريب مستقرة زمانيًا ومكانيًا باستخدام طريقة تحسين الزمان والمكان من منتج تغطية الأرض GLC_FCS30 والأقنعة المستقرة زمانيًا؛ (3) بناء نماذج تصنيف محلية قابلة للتكيف لكل منطقة محلية ثم تحديث معلومات تغطية الأرض في البكسلات المتغيرة؛ و(4) استخدام طريقة تحسين التناسق الزماني والمكاني لتحسين جودة خرائط تغير تغطية الأرض وكبح التغيرات الزائفة.
تم دمجه في خوارزمية CCD على منصة GEE كـ ee.Algorithms.TemporalSegmentation.Ccdc()). بعبارة أخرى، تم تقليل تأثير البكسلات ذات الجودة المنخفضة.
3.1 نظام تصنيف الغرامات المستخدم في GLC_FCS30D
3.2 اكتشاف التغيرات باستخدام خوارزمية CCD وصور لاندسات المستمرة
NBR
أين

3.3 تحديث المناطق المتغيرة باستخدام التصنيفات التكيفية المحلية
3.3.1 اشتقاق عينات تدريب مستقرة زمانياً ومكانياً
الكثير من المشاركة اليدوية، لذا فهي غير مناسبة لجمع عينات تدريبية لمساحات كبيرة. تتضمن خيارًا بديلاً يتمثل في توليد عينات تدريبية من خلال تحسين منتجات تغطية الأرض الحالية من خلال سلسلة من تدابير التحسين (X. Zhang et al., 2021b; Zhang et al., 2023). مستلهمين من الخيار الأخير، قمنا بدمج مجموعة البيانات السابقة GLC_FCS30-2020 وقناع الكشف عن التغيير (المستمد باستخدام خوارزمية CCD الموضحة في القسم 3.2) للحصول على عينات تدريبية مستقرة زمانيًا ومكانيًا. على وجه التحديد، من المعروف أن المناطق المستقرة زمانيًا تتمتع بدقة رسم خرائط أعلى (Yang and Huang, 2021; Zhang and Roy, 2017; Zhang et al., 2023)؛ لذلك، استخدمنا أولاً قناع CCD المذكور للاحتفاظ بالمناطق التي كانت مستقرة زمانيًا خلال الفترة من 1985 إلى 2022، ثم قمنا بتداخلها مع خرائط GLC_FCS30-2020 لتحديد تسميات تغطية الأرض الخاصة بها. بعد ذلك، نظرًا لأن Radoux et al. (2014) أكدوا أن مناطق انتقال تغطية الأرض عادة ما تكون عرضة لمشاكل تصنيف أكثر خطورة وأن البكسلات ذات تغطية أرض متجانسة لديها احتمال أعلى لتحقيق دقة مقبولة، استخدمنا مرشح تآكل مورفولوجي بسمك 3 بكسلات.
نظام التصنيف الأساسي | نظام التحقق من المستوى الأول | نظام التصنيف الدقيق | هوية | ||
الأراضي الزراعية | CRP | الأراضي الزراعية المعتمدة على الأمطار | RCP | الأراضي الزراعية المعتمدة على الأمطار | 10 |
أراضي زراعية مغطاة بالنباتات العشبية | 11 | ||||
غطاء الأشجار أو الشجيرات للأراضي الزراعية | 12 | ||||
الأراضي الزراعية المروية | ICP | الأراضي الزراعية المروية | 20 | ||
غابة | FST | غابة دائمة الخضرة ذات الأوراق العريضة | EBF | غابة دائمة الخضرة ذات الأوراق العريضة المغلقة | 51 |
غابة دائمة الخضرة ذات الأوراق العريضة المفتوحة | 52 | ||||
غابة نفضية عريضة الأوراق | BDF | غابة نفضية عريضة الأوراق مغلقة | 61 | ||
غابة عريضة الأوراق المتساقطة المفتوحة | 62 | ||||
غابة دائمة الخضرة ذات الإبر | إنف | غابة مغلقة من الأشجار دائمة الخضرة ذات الإبر | 71 | ||
غابة دائمة الخضرة ذات إبر | 72 | ||||
غابة صنوبرية متساقطة الأوراق | لم يُنهَ | غابة مغلقة من الأشجار الصنوبرية المتساقطة | 81 | ||
غابة مفتوحة من الأشجار الصنوبرية المتساقطة | 82 | ||||
غابة مختلطة الأوراق | MFT | غابة مختلطة الأوراق مغلقة | 91 | ||
غابة مختلطة الأوراق المفتوحة | 92 | ||||
أراضي الشجيرات | SHR | أراضي الشجيرات | SHR | أراضي الشجيرات | ١٢٠ |
أراضي الشجيرات دائمة الخضرة | 121 | ||||
أراضي الشجيرات المتساقطة الأوراق | ١٢٢ | ||||
المراعي | جي آر إس | المراعي | جي آر إس | المراعي | ١٣٠ |
التندرا | TUD | الطحالب واللخاخ | نظام إدارة التعلم | الطحالب واللخاخ | ١٤٠ |
الأراضي الرطبة | رطب | الأراضي الرطبة الداخلية | إي دبليو إل | مستنقع | 181 |
مستنقع | 182 | ||||
شقة غارقة | 183 | ||||
ملحي | 184 | ||||
الأراضي الرطبة الساحلية | CWL | مانغروف | 185 | ||
مستنقع ملحي | 186 | ||||
السهول المدية | 187 | ||||
سطح غير نفاذ | IMP | سطح غير نفاذ | IMP | سطح غير نفاذ | 190 |
المناطق العارية | بال | نباتات متناثرة | SVG | نباتات متناثرة | 150 |
أراضي الشجيرات المتناثرة | 152 | ||||
غطاء عشبي متفرق | 153 | ||||
المناطق العارية | بال | المناطق العارية | ٢٠٠ | ||
المناطق العارية المجمعة | ٢٠١ | ||||
المناطق العارية غير المجمعة | ٢٠٢ | ||||
جسم مائي | WTR | مسطح مائي | WTR | جسم مائي | ٢١٠ |
ثلج وجليد دائم | PSI | ثلج وجليد دائم | PSI | ثلج وجليد دائم | 220 |

3.3.2 تحديث المناطق المتغيرة باستخدام التصنيفات التكيفية المحلية
تم استخدام طريقة مصفوفة التكرار المشترك على مستوى 50 بالمائة لاستخراج التجانس، والانتروبيا، والاختلاف، والتباين، والتباين، والارتباط من نطاق NIR. أخيرًا، نظرًا لأن توزيع الغطاء الأرضي عادة ما يكون مرتبطًا بالبيئة الطبوغرافية (على سبيل المثال، تُوزع الأراضي الزراعية والمسطحات المائية بشكل رئيسي في المناطق المسطحة)، تم استيراد ثلاثة متغيرات طبوغرافية (الارتفاع، والانحدار، والاتجاه) تم حسابها من مجموعة بيانات DEM العالمية بارتفاع 30 مترًا المسماة ASTER_GDEM (Tachikawa et al.، 2011). بالإضافة إلى ذلك، نظرًا لسعة التخزين المحدودة وسعة نقل البيانات بين الأقمار الصناعية والأرض في الأقمار الصناعية المبكرة، كانت كثافة صور لاندسات نادرة قبل عام 2000 (حيث حصل قمر صناعي واحد فقط، لاندسات 5، على البيانات) (Roy et al.، 2014b). لذلك، اخترنا دورة زمنية خشنة مدتها 5 سنوات لضمان دقة الخرائط قبل عام 2000؛ أي أنه تم استخدام الملاحظات الساتلية من عامين قبل وبعد لتحديد السنة المركزية الاسمية. على سبيل المثال، قمنا بتحديث خرائط الغطاء الأرضي في عام 1995 باستخدام جميع الصور المتاحة من عام 1993 إلى عام 1997. في المجموع، كان هناك 49 ميزة متعددة المصادر، بما في ذلك 40 ميزة طيفية فينولوجية، و6 ميزات نسيجية، و3 متغيرات طبوغرافية.
أشارت النتائج النظرية والتجريبية إلى أن اختيار Mtry و Ntree كان له تأثير ضئيل على دقة التصنيف (Belgiu و Drãgup، 2016؛ Du وآخرون، 2015). وبالتالي، استنادًا إلى الدراسات السابقة (Belgiu و Drãgup، 2016؛ Zhang وآخرون، 2019)، تم استخدام القيم الافتراضية الموصى بها وهي 500 لـ Ntree ومربع العدد الإجمالي لميزات الإدخال لـ Mtry.
3.3.3 تحسين التناسق الزمني
3.4 تقييم الدقة
لحساب الأخطاء المعيارية المقابلة (بونتوس أولوفسون، 2014).
مساعد شخصي
أ.ع.
4 النتائج والمناقشة
4.1 نظرة عامة على خرائط GLC_FCS30D والتغييرات التي طرأت عليها

الأراضي الشجرية، وتغيرات السطح غير النفاذ، التي تهيمن على تغييرات تغطية الأرض في الشكل 5. هناك ثلاثة أسباب رئيسية لفقدان الغابات على مدى السنوات السبع والثلاثين الماضية: (1)



4.2 تقييم دقة GLC_FCS30D لعام 2020
تحتوي على 10 أنواع رئيسية من تغطية الأرض. حقق مجموعة بيانات GLC_FCS30D الجديدة دقة عامة تبلغ

|
(
|
(
|
(9 I)
|
(
|
(で I) 969 L | (II.I) 89 I9 | (
|
(
|
(
|
|
||
|
t6 II |
|
|
|
|
|
|
ISZ
|
LL8*
|
[W]OL | ||
(
|
|
ISE
|
|
0 | 100.0 | EZ0.0 | 0 | س00.0 |
|
t00\% | 0 | ISd |
(8.0)S* 6 L | 829*II | IEI*0 | 6EZ6 | 8 إلى 0 | LLS* 0 | ست0.0 | Et0.0 | S8S* 0 | E8L0 | 6500 |
|
تي في جي |
(19*0)القديس S6 | E8Z’S | 0 | tZ0* |
|
٢٠٠٠ | 9000 | 100.0 | ت0.0 | tZ0.0 | 8S0.0 | سبعة وثمانون | دوي |
(
|
تست إي |
|
|
ز00\٪ | vtt؟ |
|
٨١٠.٠ | L91.0 | 8910 | EZI•0 | 10.0 | ج
|
|
إنترنت إكسبلورر 8
|
٢٠٠٠ | 6E0*0 | ZI0\% | ٨٠٠.٠ | S0E
|
て0E 0 |
|
6100 | 9800 | ت0.0 | yLM |
(
|
9IS’S |
|
تيتي دي 0 | IZ0.0 | ل E0.0 |
|
|
LSI•0 | 9 SI*0 | اس9+ 0 |
|
لام |
|
9 SE 6 | ٢٠٠٠ | ز0س*0 | ص0.0 | 6100 |
|
I9I*0 | Z6E
|
E98* |
|
SSS.0 | YHS |
|
SS8.0I |
|
L8I'I | LS0.0 | t80.0 | ١١٠٠ | IEZ 0 | I8I*I | 906 س | 99I'I | SE0.I | SHD |
(IE*0)E8*Z6 |
|
ز00\٪ | EII*0 |
|
٨٠٠.٠ | IZ0.0 | ILE 0 | II8.0 | SIE゙0 | زيل•8 | EIS゙0 | LSA |
(
|
t0ピLI | 0 | LII*0 | tLI•0 | 0 | ل20\٪ |
|
|
|
Z6L*0 | ز
|
дY( 3 |
(AS) V د | [ண口 | ISd | تلفازЯ | دوي | ج
|
YLM | لام | أون إس | سيد | LSA | دو | әวแวเอมิy |
(\٪LZ
|
دو |


4.3 تقييم الدقة استنادًا إلى مجموعتي بيانات التحقق الإقليمي من طرف ثالث
4.3.1 سلسلة زمنية لمقاييس الدقة لـ GLC_FCS30D من مجموعة بيانات LCMAP_Val
مرجع | RCP | ICP | EBF | DBF | إنف | لم يُنهَ | MFT | SHR | جي آر إس | نظام إدارة التعلم | SVG | إي دبليو إل | CWL | IMP | بال | WTR | PSI | إجمالي | مساعد شخصي (SE) |
RCP | ١٢.٢٢٥ | 1.023 | 0.239 | 0.358 | 0.102 | 0.016 | 0.009 | 0.382 | 0.66 | 0 | 0.078 | 0.056 | 0.005 | 0.124 | 0.028 | 0.001 | 0 | 15.332 | 79.7 (0.7) |
ICP | 0.397 | 1.932 | 0.026 | 0.016 | 0.005 | 0 | 0 | 0.01 | 0.025 | 0 | 0.012 | 0.029 | 0.005 | 0.052 | 0 | 0.018 | 0 | ٢.٥٢٧ | ٧٦.٤٥ (١.٨١) |
EBF | 0.2 | 0.048 | 9.091 | 1.098 | 0.262 | 0.103 | 0.151 | 0.371 | 0.084 | 0 | 0.012 | 0.136 | 0.028 | 0.029 | 0.001 | 0.004 | 0 | ١١.٥١٤ | 78.96 (0.82) |
DBF | 0.187 | 0.016 | 0.632 | 6.838 | 0.537 | 0.294 | 0.396 | 0.235 | 0.144 | 0.002 | 0.019 | 0.077 | 0.002 | 0.025 | 0.005 | 0.004 | 0.002 | 9.054 | 75.53 (0.97) |
ENF | 0.046 | 0.004 | 0.174 | 0.316 | 5.681 | 0.328 | 0.٤٣٩ | 0.128 | 0.034 | 0.006 | 0.043 | 0.094 | 0 | 0.008 | 0.01 | 0.01 | 0 | 6.895 | 82.39 (0.98) |
لم يُنهَ | 0.008 | 0 | 0.002 | 0.13 | 0.245 | 1.854 | 0.073 | 0.071 | 0.053 | 0 | 0.011 | 0.025 | 0 | 0.001 | 0.007 | 0.002 | 0 | 2.414 | 76.79 (1.85) |
MFT | 0.004 | 0 | 0.019 | 0.176 | 0.234 | 0.013 | 0.828 | 0.014 | 0.004 | 0 | 0 | 0.010 | 0.05 | 0 | 0.001 | 0 | 0 | 1.308 | ٥٨٫٢٩ (١٫٥٣) |
SHR | 0.518 | 0.042 | 0.299 | 0.9 | 0.328 | 0.131 | 0.034 | ٥.٤٤ | 0.871 | 0.019 | 0.441 | 0.157 | 0.005 | 0.05 | 0.065 | 0.013 | 0.002 | 9.438 | 57.63 (1.09) |
جي آر إس | 0.947 | 0.097 | 0.167 | 0.582 | 0.209 | 0.154 | 0.024 | 1.191 | ٥.٩٥٨ | 0.085 | 0.974 | 0.229 | 0.006 | 0.052 | 0.217 | 0.008 | 0.01 | 10.95 | 54.41 (1.02) |
نظام إدارة التعلم | 0.006 | 0.004 | 0.001 | 0.022 | 0.044 | 0.053 | 0.001 | 0.168 | 0.169 | ٢.٤٦٥ | 0.379 | 0.02 | 0.001 | 0.002 | 0.098 | 0.026 | 0.02 | ٣.٤٨٤ | 70.76 (1.65) |
SVG | 0.064 | 0.01 | 0.008 | 0.006 | 0.007 | 0.01 | 0.001 | 0.397 | 0.462 | 0.025 | 2.71 | 0.012 | 0 | 0.013 | 0.643 | 0.002 | 0.024 | ٤.٣٩٩ | 61.6 (1.57) |
إي دبليو إل | 0.01 | 0.002 | 0.044 | 0.029 | 0.١٠٣ | 0.022 | 0.002 | 0.048 | 0.017 | 0.008 | 0.042 | 2.673 | 0.024 | 0.001 | 0.012 | 0.224 | 0 | ٣.٢٦٣ | 81.91 (1.45) |
CWL | 0.004 | 0.002 | 0.008 | 0.002 | 0.004 | 0.002 | 0.004 | 0.008 | 0.006 | 0 | 0.008 | 0.188 | 1.476 | 0.007 | 0.007 | 0.059 | 0 | 1.783 | 82.77 (1.92) |
IMP | 0.074 | 0.011 | 0.008 | 0.008 | 0.037 | 0.002 | 0 | 0.041 | 0.024 | 0.002 | 0.014 | 0.004 | 0 | ٥.٠٨٧ | 0.01 | 0.004 | 0 | 5.329 | 95.45 (0.61) |
بال | 0.048 | 0.01 | 0.002 | 0.004 | 0.002 | 0.001 | 0 | 0.193 | 0.328 | 0.557 | 0.582 | 0.043 | 0.002 | 0.035 | ٥.٣٨٤ | 0.029 | 0.108 | 7.33 | 73.45 (1.11) |
WTR | 0.014 | 0.024 | 0.014 | 0.014 | 0.019 | 0.008 | 0.006 | 0.011 | 0.016 | 0.007 | 0.011 | 0.168 | 0.114 | 0.011 | 0.019 | ٣.٠٥٤ | 0.002 | ٣.٥٠٩ | ٨٧.٠٤ (١.٢٢) |
PSI | 0 | 0 | 0 | 0.001 | 0.002 | 0 | 0 | 0.005 | 0.03 | 0.001 | 0.011 | 0 | 0 | 0 | 0.019 | 0.023 | 1.363 | 1.455 | 93.65 (1.37) |
إجمالي | 14.757 | ٣.٢٢٤ | 10.753 | 10.56 | ٧.٨٣٣ | ٣.٧٢٤ | 1.97 | 8.711 | 8.883 | 3.179 | ٥.٣٥٣ | ٣.٩٢٧ | 1.668 | ٥.٤٩٧ | ٦.٥٢٦ | ٣.٤٨٢ | 1.532 | ||
الإمارات العربية المتحدة (جنوب شرق) | 82.85 (0.67) | ٥٩.٩٢ (١.٨٥) | ٨٤.٥٥ (١.٧٥) | 64.76 (1) | 72.52 (1.08) | ٤٩.٧٧ (١.٧٦) | ٣٩٫٣٤ (١٫٣٨) | 62.44 (1.11) | 67.07 (1.07) | 77.55 (1.59) | 50.63 (1.47) | 68.07 (1.6) | ٨٨.٤٩ (١.٦٨) | ٩٢.٥٤ (٠.٧٦) | 82.5 (1.01) | 87.73 (1.19) | ٨٨.٩٦ (١.٧٢) | ||
أ.ع. | 73.04 %
|
تكون التغيرات الزمنية مستقرة. من بينها، نوع تغطية الأرض للمسطحات المائية لديه أعلى مقاييس دقة، حيث حقق قيم P.A. و U.A. المتوسطة من
تقدير مساحة السطح غير النفاذ في LCMAP_Val أكبر من التقييم في مجموعة بيانات GLC_FCS30D.
4.3.2 سلسلة زمنية لمقاييس الدقة لـ GLC_FCS30D من مجموعة بيانات LUCAS


أنواع الغطاء الأرضي الرئيسية مقارنة بتقديرات LUCAS. على وجه الخصوص، وفقًا لـ AB الخاصة به
غير متغير | تغير | إجمالي | مساعد شخصي (SE) | فورمولا 1 | |
غير متغير | 82.21 | 6.34 | ٨٨.٥٥ |
|
94.53 |
تغير | 3.18 | 8.27 | 11.45 |
|
63.49 |
إجمالي | ٨٥.٣٩ | 14.61 | |||
الإمارات العربية المتحدة (جنوب شرق) |
|
|
|||
أ.ع. (س.إ) |
|
2006 | 2009 | 2012 | 2015 | 2018 | ||||||
مساعد شخصي (جنوب شرق) | الإمارات العربية المتحدة (جنوب شرق) | مساعد شخصي (جنوب شرق) | الإمارات العربية المتحدة (الجنوبية الشرقية) | مساعد شخصي (SE) | الإمارات العربية المتحدة (الجنوبية الشرقية) | مساعد شخصي (جنوب شرق) | الإمارات العربية المتحدة (جنوب شرق) | مساعد شخصي (SE) | الإمارات العربية المتحدة (جنوب شرق) | |
CRP | 85.49 (0.11) | 93.37 (0.08) | 85.40 (0.11) | 93.31 (0.08) | 85.50 (0.11) | 93.17 (0.08) | 85.47 (0.11) | 93.05 (0.08) | 85.52 (0.11) | 92.82 (0.08) |
FST | 95.22 (0.08) | 76.71 (0.15) | 94.97 (0.08) | 76.71 (0.15) | 94.79 (0.09) | 76.82 (0.15) | 94.36 (0.09) | 76.82 (0.15) | 93.71 (0.09) | 76.85 (0.15) |
جي آر إس | 6.13 (0.26) | ٢١.٣١ (٠.٨٣) | 6.10 (0.26) | ٢١.١٣ (٠.٨٣) | 6.05 (0.26) | 20.98 (0.83) | 6.08 (0.26) | 20.71 (0.82) | 5.99 (0.26) | 20.74 (0.82) |
SHR | 8.13 (0.42) | 8.93 (0.46) | 8.25 (0.43) | 8.92 (0.46) | 8.02 (0.42) | 8.77 (0.46) | 7.84 (0.42) | 8.60 (0.45) | 8.35 (0.43) | 8.96 (0.46) |
رطب | 63.10 (0.81) | 66.55 (0.81) | 61.40 (0.81) | 65.55 (0.82) | 61.86 (0.81) | 66.21 (0.82) | 62.64 (0.81) | 66.60 (0.81) | 62.94 (0.81) | 65.34 (0.81) |
WTR | 89.73 (0.40) | ٩٢.٤٤ (٠.٣٦) | 90.09 (0.40) | 92.53 (0.35) | 90.28 (0.39) | 92.36 (0.36) | 90.83 (0.38) | 91.63 (0.37) | 90.10 (0.40) | 91.56 (0.37) |
IMP | ٥٨.٥٥ (٠.٥٦) | 72.69 (0.56) | ٥٩.٢١ (٠.٥٥) | 72.06 (0.56) | ٥٩.٠٦ (٠.٥٥) | 71.72 (0.56) | 58.65 (0.55) | 70.85 (0.56) | ٥٩.٠١ (٠.٥٥) | 70.29 (0.56) |
بال | 52.77 (1.12) | ٣٩.٦٢ (٠.٩٥) | 52.90 (1.12) | ٣٨.٤٤ (٠.٩٣) | ٥٢.١٩ (١.١٣) | ٣٧.٧٠ (٠.٩٣) | ٥٢.٠٧ (١.١٣) | ٣٦.١٦ (٠.٩٠) | ٥٢.٣٣ (١.١٣) | ٣٤.٦٩ (٠.٨٧) |
PSI | ٨٦٫٠٢ (٥٫٠٠) | ٣٥.٠١ (٤.٣٨) | 91.40 (4.04) | ٣٦.٥٦ (٤.٣٨) | ٨٩.٢٥ (٤.٤٦) | 31.86 (4.00) | ٩٦.٢٤ (٢.٧٤) | ٣١.٤٠ (٣.٨١) | ٩٦.٢٤ (٢.٧٤) | ٣١.٣٥ (٣.٨١) |
أ.ع. (س.إ) | 82.11 (0.09) | 81.99 (0.09) | 81.97 (0.09) | 81.82 (0.09) | 81.64 (0.09) |
4.4 مقارنات مع منتجات ديناميات تغطية الأرض العالمية الأخرى
(مثل المباني الريفية وشبكات الطرق) أكثر من CCI_LC و MCD12Q1 بسبب دقتها المكانية العالية التي تبلغ 30 متر.
2006 | 2009 | 2012 | 2015 | 2018 | |||||||||||
خريطة | مرجع | أب | خريطة | مرجع | أب | خريطة | مرجع | أب | خريطة | مرجع | أب | خريطة | مرجع | أب | |
CRP | ٤٦.٤٨ | 50.62 | -4.14 | ٤٦.٤٦ | 50.64 | -4.18 | ٤٦.٥٩ | 50.67 | -4.08 | ٤٦.٦٣ | 50.69 | -4.06 | ٤٦.٧٧ | 50.74 | -3.97 |
FST | ٤١.٣٩ | ٣٣.٧٦ | 7.63 | ٤١.٢٨ | ٣٣.٧٥ | 7.53 | 41.14 | ٣٣.٧٣ | 7.41 | ٤٠.٩٦ | ٣٣.٧٣ | 7.23 | ٤٠.٦٦ | ٣٣.٦٨ | 6.98 |
جي آر إس | 1.21 | ٤.١٥ | -2.94 | 1.21 | ٤.١٥ | -2.94 | 1.21 | ٤.١٥ | -2.94 | 1.23 | ٤.١٥ | -2.92 | 1.21 | ٤.١٥ | -2.94 |
SHR | 1.91 | 2.08 | -0.17 | 1.94 | 2.08 | -0.14 | 1.92 | 2.08 | -0.16 | 1.91 | 2.07 | -0.16 | 1.95 | 2.06 | -0.11 |
رطب | 1.70 | 1.75 | -0.05 | 1.68 | 1.74 | -0.06 | 1.68 | 1.73 | -0.05 | 1.69 | 1.71 | -0.02 | 1.73 | 1.72 | 0.01 |
WTR | ٢.٧٥ | 2.85 | -0.1 | 2.76 | 2.85 | -0.09 | 2.77 | 2.85 | -0.08 | 2.81 | 2.85 | -0.04 | 2.79 | 2.86 | -0.07 |
IMP | 3.18 | 3.82 | -0.64 | ٣.٢٥ | 3.83 | -0.58 | ٣.٢٥ | 3.82 | -0.57 | ٣.٢٧ | 3.82 | -0.55 | 3.32 | 3.82 | -0.5 |
بال | 1.32 | 0.95 | 0.37 | 1.36 | 0.95 | 0.41 | 1.37 | 0.95 | 0.42 | 1.42 | 0.95 | 0.47 | 1.49 | 0.95 | 0.54 |
PSI | 0.06 | 0.02 | 0.04 | 0.06 | 0.02 | 0.04 | 0.07 | 0.02 | 0.05 | 0.07 | 0.02 | 0.05 | 0.07 | 0.02 | 0.05 |
غير متغير | تغير | إجمالي | مساعد شخصي (SE) | فورمولا 1 | |
غير متغير | 82.69 | ٢.٧٩ | 85.48 | ٩٦.٧٣ | ٩٤.٤٩ |
تغير | 6.84 | 7.68 | 14.52 | ٥٢.٨٦ | ٦١.٤٣ |
إجمالي | 89.53 | 10.47 | |||
الإمارات العربية المتحدة (الجنوبية الشرقية) |
|
|
|||
أ.ع. (س.إ) |
|
4.5 قيود وآفاق مجموعة بيانات GLC_FCS30D
تم تطوير الأنواع (السطح غير القابل للاختراق والأراضي الرطبة) بشكل مستقل لتحسين موثوقية GLC_FCS30D؛ و(4) تم تطبيق تحسين “التحقق من الاتساق الزماني والمكاني” في القسم 3.3.3 لضمان استقرار ودقة GLC_FCS30D بشكل أكبر. تظهر تقييمات الدقة التي تم إجراؤها باستخدام مجموعة البيانات العالمية التي تم تطويرها واثنين من مجموعات البيانات التابعة لجهات خارجية أن GLC_FCS30D يلبي متطلبات الدقة لسنة الأساس ولتغيرات السلاسل الزمنية على نطاق عالمي أو وطني. كما تبرز المقارنات مع منتجات تغطية الأراضي الأخرى تفوق GLC_FCS30D من حيث تنوع نظام التصنيف ودقة مراقبة هذه المناطق المتغيرة. ومع ذلك، فإن مراقبة تغير تغطية الأراضي العالمية على مدى سلسلة زمنية طويلة هي مهمة معقدة وصعبة للغاية (هانسن ولوفيلاند، 2012؛ سونغ وآخرون، 2018؛ وينكلر وآخرون، 2021؛ شيان وآخرون، 2022). على الرغم من أن هذه الدراسة تستخدم سلسلة من القياسات والأساليب لتحقيق مراقبة تغير تغطية الأراضي العالمية بدقة 30 مترًا على مدى السنوات الـ 37 الماضية، لا تزال هناك بعض عدم اليقين والقيود التي تحتاج إلى حل في العمل المستقبلي.

قبل عام 2000 (Zhang et al., 2022)، مما يعني أن بعض تغييرات استخدام الأراضي لم يكن بالإمكان التقاطها في هذه المناطق قبل عام 2000 في GLC_FCS30D. لحل مشكلة الملاحظات المفقودة والنادرة، فإن حلاً مفيداً هو دمج صور الاستشعار عن بعد متعددة المصادر. على سبيل المثال، قام Y. Zhang et al. (2021) بدمج صور Landsat وSentinel-2 لتتبع الاضطرابات في الغابات الاستوائية بدقة إجمالية تزيد عن

في الملحق) أظهر أيضًا أن تحسين التناسق الزماني المكاني يمكن أن يحسن جودة بيانات GLC_FCS30D من خلال تقليل ضوضاء الملح والفلفل وتحسين التناسق الزمني. وبالمثل، استخدم يانغ وهوانغ (2021) هذه الخوارزمية لتحسين منتجات تغطية الأراضي السنوية في الصين خلال الفترة من 1990 إلى 2019، ووجدوا أنها حسنت دقة رسم خريطة مجموعة بيانات تغطية الأراضي الزمنية.
5 توفر البيانات
توفر صور لاندسات 5 في هذه المرحلة المبكرة؛ وبالتالي، قمنا بزيادة طول الدورة الزمنية لضمان دقة رسم خرائط استخدام الأراضي. يتم حفظ الخطوات الزمنية الثلاث الأولى معًا ويتم حفظ الخطوات الزمنية الـ 23 التالية بشكل منفصل. على سبيل المثال، GLC_FCS30D_19851995_E115N15.tif و GLC_FCS30D_20002022_E115N15.tif هما، على التوالي، البيانات للخطوات الزمنية الثلاث الأولى والبيانات للـ 23 خطوة زمنية السنوية التالية من 1985 إلى 2022 للمنطقة المقابلة لـ
6 الخاتمة
لا تحتوي هذه الورقة على خرائط منشورة أو انتماءات مؤسسية أو أي تمثيل جغرافي آخر. بينما تبذل منشورات كوبرنيكوس كل جهد ممكن لتضمين أسماء الأماكن المناسبة، فإن المسؤولية النهائية تقع على عاتق المؤلفين.
References
Ballin, M., Barcaroli, G., Masselli, M., and Scarnò, M.: Redesign sample for land use/cover area frame survey (LUCAS) 2018, Eurostat: statistical working papers, 10, 132365, 2018.
Ban, Y., Gong, P., and Giri, C.: Global land cover mapping using Earth observation satellite data: Recent progresses and challenges, ISPRS J. Photogramm. Remote, 103, 1-6, https://doi.org/10.1016/j.isprsjprs.2015.01.001, 2015.
Bastos, A., Ciais, P., Sitch, S., Aragao, L., Chevallier, F., Fawcett, D., Rosan, T. M., Saunois, M., Gunther, D., Perugini, L., Robert, C., Deng, Z., Pongratz, J., Ganzenmuller, R., Fuchs, R., Winkler, K., Zaehle, S., and Albergel, C.: On the use of Earth Observation to support estimates of national greenhouse gas emissions and sinks for the Global stocktake process: lessons learned from ESA-CCI RECCAP2, Carbon Balance Manag., 17, 15, https://doi.org/10.1186/s13021-022-00214-w, 2022.
Belgiu, M. and Drãgup, L.: Random forest in remote sensing: A review of applications and future directions, ISPRS J. Photogramm. Remote, 114, 24-31, https://doi.org/10.1016/j.isprsjprs.2016.01.011, 2016.
Buchhorn, M., Lesiv, M., Tsendbazar, N.-E., Herold, M., Bertels, L., and Smets, B.: Copernicus Global Land Cover Layers – Collection 2, Remote Sens., 12, 1044, https://doi.org/10.3390/rs12061044, 2020.
Bullock, E. L., Woodcock, C. E., and Holden, C. E.: Improved change monitoring using an ensemble of time series algorithms, Remote Sens. Environ., 111165, https://doi.org/10.1016/j.rse.2019.04.018, 2019.
Bullock, E. L., Healey, S. P., Yang, Z., Houborg, R., Gorelick, N., Tang, X., and Andrianirina, C.: Timeliness in forest change monitoring: A new assessment framework
demonstrated using Sentinel-1 and a continuous change detection algorithm, Remote Sens. Environ., 276, 113043, https://doi.org/10.1016/j.rse.2022.113043, 2022.
Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., Lu, M., Zhang, W., Tong, X., and Mills, J.: Global land cover mapping at 30 m resolution: A POK-based operational approach, ISPRS J. Photogramm. Remote, 103, 7-27, https://doi.org/10.1016/j.isprsjprs.2014.09.002, 2015.
d’Andrimont, R., Yordanov, M., Martinez-Sanchez, L., Eiselt, B., Palmieri, A., Dominici, P., Gallego, J., Reuter, H. I., Joebges, C., and Lemoine, G.: Harmonised LUCAS in-situ land cover and use database for field surveys from 2006 to 2018 in the European Union, Sci. Data, 7, 352, https://doi.org/10.1038/s41597-020-00675-z, 2020.
Defourny, P., Kirches, G., Brockmann, C., Boettcher, M., Peters, M., Bontemps, S., Lamarche, C., Schlerf, M., and M., S.: Land Cover CCI: Product User Guide Version 2, 2018, 2018.
DeVries, B., Verbesselt, J., Kooistra, L., and Herold, M.: Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time series, Remote Sens. Environ., 161, 107-121, https://doi.org/10.1016/j.rse.2015.02.012, 2015.
Dong, J., Xiao, X., Kou, W., Qin, Y., Zhang, G., Li, L., Jin, C., Zhou, Y., Wang, J., Biradar, C., Liu, J., and Moore, B.: Tracking the dynamics of paddy rice planting area in 1986-2010 through time series Landsat images and phenology-based algorithms, Remote Sens. Environ., 160, 99113, https://doi.org/10.1016/j.rse.2015.01.004, 2015.
Dong, S., Shang, Z., Gao, J., and Boone, R. B.: Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau, Agric. Ecosyst. Environ., 287, 106684, https://doi.org/10.1016/j.agee.2019.106684, 2020.
Du, P., Samat, A., Waske, B., Liu, S., and Li, Z.: Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features, ISPRS J. Photogramm. Remote, 105, 38-53, https://doi.org/10.1016/j.isprsjprs.2015.03.002, 2015.
Foley, J. A., Defries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., and Snyder, P. K.: Global consequences of land use, Science, 309, 570-574, https://doi.org/10.1126/science.1111772, 2005.
Foody, G. M.: Sample size determination for image classification accuracy assessment and comparison, Int. J. Remote, 30, 52735291, https://doi.org/10.1080/01431160903130937, 2009.
Foody, G. M. and Arora, M. K.: An evaluation of some factors affecting the accuracy of classification by an artificial neural network, Int. J. Remote, 18, 799-810, https://doi.org/10.1080/014311697218764, 2010.
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., and Huang, X.: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets, Remote Sens. Environ., 114, 168-182, https://doi.org/10.1016/j.rse.2009.08.016, 2010.
Friedl, M. A., Woodcock, C. E., Olofsson, P., Zhu, Z., Loveland, T., Stanimirova, R., Arevalo, P., Bullock, E., Hu, K.-T., Zhang, Y., Turlej, K., Tarrio, K., McAvoy, K., Gorelick, N., Wang, J. A., Barber, C. P., and Souza, C.: Medium Spatial Resolution Map-
ping of Global Land Cover and Land Cover Change Across Multiple Decades From Landsat, Front. Remote Sens., 3, 894571, https://doi.org/10.3389/frsen.2022.894571, 2022.
Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S., Aragão, L. E. O. C., Arneth, A., Arora, V., Bates, N. R., Becker, M., Benoit-Cattin, A., Bittig, H. C., Bopp, L., Bultan, S., Chandra, N., Chevallier, F., Chini, L. P., Evans, W., Florentie, L., Forster, P. M., Gasser, T., Gehlen, M., Gilfillan, D., Gkritzalis, T., Gregor, L., Gruber, N., Harris, I., Hartung, K., Haverd, V., Houghton, R. A., Ilyina, T., Jain, A. K., Joetzjer, E., Kadono, K., Kato, E., Kitidis, V., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi, D., Marland, G., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Niwa, Y., O’Brien, K., Ono, T., Palmer, P. I., Pierrot, D., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Smith, A. J. P., Sutton, A. J., Tanhua, T., Tans, P. P., Tian, H., Tilbrook, B., van der Werf, G., Vuichard, N., Walker, A. P., Wanninkhof, R., Watson, A. J., Willis, D., Wiltshire, A. J., Yuan, W., Yue, X., and Zaehle, S.: Global Carbon Budget 2020, Earth Syst. Sci. Data, 12, 32693340, https://doi.org/10.5194/essd-12-3269-2020, 2020.
Gallant, A.: The Challenges of Remote Monitoring of Wetlands, Remote Sens., 7, 10938-10950, https://doi.org/10.3390/rs70810938, 2015.
Gao, Y., Liu, L., Zhang, X., Chen, X., Mi, J., and Xie, S.: Consistency Analysis and Accuracy Assessment of Three Global
Ge, F., Xu, M., Gong, C., Zhang, Z., Tan, Q., and Pan, X.: Land cover changes the soil moisture response to rainfall on the Loess Plateau, Hydrol. Process., 36, e14714, https://doi.org/10.1002/hyp.14714, 2022.
Giri, C., Pengra, B., Long, J., and Loveland, T. R.: Next generation of global land cover characterization, mapping, and monitoring, Int. J. Appl. Earth Obs., 25, 30-37, https://doi.org/10.1016/j.jag.2013.03.005, 2013.
Gislason, P. O., Benediktsson, J. A., and Sveinsson, J. R.: Random Forests for land cover classification, Pattern Recogn. Lett., 27, 294-300, https://doi.org/10.1016/j.patrec.2005.08.011, 2006.
Gong, P., Li, X., and Zhang, W.: 40-Year (1978-2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing, Sci. Bull., 64, 756-763, https://doi.org/10.1016/j.scib.2019.04.024, 2019a.
Gong, P., Liu, H., Zhang, M., Li, C., Wang, J., Huang, H., Clinton, N., Ji, L., Li, W., Bai, Y., Chen, B., Xu, B., Zhu, Z., Yuan, C., Ping Suen, H., Guo, J., Xu, N., Li, W., Zhao, Y., Yang, J., Yu, C., Wang, X., Fu, H., Yu, L., Dronova, I., Hui, F., Cheng, X., Shi, X., Xiao, F., Liu, Q., and Song, L.: Stable classification with limited sample: transferring a
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sens. Environ., 202, 18-27, https://doi.org/10.1016/j.rse.2017.06.031, 2017.
Harris, N. L., Gibbs, D. A., Baccini, A., Birdsey, R. A., de Bruin, S., Farina, M., Fatoyinbo, L., Hansen, M. C., Herold, M., Houghton, R. A., Potapov, P. V., Suarez, D. R., Roman-Cuesta, R. M., Saatchi, S. S., Slay, C. M., Turubanova, S. A., and Tyukavina, A.: Global maps of twenty-first century forest carbon fluxes, Nat. Clim. Change, 11, 234-240, https://doi.org/10.1038/s41558-020-00976-6, 2021.
Healey, S. P., Cohen, W. B., Yang, Z., Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., Joseph Hughes, M., Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L., and Zhu, Z.: Mapping forest change using stacked generalization: An ensemble approach, Remote Sens. Environ., 204, 717728, https://doi.org/10.1016/j.rse.2017.09.029, 2018.
Herold, M., Mayaux, P., Woodcock, C. E., Baccini, A., and Schmullius,
Homer, C., Dewitz, J., Jin, S., Xian, G., Costello, C., Danielson, P., Gass, L., Funk, M., Wickham, J., Stehman, S., Auch, R., and Riitters, K.: Conterminous United States land cover change patterns 2001-2016 from the 2016 National Land Cover Database, ISPRS J. Photogramm. Remote, 162, 184-199, https://doi.org/10.1016/j.isprsjprs.2020.02.019, 2020.
Hong, C., Burney, J. A., Pongratz, J., Nabel, J., Mueller, N. D., Jackson, R. B., and Davis, S. J.: Global and regional drivers of land-use emissions in 1961-2017, Nature, 589, 554-561, https://doi.org/10.1038/s41586-020-03138-y, 2021.
Huang, C., Goward, S. N., Schleeweis, K., Thomas, N., Masek, J. G., and Zhu, Z.: Dynamics of national forests assessed using the Landsat record: Case studies in eastern United States, Remote Sens. Environ., 113, 1430-1442, https://doi.org/10.1016/j.rse.2008.06.016, 2009.
Jin, H., Stehman, S. V., and Mountrakis, G.: Assessing the impact of training sample selection on accuracy of an urban classification: a case study in Denver, Colorado, Int. J. Remote Sens., 35, 20672081, https://doi.org/10.1080/01431161.2014.885152, 2014.
Jin, S., Yang, L., Zhu, Z., and Homer, C.: A land cover change detection and classification protocol for updating Alaska NLCD 2001 to 2011, Remote Sens. Environ., 195, 44-55, https://doi.org/10.1016/j.rse.2017.04.021, 2017.
Jin, S., Dewitz, J., Li, C., Sorenson, D., Zhu, Z., Shogib, M. R. I., Danielson, P., Granneman, B., Costello, C., Case, A., and Gass, L.: National Land Cover Database 2019: A Comprehensive Strategy for Creating the 19862019 Forest Disturbance Product, J. Remote Sens., 3, 0021, https://doi.org/10.34133/remotesensing.0021, 2023.
Kennedy, R. E., Yang, Z., and Cohen, W. B.: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr – Temporal segmentation algorithms, Remote Sens. Environ., 114, 2897-2910, https://doi.org/10.1016/j.rse.2010.07.008, 2010.
Kenny, Q. Y.: Indicator function and its application in two-level factorial designs, Ann. Stat., 31, 984-994, https://doi.org/10.1214/aos/1056562470, 2003.
Li, X., Gong, P., and Liang, L.: A 30-year (1984-2013) record of annual urban dynamics of Beijing City derived from Landsat data, Remote Sens. Environ., 166, 78-90, https://doi.org/10.1016/j.rse.2015.06.007, 2015.
Liu, C., Zhang, Q., Luo, H., Qi, S., Tao, S., Xu, H., and Yao, Y.: An efficient approach to capture continuous impervious surface dynamics using spatial-temporal rules and dense Landsat time series stacks, Remote Sens. Environ., 229, 114-132, https://doi.org/10.1016/j.rse.2019.04.025, 2019.
Liu, H., Gong, P., Wang, J., Wang, X., Ning, G., and Xu, B.: Production of global daily seamless data cubes and quantification of global land cover change from 1985 to 2020 – iMap World 1.0, Remote Sens. Environ., 258, 112364, https://doi.org/10.1016/j.rse.2021.112364, 2021.
Liu, L., Zhang, X., Chen, X., Gao, Y., and Mi, J.: GLC_FCS30-2020:Global Land Cover with Fine Classification System at 30 m in 2020 (v1.2), Zenodo [data set], https://doi.org/10.5281/zenodo.4280923, 2020.
Liu, L., Zhang, X., Gao, Y., Chen, X., Shuai, X., and Mi, J.: FinerResolution Mapping of Global Land Cover: Recent Developments, Consistency Analysis, and Prospects, J. Remote Sens., 2021, 5289697, https://doi.org/10.34133/2021/5289697, 2021.
Liu, L., Zhang, X., and Zhao, T.: GLC_FCS30D: the first global
Mellor, A., Boukir, S., Haywood, A., and Jones, S.: Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin, ISPRS J. Photogramm. Remote, 105, 155-168, https://doi.org/10.1016/j.isprsjprs.2015.03.014, 2015.
Millard, K. and Richardson, M.: On the Importance of Training Data Sample Selection in Random Forest Image Classification: A Case Study in Peatland Ecosystem Mapping, Remote Sens., 7, 8489-8515, https://doi.org/10.3390/rs70708489, 2015.
Pekel, J. F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution mapping of global surface water and its long-term changes, Nature, 540, 418-422, https://doi.org/10.1038/nature20584, 2016.
Pengra, B., Gallant, A., Zhu, Z., and Dahal, D.: Evaluation of the Initial Thematic Output from a Continuous Change-Detection Algorithm for Use in Automated Operational Land-Change Mapping by the U.S. Geological Survey, Remote Sens., 8, 811, https://doi.org/10.3390/rs8100811, 2016.
Pontus Olofsson, G. M. F.: Good practices for estimating area and assessing accuracy of land change, Remote Sens. Environ., 148, 42-57, https://doi.org/10.1016/j.rse.2014.02.015, 2014.
Potapov, P., Hansen, M. C., Pickens, A., Hernandez-Serna, A., Tyukavina, A., Turubanova, S., Zalles, V., Li, X., Khan, A., Stolle, F., Harris, N., Song, X.-P., Baggett, A., Kommareddy, I., and Kommareddy, A.: The Global 2000-2020 Land Cover and Land Use Change Dataset Derived From the Landsat Archive: First Results, Front. Remote Sens., 3, 856903, https://doi.org/10.3389/frsen.2022.856903, 2022.
Qin, Y., Xiao, X., Wigneron, J.-P., Ciais, P., Canadell, J. G., Brandt, M., Li, X., Fan, L., Wu, X., Tang, H., Dubayah, R., Doughty, R., Chang, Q., Crowell, S., Zheng, B., Neal, K., Celis, J. A., and Moore, B.: Annual Maps of Forests in Australia from Analyses of Microwave and Optical Images with FAO Forest Definition, J. Remote Sens., 2021, 9784657, https://doi.org/10.34133/2021/9784657, 2021.
Radoux, J., Lamarche, C., Van Bogaert, E., Bontemps, S., Brockmann, C., and Defourny, P.: Automated Training Sample Extraction for Global Land Cover Mapping, Remote Sens., 6, 39653987, https://doi.org/10.3390/rs6053965, 2014.
Roy, D. P., Qin, Y., Kovalskyy, V., Vermote, E. F., Ju, J., Egorov, A., Hansen, M. C., Kommareddy, I., and Yan, L.: Conterminous United States demonstration and characterization of MODISbased Landsat ETM+ atmospheric correction, Remote Sens. Environ., 140, 433-449, https://doi.org/10.1016/j.rse.2013.09.012, 2014a.
Roy, D. P., Wulder, M. A., Loveland, T. R., C.E, W., Allen, R. G., Anderson, M. C., Helder, D., Irons, J. R., Johnson, D. M., Kennedy, R., Scambos, T. A., Schaaf, C. B., Schott, J. R., Sheng, Y., Vermote, E. F., Belward, A. S., Bindschadler, R., Cohen, W. B., Gao, F., Hipple, J. D., Hostert, P., Huntington, J., Justice, C. O., Kilic, A., Kovalskyy, V., Lee, Z. P., Lymburner, L., Masek, J. G., McCorkel, J., Shuai, Y., Trezza, R., Vogelmann, J., Wynne, R. H., and Zhu, Z.: Landsat-8: Science and product vision for terrestrial global change research, Remote Sens. Environ., 145, 154-172, https://doi.org/10.1016/j.rse.2014.02.001, 2014b.
Roy, D. P., Kovalskyy, V., Zhang, H. K., Vermote, E. F., Yan, L., Kumar, S. S., and Egorov, A.: Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity, Remote Sens. Environ., 185, 57-70, https://doi.org/10.1016/j.rse.2015.12.024, 2016.
Song, X. P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina, A., Vermote, E. F., and Townshend, J. R.: Global land change from 1982 to 2016, Nature, 560, 639-643, https://doi.org/10.1038/s41586-018-0411-9, 2018.
Stehman, S. V., Pengra, B. W., Horton, J. A., and Wellington, D. F.: Validation of the U.S. Geological Survey’s Land Change Monitoring, Assessment and Projection (LCMAP) Collection 1.0 annual land cover products 1985-2017, Remote Sens. Environ., 265, 112646, https://doi.org/10.1016/j.rse.2021.112646, 2021.
Sulla-Menashe, D., Gray, J. M., Abercrombie, S. P., and Friedl, M. A.: Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product, Remote Sens. Environ., 222, 183-194, https://doi.org/10.1016/j.rse.2018.12.013, 2019.
Venter, Z. S., Barton, D. N., Chakraborty, T., Simensen, T., and Singh, G.: Global 10 m Land Use Land Cover Datasets: A Comparison of Dynamic World, World Cover and Esri Land Cover, Remote Sens., 14, 4101, https://doi.org/10.3390/rs14164101, 2022.
Vermote, E.: LEDAPS surface reflectance product description, https://www.usgs.gov/media/files/ landsat-4-7-collection-1-surface-reflectance-code-ledaps-product(last access: 12 March 2024), 2007.
Vermote, E. F. and Kotchenova, S.: Atmospheric correction for the monitoring of land surfaces, J. Geophys. Res., 113, D23S90, https://doi.org/10.1029/2007jd009662, 2008.
Wang, N., Zhang, X., Yao, S., Wu, J., and Xia, H.: How Good Are Global Layers for Mapping Rural Settlements? Evidence from China, Land, 11, 1308, https://doi.org/10.3390/land11081308, 2022.
Xian, G. Z., Smith, K., Wellington, D., Horton, J., Zhou, Q., Li, C., Auch, R., Brown, J. F., Zhu, Z., and Reker, R. R.: Implementation of the CCDC algorithm to produce the LCMAP Collection 1.0 annual land surface change product, Earth Syst. Sci. Data, 14, 143-162, https://doi.org/10.5194/essd-14-143-2022, 2022.
Xiao, Y., Wang, Q., Tong, X., and Atkinson, P. M.: Thirty-meter map of young forest age in China, Earth Syst. Sci. Data, 15, 3365-3386, https://doi.org/10.5194/essd-15-3365-2023, 2023.
Xie, S., Liu, L., Zhang, X., and Yang, J.: Mapping the annual dynamics of land cover in Beijing from 2001 to 2020 using Landsat dense time series stack, ISPRS J. Photogramm. Remote, 185, 201-218, https://doi.org/10.1016/j.isprsjprs.2022.01.014, 2022.
Yang, J. and Huang, X.: The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019, Earth Syst. Sci. Data, 13, 3907-3925, https://doi.org/10.5194/essd-13-3907-2021, 2021.
Ye, S., Rogan, J., Zhu, Z., and Eastman, J. R.: A near-real-time approach for monitoring forest disturbance using Landsat time series: stochastic continuous change detection, Remote Sens. Environ., 252, 112167, https://doi.org/10.1016/j.rse.2020.112167, 2021.
Zhang, X., Liu, L., Chen, X., Xie, S., and Gao, Y.: Fine LandCover Mapping in China Using Landsat Datacube and an Operational SPECLib-Based Approach, Remote Sens., 11, 1056, https://doi.org/10.3390/rs11091056, 2019.
Zhang, X., Liu, L., Wu, C., Chen, X., Gao, Y., Xie, S., and Zhang, B.: Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the
Zhang, X., Liu, L., Chen, X., Gao, Y., and Jiang, M.: Automatically Monitoring Impervious Surfaces Using Spectral Generalization and Time Series Landsat Imagery from 1985 to 2020 in the Yangtze River Delta, J. Remote Sens., 2021, 1-16, https://doi.org/10.34133/2021/9873816, 2021a.
Zhang, X., Liu, L., Chen, X., Gao, Y., Xie, S., and Mi, J.: GLC_FCS30: global land-cover product with fine classification system at 30 m using time-series Landsat imagery, Earth Syst. Sci. Data, 13, 2753-2776, https://doi.org/10.5194/essd-13-27532021, 2021b.
Zhang, X., Liu, L., Zhao, T., Gao, Y., Chen, X., and Mi, J.: GISD30: global 30 m impervious-surface dynamic dataset from
uide1985 to 2020 using time-series Landsat imagery on the Google Earth Engine platform, Earth Syst. Sci. Data, 14, 1831-1856, https://doi.org/10.5194/essd-14-1831-2022, 2022.
Zhang, X., Liu, L., Zhao, T., Chen, X., Lin, S., Wang, J., Mi, J., and Liu, W.: GWL_FCS30: a global 30 m wetland map with a fine classification system using multi-sourced and time-series remote sensing imagery in 2020, Earth Syst. Sci. Data, 15, 265293, https://doi.org/10.5194/essd-15-265-2023, 2023.
Zhang, Y., Ling, F., Wang, X., Foody, G. M., Boyd, D. S., Li, X., Du, Y., and Atkinson, P. M.: Tracking smallscale tropical forest disturbances: Fusing the Landsat and Sentinel-2 data record, Remote Sens. Environ., 261, 112470, https://doi.org/10.1016/j.rse.2021.112470, 2021c.
Zhao, T., Zhang, X., Gao, Y., Mi, J., Liu, W., Wang, J., Jiang, M., and Liu, L.: Assessing the Accuracy and Consistency of Six FineResolution Global Land Cover Products Using a Novel Stratified Random Sampling Validation Dataset, Remote Sens., 15, 2285, https://doi.org/10.3390/rs15092285, 2023.
Zhu, Z., Wang, S. X., and Woodcock, C. E.: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images, Remote Sens. Environ., 159, 269-277, https://doi.org/10.1016/j.rse.2014.12.014, 2015.
Zhu, Z., Gallant, A. L., Woodcock, C. E., Pengra, B., Olofsson, P., Loveland, T. R., Jin, S., Dahal, D., Yang, L., and Auch, R. F.: Optimizing selection of training and auxiliary data for operational land cover classification for the LCMAP initiative, ISPRS J. Photogramm. Remote, 122, 206221, https://doi.org/10.1016/j.isprsjprs.2016.11.004, 2016.
Zhu, Z.: Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications, ISPRS J. Photogramm. Remote, 130, 370-384, https://doi.org/10.1016/j.isprsjprs.2017.06.013, 2017.
Zhu, Z. and Woodcock, C. E.: Object-based cloud and cloud shadow detection in Landsat imagery, Remote Sens. Environ., 118, 8394, https://doi.org/10.1016/j.rse.2011.10.028, 2012.
Zhu, Z. and Woodcock, C. E.: Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change, Remote Sens. Environ., 152, 217-234, https://doi.org/10.1016/j.rse.2014.06.012, 2014a.
Zhu, Z. and Woodcock, C. E.: Continuous change detection and classification of land cover using all available Landsat data, Remote Sens. Environ., 144, 152-171, https://doi.org/10.1016/j.rse.2014.01.011, 2014b.
DOI: https://doi.org/10.5194/essd-16-1353-2024
Publication Date: 2024-03-15
GLC_FCS30D: the first global 30 m land-cover dynamics monitoring product with a fine classification system for the period from 1985 to 2022 generated using dense-time-series Landsat imagery and the continuous change-detection method
Revised: 15 January 2024 – Accepted: 31 January 2024 – Published: 15 March 2024
Abstract
Land-cover change has been identified as an important cause or driving force of global climate change and is a significant research topic. Over the past few decades, global land-cover mapping has progressed; however, long-time-series global land-cover-change monitoring data are still sparse, especially those at 30 m resolution. In this study, we describe GLC_FCS30D, a novel global 30 m land-cover dynamics monitoring dataset containing 35 land-cover subcategories and covering the period 1985-2022 in 26 time steps (maps were updated every 5 years before 2000 and annually after 2000). GLC_FCS30D has been developed using continuous change detection and all available Landsat imagery based on the Google Earth Engine platform. Specifically, we first take advantage of the continuous change-detection model and the full time series of Landsat observations to capture the time points of changed pixels and identify the temporally stable areas. Then, we apply a spatiotemporal refinement method to derive the globally distributed and high-confidence training samples from these temporally stable areas. Next, local adaptive classification models are used to update the land-cover information for the changed pixels, and a temporal-consistency optimization algorithm is adopted to improve their temporal stability and suppress some false changes. Further, the GLC_FCS30D product is validated using 84526 globally distributed validation samples from 2020. It achieves an overall accuracy of
1 Introduction
the period from 1992 to 2020 with an overall accuracy of
for monitoring forest disturbance (Huang et al., 2009; Jin et al., 2023; Kennedy et al., 2007, 2010; Qin et al., 2021), urban expansion (Liu et al., 2019; X. Zhang et al., 2021a), cropland dynamics (Dong et al., 2015; Potapov et al., 2021), and land-cover changes (Bullock et al., 2019; Jin et al., 2017; Verbesselt et al., 2010; Zhu et al., 2019). However, most of them are only suitable for regional land-cover change monitoring, and some of the algorithms need prior knowledge (such as that for urban expansion). Zhu (2017) systematically reviewed the performance and limitations of various changedetection methods based on multitemporal satellite data and further explained that the high-temporal-frequency and multivariate change-detection algorithms are more suitable for a long time series of land-cover changes in a large area, provided that the problem of the huge amount of computation involved can be solved. Similarly, Xian et al. (2022) and Liu et al. (2019) concluded that dense and continuous changedetection methods provided higher accuracy and more robustness than traditional change-detection methods for capturing multiple, complicated changes.
curacy of GLC_FCS30D before 2000); (2) to quantify the land-cover changes and analyze the spatiotemporal change patterns of various land-cover types based on the developed GLC_FCS30D dataset; and (3) to quantitatively analyze the performance of the GLC_FCS30D product using multisourced validation datasets.
2 Datasets
2.1 Continuous Landsat imagery from 1984 to 2022
2.2 Global land-cover dataset at 30 m for the year 2020
2.3 Global impervious surface dynamics dataset at 30 m from 1985 to 2022
heterogeneous impervious surfaces. Thus, we independently produced a global impervious-surface-dynamics time-series dataset at 30 m (GISD30) for 1985-2022 and then overlaid this thematic dataset on the GLC_FCS30D dataset to ensure high confidence in the impervious surface dynamics. The GISD30 dataset was developed by combining the sample migration, spectral generalization, and local adaptive modeling methods and then optimized by the spatiotemporalconsistency correction method (Zhang et al., 2022). It was validated and found to attain a mean overall accuracy of
2.4 Global 30 m wetland datasets from 1985 to 2022
2.5 Validation datasets
2.5.1 Global validation dataset
2.5.2 Third-party regional time-series datasets used for validation

3 Methods
abrupt changes in the other land-cover pixels using the continuous change-detection model; (2) deriving the spatiotemporally stable training samples by using the spatiotemporal refinement method from the GLC_FCS30 land-cover product and temporally stable masks; (3) building the local adaptive classification models for each local region and then updating the land-cover information in the changed pixels; and (4) using the spatiotemporal consistency optimization method to improve the quality of land-cover change maps and suppress false changes.
is integrated into the CCD algorithm on the GEE platform as ee.Algorithms.TemporalSegmentation.Ccdc()). In other words, the effect of poor-quality pixels was minimized.
3.1 The fine classification system used in GLC_FCS30D
3.2 Detecting changes using the CCD algorithm and continuous Landsat imagery
NBR
where

3.3 Updating changed areas using local adaptive classifications
3.3.1 Deriving spatiotemporally stable training samples
a lot of manual participation, so it is not suitable for collecting large-area training samples. An alternative option involves generating training samples by refining existing landcover products through a series of improvement measures (X. Zhang et al., 2021b; Zhang et al., 2023). Inspired by the latter option, we combined the GLC_FCS30-2020 prior dataset and the change-detection mask (derived using the CCD algorithm described in Sect. 3.2) to obtain the spatiotemporally stable training samples. Specifically, temporally stable areas are known to have higher mapping accuracy (Yang and Huang, 2021; Zhang and Roy, 2017; Zhang et al., 2023); thus, we first used the aforementioned CCD mask to retain the areas that were temporally stable during 19852022, and then we overlapped them with the GLC_FCS302020 maps to determine their land-cover labels. Next, because Radoux et al. (2014) emphasized that land-cover transition areas are usually subject to more serious misclassification problems and that pixels with homogeneous land cover have a higher probability of achieving acceptable accuracy, we used a morphological erosion filter of 3 pixels
Basic classification system | Level-1 validation system | Fine classification system | ID | ||
Cropland | CRP | Rainfed cropland | RCP | Rainfed cropland | 10 |
Herbaceous cover cropland | 11 | ||||
Tree or shrub cover cropland | 12 | ||||
Irrigated cropland | ICP | Irrigated cropland | 20 | ||
Forest | FST | Evergreen broadleaved forest | EBF | Closed evergreen broadleaved forest | 51 |
Open evergreen broadleaved forest | 52 | ||||
Deciduous broadleaved forest | BDF | Closed deciduous broadleaved forest | 61 | ||
Open deciduous broadleaved forest | 62 | ||||
Evergreen needleleaved forest | ENF | Closed evergreen needleleaved forest | 71 | ||
Open evergreen needleleaved forest | 72 | ||||
Deciduous needleleaved forest | DNF | Closed deciduous needleleaved forest | 81 | ||
Open deciduous needleleaved forest | 82 | ||||
Mixed-leaf forest | MFT | Closed mixed-leaf forest | 91 | ||
Open mixed-leaf forest | 92 | ||||
Shrubland | SHR | Shrubland | SHR | Shrubland | 120 |
Evergreen shrubland | 121 | ||||
Deciduous shrubland | 122 | ||||
Grassland | GRS | Grassland | GRS | Grassland | 130 |
Tundra | TUD | Lichens and mosses | LMS | Lichens and mosses | 140 |
Wetland | WET | Inland wetland | IWL | Swamp | 181 |
Marsh | 182 | ||||
Flooded flat | 183 | ||||
Saline | 184 | ||||
Coastal wetland | CWL | Mangrove | 185 | ||
Salt marsh | 186 | ||||
Tidal flat | 187 | ||||
Impervious surface | IMP | Impervious surface | IMP | Impervious surface | 190 |
Bare areas | BAL | Sparse vegetation | SVG | Sparse vegetation | 150 |
Sparse shrubland | 152 | ||||
Sparse herbaceous cover | 153 | ||||
Bare areas | BAL | Bare areas | 200 | ||
Consolidated bare areas | 201 | ||||
Unconsolidated bare areas | 202 | ||||
Water body | WTR | Water body | WTR | Water body | 210 |
Permanent snow and ice | PSI | Permanent snow and ice | PSI | Permanent snow and ice | 220 |

3.3.2 Updating changed areas using local adaptive classifications
level co-occurrence matrix method was used for the 50th-percentile-composited NIR band to extract the homogeneity, entropy, dissimilarity, variance, contrast, and correlation. Lastly, since the land-cover distribution is usually related to the topographical environment (for example, croplands and water bodies are mainly distributed in flat areas), three topographical variables (elevation, slope, and aspect) calculated from a global 30 m DEM dataset named ASTER_GDEM (Tachikawa et al., 2011) were also imported. In addition, due to the limited storage capacity and satellite-ground datatransmission capacity of early satellites, the density of Landsat imagery is sparse before 2000 (only a single satellite, Landsat 5, acquired data) (Roy et al., 2014b). Thus, we chose a coarse temporal cycle of 5 years to ensure the mapping accuracy before 2000; that is, the satellite observations from 2 years before and after were used for the nominal center year. For example, we updated the land-cover maps in 1995 using all available imagery from 1993 to 1997. In total, there were 49 multisource features, including 40 phenological spectra features, 6 texture features, and 3 topographical variables.
ical and experimental results indicated that the selection of Mtry and Ntree had little influence on the classification accuracy (Belgiu and Drãgup, 2016; Du et al., 2015). Thus, based on previous studies (Belgiu and Drãgup, 2016; Zhang et al., 2019), the default recommended values of 500 for Ntree and the square of the total number of input features for Mtry were used.
3.3.3 Temporal-consistency optimization
3.4 Accuracy assessment
to calculate the corresponding standard errors (Pontus Olofsson, 2014).
P.A.
O.A.
4 Results and discussion
4.1 Overview of the GLC_FCS30D maps and their changes

shrubland, and impervious surface changes, which dominate the land-cover changes in Fig. 5. There are three main causes of forest loss over the past 37 years: (1)



4.2 Accuracy assessment of GLC_FCS30D for 2020
taining 10 major land-cover types. The novel GLC_FCS30D dataset attained an O.A. of

|
(
|
(
|
(9 I)
|
(
|
(で I) 969 L | (II.I) 89 I9 | (
|
(
|
(
|
|
||
|
t6 II |
|
|
|
|
|
|
ISZ
|
LL8*
|
[W]OL | ||
(
|
|
ISE
|
|
0 | 100.0 | EZ0.0 | 0 | S00.0 |
|
t00% | 0 | ISd |
(8.0)S* 6 L | 829*II | IEI*0 | 6EZ6 | 8 to. 0 | LLS* 0 | St0.0 | Et0.0 | S8S* 0 | E8L0 | 6500 |
|
TVG |
(19*0)St S6 | E8Z'S | 0 | tZ0* |
|
2000 | 9000 | 100.0 | t0.0 | tZ0.0 | 8S0.0 | 七80.0 | dWI |
(
|
tSt E |
|
|
Z00% | vtt? |
|
810.0 | L91.0 | 8910 | EZI•0 | 10.0 | G
|
|
IE8
|
2000 | 6E0*0 | ZI0% | 800.0 | S0E
|
て0E 0 |
|
6100 | 9800 | t0.0 | yLM |
(
|
9IS'S |
|
ててで0 | IZ0.0 | L E0.0 |
|
|
LSI•0 | 9 SI*0 | S9+ 0 |
|
LAM |
|
9 SE 6 | 2000 | Z0S*0 | S0.0 | 6100 |
|
I9I*0 | Z6E
|
E98* |
|
SSS.0 | YHS |
|
SS8.0I |
|
L8I'I | LS0.0 | t80.0 | 1100 | IEZ 0 | I8I*I | 906 S | 99I'I | SE0.I | SHD |
(IE*0)E8*Z6 |
|
Z00% | EII*0 |
|
800.0 | IZ0.0 | ILE 0 | II8.0 | SIE゙0 | ZIL•8 | EIS゙0 | LSA |
(
|
t0ピLI | 0 | LII*0 | tLI•0 | 0 | L20% |
|
|
|
Z6L*0 | Z
|
дY( 3 |
(AS) V d | [ண口 | ISd | TVЯ | dWI | G
|
YLM | LAM | УНS | SYD | LSA | дУО | әวแวเอมิy |
(%LZ
|
dw |


4.3 Accuracy assessment based on two third-party regional validation datasets
4.3.1 Time series of accuracy metrics of GLC_FCS30D from the LCMAP_Val dataset
Reference | RCP | ICP | EBF | DBF | ENF | DNF | MFT | SHR | GRS | LMS | SVG | IWL | CWL | IMP | BAL | WTR | PSI | Total | P.A. (SE) |
RCP | 12.225 | 1.023 | 0.239 | 0.358 | 0.102 | 0.016 | 0.009 | 0.382 | 0.66 | 0 | 0.078 | 0.056 | 0.005 | 0.124 | 0.028 | 0.001 | 0 | 15.332 | 79.7 (0.7) |
ICP | 0.397 | 1.932 | 0.026 | 0.016 | 0.005 | 0 | 0 | 0.01 | 0.025 | 0 | 0.012 | 0.029 | 0.005 | 0.052 | 0 | 0.018 | 0 | 2.527 | 76.45 (1.81) |
EBF | 0.2 | 0.048 | 9.091 | 1.098 | 0.262 | 0.103 | 0.151 | 0.371 | 0.084 | 0 | 0.012 | 0.136 | 0.028 | 0.029 | 0.001 | 0.004 | 0 | 11.514 | 78.96 (0.82) |
DBF | 0.187 | 0.016 | 0.632 | 6.838 | 0.537 | 0.294 | 0.396 | 0.235 | 0.144 | 0.002 | 0.019 | 0.077 | 0.002 | 0.025 | 0.005 | 0.004 | 0.002 | 9.054 | 75.53 (0.97) |
ENF | 0.046 | 0.004 | 0.174 | 0.316 | 5.681 | 0.328 | 0.439 | 0.128 | 0.034 | 0.006 | 0.043 | 0.094 | 0 | 0.008 | 0.01 | 0.01 | 0 | 6.895 | 82.39 (0.98) |
DNF | 0.008 | 0 | 0.002 | 0.13 | 0.245 | 1.854 | 0.073 | 0.071 | 0.053 | 0 | 0.011 | 0.025 | 0 | 0.001 | 0.007 | 0.002 | 0 | 2.414 | 76.79 (1.85) |
MFT | 0.004 | 0 | 0.019 | 0.176 | 0.234 | 0.013 | 0.828 | 0.014 | 0.004 | 0 | 0 | 0.010 | 0.05 | 0 | 0.001 | 0 | 0 | 1.308 | 58.29 (1.53) |
SHR | 0.518 | 0.042 | 0.299 | 0.9 | 0.328 | 0.131 | 0.034 | 5.44 | 0.871 | 0.019 | 0.441 | 0.157 | 0.005 | 0.05 | 0.065 | 0.013 | 0.002 | 9.438 | 57.63 (1.09) |
GRS | 0.947 | 0.097 | 0.167 | 0.582 | 0.209 | 0.154 | 0.024 | 1.191 | 5.958 | 0.085 | 0.974 | 0.229 | 0.006 | 0.052 | 0.217 | 0.008 | 0.01 | 10.95 | 54.41 (1.02) |
LMS | 0.006 | 0.004 | 0.001 | 0.022 | 0.044 | 0.053 | 0.001 | 0.168 | 0.169 | 2.465 | 0.379 | 0.02 | 0.001 | 0.002 | 0.098 | 0.026 | 0.02 | 3.484 | 70.76 (1.65) |
SVG | 0.064 | 0.01 | 0.008 | 0.006 | 0.007 | 0.01 | 0.001 | 0.397 | 0.462 | 0.025 | 2.71 | 0.012 | 0 | 0.013 | 0.643 | 0.002 | 0.024 | 4.399 | 61.6 (1.57) |
IWL | 0.01 | 0.002 | 0.044 | 0.029 | 0.103 | 0.022 | 0.002 | 0.048 | 0.017 | 0.008 | 0.042 | 2.673 | 0.024 | 0.001 | 0.012 | 0.224 | 0 | 3.263 | 81.91 (1.45) |
CWL | 0.004 | 0.002 | 0.008 | 0.002 | 0.004 | 0.002 | 0.004 | 0.008 | 0.006 | 0 | 0.008 | 0.188 | 1.476 | 0.007 | 0.007 | 0.059 | 0 | 1.783 | 82.77 (1.92) |
IMP | 0.074 | 0.011 | 0.008 | 0.008 | 0.037 | 0.002 | 0 | 0.041 | 0.024 | 0.002 | 0.014 | 0.004 | 0 | 5.087 | 0.01 | 0.004 | 0 | 5.329 | 95.45 (0.61) |
BAL | 0.048 | 0.01 | 0.002 | 0.004 | 0.002 | 0.001 | 0 | 0.193 | 0.328 | 0.557 | 0.582 | 0.043 | 0.002 | 0.035 | 5.384 | 0.029 | 0.108 | 7.33 | 73.45 (1.11) |
WTR | 0.014 | 0.024 | 0.014 | 0.014 | 0.019 | 0.008 | 0.006 | 0.011 | 0.016 | 0.007 | 0.011 | 0.168 | 0.114 | 0.011 | 0.019 | 3.054 | 0.002 | 3.509 | 87.04 (1.22) |
PSI | 0 | 0 | 0 | 0.001 | 0.002 | 0 | 0 | 0.005 | 0.03 | 0.001 | 0.011 | 0 | 0 | 0 | 0.019 | 0.023 | 1.363 | 1.455 | 93.65 (1.37) |
Total | 14.757 | 3.224 | 10.753 | 10.56 | 7.833 | 3.724 | 1.97 | 8.711 | 8.883 | 3.179 | 5.353 | 3.927 | 1.668 | 5.497 | 6.526 | 3.482 | 1.532 | ||
U.A. (SE) | 82.85 (0.67) | 59.92 (1.85) | 84.55 (1.75) | 64.76 (1) | 72.52 (1.08) | 49.77 (1.76) | 39.34 (1.38) | 62.44 (1.11) | 67.07 (1.07) | 77.55 (1.59) | 50.63 (1.47) | 68.07 (1.6) | 88.49 (1.68) | 92.54 (0.76) | 82.5 (1.01) | 87.73 (1.19) | 88.96 (1.72) | ||
O.A. | 73.04 % (
|
the time-series variations are stable. Among them, the water body land-cover type has the highest accuracy metrics, achieving mean P.A. and U.A. values of
impervious surface area estimated in LCMAP_Val is larger than the assessment in the GLC_FCS30D dataset.
4.3.2 Time series of accuracy metrics of GLC_FCS30D from the LUCAS dataset


maining land-cover types in comparison to the LUCAS estimations. In particular, according to its AB of
Unchanged | Changed | Total | P.A. (SE) | F1 | |
Unchanged | 82.21 | 6.34 | 88.55 |
|
94.53 |
Changed | 3.18 | 8.27 | 11.45 |
|
63.49 |
Total | 85.39 | 14.61 | |||
U.A. (SE) |
|
|
|||
O.A. (SE) |
|
2006 | 2009 | 2012 | 2015 | 2018 | ||||||
P.A. (SE) | U.A. (SE) | P.A. (SE) | U.A. (SE) | P.A. (SE) | U.A. (SE) | P.A. (SE) | U.A. (SE) | P.A. (SE) | U.A. (SE) | |
CRP | 85.49 (0.11) | 93.37 (0.08) | 85.40 (0.11) | 93.31 (0.08) | 85.50 (0.11) | 93.17 (0.08) | 85.47 (0.11) | 93.05 (0.08) | 85.52 (0.11) | 92.82 (0.08) |
FST | 95.22 (0.08) | 76.71 (0.15) | 94.97 (0.08) | 76.71 (0.15) | 94.79 (0.09) | 76.82 (0.15) | 94.36 (0.09) | 76.82 (0.15) | 93.71 (0.09) | 76.85 (0.15) |
GRS | 6.13 (0.26) | 21.31 (0.83) | 6.10 (0.26) | 21.13 (0.83) | 6.05 (0.26) | 20.98 (0.83) | 6.08 (0.26) | 20.71 (0.82) | 5.99 (0.26) | 20.74 (0.82) |
SHR | 8.13 (0.42) | 8.93 (0.46) | 8.25 (0.43) | 8.92 (0.46) | 8.02 (0.42) | 8.77 (0.46) | 7.84 (0.42) | 8.60 (0.45) | 8.35 (0.43) | 8.96 (0.46) |
WET | 63.10 (0.81) | 66.55 (0.81) | 61.40 (0.81) | 65.55 (0.82) | 61.86 (0.81) | 66.21 (0.82) | 62.64 (0.81) | 66.60 (0.81) | 62.94 (0.81) | 65.34 (0.81) |
WTR | 89.73 (0.40) | 92.44 (0.36) | 90.09 (0.40) | 92.53 (0.35) | 90.28 (0.39) | 92.36 (0.36) | 90.83 (0.38) | 91.63 (0.37) | 90.10 (0.40) | 91.56 (0.37) |
IMP | 58.55 (0.56) | 72.69 (0.56) | 59.21 (0.55) | 72.06 (0.56) | 59.06 (0.55) | 71.72 (0.56) | 58.65 (0.55) | 70.85 (0.56) | 59.01 (0.55) | 70.29 (0.56) |
BAL | 52.77 (1.12) | 39.62 (0.95) | 52.90 (1.12) | 38.44 (0.93) | 52.19 (1.13) | 37.70 (0.93) | 52.07 (1.13) | 36.16 (0.90) | 52.33 (1.13) | 34.69 (0.87) |
PSI | 86.02 (5.00) | 35.01 (4.38) | 91.40 (4.04) | 36.56 (4.38) | 89.25 (4.46) | 31.86 (4.00) | 96.24 (2.74) | 31.40 (3.81) | 96.24 (2.74) | 31.35 (3.81) |
O.A. (SE) | 82.11 (0.09) | 81.99 (0.09) | 81.97 (0.09) | 81.82 (0.09) | 81.64 (0.09) |
4.4 Comparisons with other global land-cover dynamics products
(such as rural buildings and road networks) than CCI_LC and MCD12Q1 because of its high spatial resolution of 30 m .
2006 | 2009 | 2012 | 2015 | 2018 | |||||||||||
Map | Ref | AB | Map | Ref | AB | Map | Ref | AB | Map | Ref | AB | Map | Ref | AB | |
CRP | 46.48 | 50.62 | -4.14 | 46.46 | 50.64 | -4.18 | 46.59 | 50.67 | -4.08 | 46.63 | 50.69 | -4.06 | 46.77 | 50.74 | -3.97 |
FST | 41.39 | 33.76 | 7.63 | 41.28 | 33.75 | 7.53 | 41.14 | 33.73 | 7.41 | 40.96 | 33.73 | 7.23 | 40.66 | 33.68 | 6.98 |
GRS | 1.21 | 4.15 | -2.94 | 1.21 | 4.15 | -2.94 | 1.21 | 4.15 | -2.94 | 1.23 | 4.15 | -2.92 | 1.21 | 4.15 | -2.94 |
SHR | 1.91 | 2.08 | -0.17 | 1.94 | 2.08 | -0.14 | 1.92 | 2.08 | -0.16 | 1.91 | 2.07 | -0.16 | 1.95 | 2.06 | -0.11 |
WET | 1.70 | 1.75 | -0.05 | 1.68 | 1.74 | -0.06 | 1.68 | 1.73 | -0.05 | 1.69 | 1.71 | -0.02 | 1.73 | 1.72 | 0.01 |
WTR | 2.75 | 2.85 | -0.1 | 2.76 | 2.85 | -0.09 | 2.77 | 2.85 | -0.08 | 2.81 | 2.85 | -0.04 | 2.79 | 2.86 | -0.07 |
IMP | 3.18 | 3.82 | -0.64 | 3.25 | 3.83 | -0.58 | 3.25 | 3.82 | -0.57 | 3.27 | 3.82 | -0.55 | 3.32 | 3.82 | -0.5 |
BAL | 1.32 | 0.95 | 0.37 | 1.36 | 0.95 | 0.41 | 1.37 | 0.95 | 0.42 | 1.42 | 0.95 | 0.47 | 1.49 | 0.95 | 0.54 |
PSI | 0.06 | 0.02 | 0.04 | 0.06 | 0.02 | 0.04 | 0.07 | 0.02 | 0.05 | 0.07 | 0.02 | 0.05 | 0.07 | 0.02 | 0.05 |
Unchanged | Changed | Total | P.A. (SE) | F1 | |
Unchanged | 82.69 | 2.79 | 85.48 | 96.73 | 94.49 |
Changed | 6.84 | 7.68 | 14.52 | 52.86 | 61.43 |
Total | 89.53 | 10.47 | |||
U.A. (SE) |
|
|
|||
O.A. (SE) |
|
4.5 Limitations of and perspectives on the GLC_FCS30D dataset
types (impervious surface and wetland) are independently developed to improve the reliability of GLC_FCS30D; and (4) the “spatiotemporal consistency checking” optimization in Sect. 3.3.3 is applied to further guarantee the stability and accuracy of GLC_FCS30D. The accuracy assessments performed using the developed global validation dataset and two third-party datasets demonstrate that GLC_FCS30D fulfills the accuracy requirements for a baseline year and for timeseries variability at a global or national scale. Comparisons with other land-cover products also highlight the superiority of GLC_FCS30D in terms of classification system diversity and the monitoring accuracy of these changed areas. However, monitoring global land-cover change across a long time series is an extremely complex and difficult task (Hansen and Loveland, 2012; Song et al., 2018; Winkler et al., 2021; Xian et al., 2022). Although this study uses a series of measurements and methods to achieve global 30 m land-cover change monitoring for the past 37 years, there are still some uncertainties and limitations that need to be resolved in further work.

fore 2000 (Zhang et al., 2022), which means that some landcover changes could not be captured in these areas before 2000 in GLC_FCS30D. To solve the problem of missing and sparse observations, a useful solution is to fuse multisourced remote-sensing imagery. For example, Y. Zhang et al. (2021) combined Landsat and Sentinel-2 imagery to track tropical forest disturbances with an overall accuracy of more than

in the Supplement) also showed that the spatiotemporal consistency optimization can improve the data quality of GLC_FCS30D by suppressing salt and pepper noise and optimizing the temporal consistency. Similarly, Yang and Huang (2021) used this algorithm to optimize China’s annual land-cover products during 1990-2019, and found that it improved the mapping accuracy of the land-cover time-series dataset.
5 Data availability
availability of Landsat 5 imagery at this early stage; thus, we increased the temporal cycle length to guarantee land-cover mapping accuracy. The first three time steps are saved together and the following 23 time steps are saved separately. For example, GLC_FCS30D_ 19851995_E115N15.tif and GLC_FCS30D_20002022_E115N15.tif are, respectively, the data for the first three time steps and the data for the following 23 annual time steps from 1985 to 2022 for the region corresponding to
6 Conclusion
lished maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors.
References
Ballin, M., Barcaroli, G., Masselli, M., and Scarnò, M.: Redesign sample for land use/cover area frame survey (LUCAS) 2018, Eurostat: statistical working papers, 10, 132365, 2018.
Ban, Y., Gong, P., and Giri, C.: Global land cover mapping using Earth observation satellite data: Recent progresses and challenges, ISPRS J. Photogramm. Remote, 103, 1-6, https://doi.org/10.1016/j.isprsjprs.2015.01.001, 2015.
Bastos, A., Ciais, P., Sitch, S., Aragao, L., Chevallier, F., Fawcett, D., Rosan, T. M., Saunois, M., Gunther, D., Perugini, L., Robert, C., Deng, Z., Pongratz, J., Ganzenmuller, R., Fuchs, R., Winkler, K., Zaehle, S., and Albergel, C.: On the use of Earth Observation to support estimates of national greenhouse gas emissions and sinks for the Global stocktake process: lessons learned from ESA-CCI RECCAP2, Carbon Balance Manag., 17, 15, https://doi.org/10.1186/s13021-022-00214-w, 2022.
Belgiu, M. and Drãgup, L.: Random forest in remote sensing: A review of applications and future directions, ISPRS J. Photogramm. Remote, 114, 24-31, https://doi.org/10.1016/j.isprsjprs.2016.01.011, 2016.
Buchhorn, M., Lesiv, M., Tsendbazar, N.-E., Herold, M., Bertels, L., and Smets, B.: Copernicus Global Land Cover Layers – Collection 2, Remote Sens., 12, 1044, https://doi.org/10.3390/rs12061044, 2020.
Bullock, E. L., Woodcock, C. E., and Holden, C. E.: Improved change monitoring using an ensemble of time series algorithms, Remote Sens. Environ., 111165, https://doi.org/10.1016/j.rse.2019.04.018, 2019.
Bullock, E. L., Healey, S. P., Yang, Z., Houborg, R., Gorelick, N., Tang, X., and Andrianirina, C.: Timeliness in forest change monitoring: A new assessment framework
demonstrated using Sentinel-1 and a continuous change detection algorithm, Remote Sens. Environ., 276, 113043, https://doi.org/10.1016/j.rse.2022.113043, 2022.
Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., Lu, M., Zhang, W., Tong, X., and Mills, J.: Global land cover mapping at 30 m resolution: A POK-based operational approach, ISPRS J. Photogramm. Remote, 103, 7-27, https://doi.org/10.1016/j.isprsjprs.2014.09.002, 2015.
d’Andrimont, R., Yordanov, M., Martinez-Sanchez, L., Eiselt, B., Palmieri, A., Dominici, P., Gallego, J., Reuter, H. I., Joebges, C., and Lemoine, G.: Harmonised LUCAS in-situ land cover and use database for field surveys from 2006 to 2018 in the European Union, Sci. Data, 7, 352, https://doi.org/10.1038/s41597-020-00675-z, 2020.
Defourny, P., Kirches, G., Brockmann, C., Boettcher, M., Peters, M., Bontemps, S., Lamarche, C., Schlerf, M., and M., S.: Land Cover CCI: Product User Guide Version 2, 2018, 2018.
DeVries, B., Verbesselt, J., Kooistra, L., and Herold, M.: Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time series, Remote Sens. Environ., 161, 107-121, https://doi.org/10.1016/j.rse.2015.02.012, 2015.
Dong, J., Xiao, X., Kou, W., Qin, Y., Zhang, G., Li, L., Jin, C., Zhou, Y., Wang, J., Biradar, C., Liu, J., and Moore, B.: Tracking the dynamics of paddy rice planting area in 1986-2010 through time series Landsat images and phenology-based algorithms, Remote Sens. Environ., 160, 99113, https://doi.org/10.1016/j.rse.2015.01.004, 2015.
Dong, S., Shang, Z., Gao, J., and Boone, R. B.: Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau, Agric. Ecosyst. Environ., 287, 106684, https://doi.org/10.1016/j.agee.2019.106684, 2020.
Du, P., Samat, A., Waske, B., Liu, S., and Li, Z.: Random Forest and Rotation Forest for fully polarized SAR image classification using polarimetric and spatial features, ISPRS J. Photogramm. Remote, 105, 38-53, https://doi.org/10.1016/j.isprsjprs.2015.03.002, 2015.
Foley, J. A., Defries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., and Snyder, P. K.: Global consequences of land use, Science, 309, 570-574, https://doi.org/10.1126/science.1111772, 2005.
Foody, G. M.: Sample size determination for image classification accuracy assessment and comparison, Int. J. Remote, 30, 52735291, https://doi.org/10.1080/01431160903130937, 2009.
Foody, G. M. and Arora, M. K.: An evaluation of some factors affecting the accuracy of classification by an artificial neural network, Int. J. Remote, 18, 799-810, https://doi.org/10.1080/014311697218764, 2010.
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., and Huang, X.: MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets, Remote Sens. Environ., 114, 168-182, https://doi.org/10.1016/j.rse.2009.08.016, 2010.
Friedl, M. A., Woodcock, C. E., Olofsson, P., Zhu, Z., Loveland, T., Stanimirova, R., Arevalo, P., Bullock, E., Hu, K.-T., Zhang, Y., Turlej, K., Tarrio, K., McAvoy, K., Gorelick, N., Wang, J. A., Barber, C. P., and Souza, C.: Medium Spatial Resolution Map-
ping of Global Land Cover and Land Cover Change Across Multiple Decades From Landsat, Front. Remote Sens., 3, 894571, https://doi.org/10.3389/frsen.2022.894571, 2022.
Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S., Aragão, L. E. O. C., Arneth, A., Arora, V., Bates, N. R., Becker, M., Benoit-Cattin, A., Bittig, H. C., Bopp, L., Bultan, S., Chandra, N., Chevallier, F., Chini, L. P., Evans, W., Florentie, L., Forster, P. M., Gasser, T., Gehlen, M., Gilfillan, D., Gkritzalis, T., Gregor, L., Gruber, N., Harris, I., Hartung, K., Haverd, V., Houghton, R. A., Ilyina, T., Jain, A. K., Joetzjer, E., Kadono, K., Kato, E., Kitidis, V., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi, D., Marland, G., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Niwa, Y., O’Brien, K., Ono, T., Palmer, P. I., Pierrot, D., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Smith, A. J. P., Sutton, A. J., Tanhua, T., Tans, P. P., Tian, H., Tilbrook, B., van der Werf, G., Vuichard, N., Walker, A. P., Wanninkhof, R., Watson, A. J., Willis, D., Wiltshire, A. J., Yuan, W., Yue, X., and Zaehle, S.: Global Carbon Budget 2020, Earth Syst. Sci. Data, 12, 32693340, https://doi.org/10.5194/essd-12-3269-2020, 2020.
Gallant, A.: The Challenges of Remote Monitoring of Wetlands, Remote Sens., 7, 10938-10950, https://doi.org/10.3390/rs70810938, 2015.
Gao, Y., Liu, L., Zhang, X., Chen, X., Mi, J., and Xie, S.: Consistency Analysis and Accuracy Assessment of Three Global
Ge, F., Xu, M., Gong, C., Zhang, Z., Tan, Q., and Pan, X.: Land cover changes the soil moisture response to rainfall on the Loess Plateau, Hydrol. Process., 36, e14714, https://doi.org/10.1002/hyp.14714, 2022.
Giri, C., Pengra, B., Long, J., and Loveland, T. R.: Next generation of global land cover characterization, mapping, and monitoring, Int. J. Appl. Earth Obs., 25, 30-37, https://doi.org/10.1016/j.jag.2013.03.005, 2013.
Gislason, P. O., Benediktsson, J. A., and Sveinsson, J. R.: Random Forests for land cover classification, Pattern Recogn. Lett., 27, 294-300, https://doi.org/10.1016/j.patrec.2005.08.011, 2006.
Gong, P., Li, X., and Zhang, W.: 40-Year (1978-2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing, Sci. Bull., 64, 756-763, https://doi.org/10.1016/j.scib.2019.04.024, 2019a.
Gong, P., Liu, H., Zhang, M., Li, C., Wang, J., Huang, H., Clinton, N., Ji, L., Li, W., Bai, Y., Chen, B., Xu, B., Zhu, Z., Yuan, C., Ping Suen, H., Guo, J., Xu, N., Li, W., Zhao, Y., Yang, J., Yu, C., Wang, X., Fu, H., Yu, L., Dronova, I., Hui, F., Cheng, X., Shi, X., Xiao, F., Liu, Q., and Song, L.: Stable classification with limited sample: transferring a
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sens. Environ., 202, 18-27, https://doi.org/10.1016/j.rse.2017.06.031, 2017.
Harris, N. L., Gibbs, D. A., Baccini, A., Birdsey, R. A., de Bruin, S., Farina, M., Fatoyinbo, L., Hansen, M. C., Herold, M., Houghton, R. A., Potapov, P. V., Suarez, D. R., Roman-Cuesta, R. M., Saatchi, S. S., Slay, C. M., Turubanova, S. A., and Tyukavina, A.: Global maps of twenty-first century forest carbon fluxes, Nat. Clim. Change, 11, 234-240, https://doi.org/10.1038/s41558-020-00976-6, 2021.
Healey, S. P., Cohen, W. B., Yang, Z., Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., Joseph Hughes, M., Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L., and Zhu, Z.: Mapping forest change using stacked generalization: An ensemble approach, Remote Sens. Environ., 204, 717728, https://doi.org/10.1016/j.rse.2017.09.029, 2018.
Herold, M., Mayaux, P., Woodcock, C. E., Baccini, A., and Schmullius,
Homer, C., Dewitz, J., Jin, S., Xian, G., Costello, C., Danielson, P., Gass, L., Funk, M., Wickham, J., Stehman, S., Auch, R., and Riitters, K.: Conterminous United States land cover change patterns 2001-2016 from the 2016 National Land Cover Database, ISPRS J. Photogramm. Remote, 162, 184-199, https://doi.org/10.1016/j.isprsjprs.2020.02.019, 2020.
Hong, C., Burney, J. A., Pongratz, J., Nabel, J., Mueller, N. D., Jackson, R. B., and Davis, S. J.: Global and regional drivers of land-use emissions in 1961-2017, Nature, 589, 554-561, https://doi.org/10.1038/s41586-020-03138-y, 2021.
Huang, C., Goward, S. N., Schleeweis, K., Thomas, N., Masek, J. G., and Zhu, Z.: Dynamics of national forests assessed using the Landsat record: Case studies in eastern United States, Remote Sens. Environ., 113, 1430-1442, https://doi.org/10.1016/j.rse.2008.06.016, 2009.
Jin, H., Stehman, S. V., and Mountrakis, G.: Assessing the impact of training sample selection on accuracy of an urban classification: a case study in Denver, Colorado, Int. J. Remote Sens., 35, 20672081, https://doi.org/10.1080/01431161.2014.885152, 2014.
Jin, S., Yang, L., Zhu, Z., and Homer, C.: A land cover change detection and classification protocol for updating Alaska NLCD 2001 to 2011, Remote Sens. Environ., 195, 44-55, https://doi.org/10.1016/j.rse.2017.04.021, 2017.
Jin, S., Dewitz, J., Li, C., Sorenson, D., Zhu, Z., Shogib, M. R. I., Danielson, P., Granneman, B., Costello, C., Case, A., and Gass, L.: National Land Cover Database 2019: A Comprehensive Strategy for Creating the 19862019 Forest Disturbance Product, J. Remote Sens., 3, 0021, https://doi.org/10.34133/remotesensing.0021, 2023.
Kennedy, R. E., Yang, Z., and Cohen, W. B.: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr – Temporal segmentation algorithms, Remote Sens. Environ., 114, 2897-2910, https://doi.org/10.1016/j.rse.2010.07.008, 2010.
Kenny, Q. Y.: Indicator function and its application in two-level factorial designs, Ann. Stat., 31, 984-994, https://doi.org/10.1214/aos/1056562470, 2003.
Li, X., Gong, P., and Liang, L.: A 30-year (1984-2013) record of annual urban dynamics of Beijing City derived from Landsat data, Remote Sens. Environ., 166, 78-90, https://doi.org/10.1016/j.rse.2015.06.007, 2015.
Liu, C., Zhang, Q., Luo, H., Qi, S., Tao, S., Xu, H., and Yao, Y.: An efficient approach to capture continuous impervious surface dynamics using spatial-temporal rules and dense Landsat time series stacks, Remote Sens. Environ., 229, 114-132, https://doi.org/10.1016/j.rse.2019.04.025, 2019.
Liu, H., Gong, P., Wang, J., Wang, X., Ning, G., and Xu, B.: Production of global daily seamless data cubes and quantification of global land cover change from 1985 to 2020 – iMap World 1.0, Remote Sens. Environ., 258, 112364, https://doi.org/10.1016/j.rse.2021.112364, 2021.
Liu, L., Zhang, X., Chen, X., Gao, Y., and Mi, J.: GLC_FCS30-2020:Global Land Cover with Fine Classification System at 30 m in 2020 (v1.2), Zenodo [data set], https://doi.org/10.5281/zenodo.4280923, 2020.
Liu, L., Zhang, X., Gao, Y., Chen, X., Shuai, X., and Mi, J.: FinerResolution Mapping of Global Land Cover: Recent Developments, Consistency Analysis, and Prospects, J. Remote Sens., 2021, 5289697, https://doi.org/10.34133/2021/5289697, 2021.
Liu, L., Zhang, X., and Zhao, T.: GLC_FCS30D: the first global
Mellor, A., Boukir, S., Haywood, A., and Jones, S.: Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin, ISPRS J. Photogramm. Remote, 105, 155-168, https://doi.org/10.1016/j.isprsjprs.2015.03.014, 2015.
Millard, K. and Richardson, M.: On the Importance of Training Data Sample Selection in Random Forest Image Classification: A Case Study in Peatland Ecosystem Mapping, Remote Sens., 7, 8489-8515, https://doi.org/10.3390/rs70708489, 2015.
Pekel, J. F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution mapping of global surface water and its long-term changes, Nature, 540, 418-422, https://doi.org/10.1038/nature20584, 2016.
Pengra, B., Gallant, A., Zhu, Z., and Dahal, D.: Evaluation of the Initial Thematic Output from a Continuous Change-Detection Algorithm for Use in Automated Operational Land-Change Mapping by the U.S. Geological Survey, Remote Sens., 8, 811, https://doi.org/10.3390/rs8100811, 2016.
Pontus Olofsson, G. M. F.: Good practices for estimating area and assessing accuracy of land change, Remote Sens. Environ., 148, 42-57, https://doi.org/10.1016/j.rse.2014.02.015, 2014.
Potapov, P., Hansen, M. C., Pickens, A., Hernandez-Serna, A., Tyukavina, A., Turubanova, S., Zalles, V., Li, X., Khan, A., Stolle, F., Harris, N., Song, X.-P., Baggett, A., Kommareddy, I., and Kommareddy, A.: The Global 2000-2020 Land Cover and Land Use Change Dataset Derived From the Landsat Archive: First Results, Front. Remote Sens., 3, 856903, https://doi.org/10.3389/frsen.2022.856903, 2022.
Qin, Y., Xiao, X., Wigneron, J.-P., Ciais, P., Canadell, J. G., Brandt, M., Li, X., Fan, L., Wu, X., Tang, H., Dubayah, R., Doughty, R., Chang, Q., Crowell, S., Zheng, B., Neal, K., Celis, J. A., and Moore, B.: Annual Maps of Forests in Australia from Analyses of Microwave and Optical Images with FAO Forest Definition, J. Remote Sens., 2021, 9784657, https://doi.org/10.34133/2021/9784657, 2021.
Radoux, J., Lamarche, C., Van Bogaert, E., Bontemps, S., Brockmann, C., and Defourny, P.: Automated Training Sample Extraction for Global Land Cover Mapping, Remote Sens., 6, 39653987, https://doi.org/10.3390/rs6053965, 2014.
Roy, D. P., Qin, Y., Kovalskyy, V., Vermote, E. F., Ju, J., Egorov, A., Hansen, M. C., Kommareddy, I., and Yan, L.: Conterminous United States demonstration and characterization of MODISbased Landsat ETM+ atmospheric correction, Remote Sens. Environ., 140, 433-449, https://doi.org/10.1016/j.rse.2013.09.012, 2014a.
Roy, D. P., Wulder, M. A., Loveland, T. R., C.E, W., Allen, R. G., Anderson, M. C., Helder, D., Irons, J. R., Johnson, D. M., Kennedy, R., Scambos, T. A., Schaaf, C. B., Schott, J. R., Sheng, Y., Vermote, E. F., Belward, A. S., Bindschadler, R., Cohen, W. B., Gao, F., Hipple, J. D., Hostert, P., Huntington, J., Justice, C. O., Kilic, A., Kovalskyy, V., Lee, Z. P., Lymburner, L., Masek, J. G., McCorkel, J., Shuai, Y., Trezza, R., Vogelmann, J., Wynne, R. H., and Zhu, Z.: Landsat-8: Science and product vision for terrestrial global change research, Remote Sens. Environ., 145, 154-172, https://doi.org/10.1016/j.rse.2014.02.001, 2014b.
Roy, D. P., Kovalskyy, V., Zhang, H. K., Vermote, E. F., Yan, L., Kumar, S. S., and Egorov, A.: Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity, Remote Sens. Environ., 185, 57-70, https://doi.org/10.1016/j.rse.2015.12.024, 2016.
Song, X. P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina, A., Vermote, E. F., and Townshend, J. R.: Global land change from 1982 to 2016, Nature, 560, 639-643, https://doi.org/10.1038/s41586-018-0411-9, 2018.
Stehman, S. V., Pengra, B. W., Horton, J. A., and Wellington, D. F.: Validation of the U.S. Geological Survey’s Land Change Monitoring, Assessment and Projection (LCMAP) Collection 1.0 annual land cover products 1985-2017, Remote Sens. Environ., 265, 112646, https://doi.org/10.1016/j.rse.2021.112646, 2021.
Sulla-Menashe, D., Gray, J. M., Abercrombie, S. P., and Friedl, M. A.: Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product, Remote Sens. Environ., 222, 183-194, https://doi.org/10.1016/j.rse.2018.12.013, 2019.
Venter, Z. S., Barton, D. N., Chakraborty, T., Simensen, T., and Singh, G.: Global 10 m Land Use Land Cover Datasets: A Comparison of Dynamic World, World Cover and Esri Land Cover, Remote Sens., 14, 4101, https://doi.org/10.3390/rs14164101, 2022.
Vermote, E.: LEDAPS surface reflectance product description, https://www.usgs.gov/media/files/ landsat-4-7-collection-1-surface-reflectance-code-ledaps-product(last access: 12 March 2024), 2007.
Vermote, E. F. and Kotchenova, S.: Atmospheric correction for the monitoring of land surfaces, J. Geophys. Res., 113, D23S90, https://doi.org/10.1029/2007jd009662, 2008.
Wang, N., Zhang, X., Yao, S., Wu, J., and Xia, H.: How Good Are Global Layers for Mapping Rural Settlements? Evidence from China, Land, 11, 1308, https://doi.org/10.3390/land11081308, 2022.
Xian, G. Z., Smith, K., Wellington, D., Horton, J., Zhou, Q., Li, C., Auch, R., Brown, J. F., Zhu, Z., and Reker, R. R.: Implementation of the CCDC algorithm to produce the LCMAP Collection 1.0 annual land surface change product, Earth Syst. Sci. Data, 14, 143-162, https://doi.org/10.5194/essd-14-143-2022, 2022.
Xiao, Y., Wang, Q., Tong, X., and Atkinson, P. M.: Thirty-meter map of young forest age in China, Earth Syst. Sci. Data, 15, 3365-3386, https://doi.org/10.5194/essd-15-3365-2023, 2023.
Xie, S., Liu, L., Zhang, X., and Yang, J.: Mapping the annual dynamics of land cover in Beijing from 2001 to 2020 using Landsat dense time series stack, ISPRS J. Photogramm. Remote, 185, 201-218, https://doi.org/10.1016/j.isprsjprs.2022.01.014, 2022.
Yang, J. and Huang, X.: The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019, Earth Syst. Sci. Data, 13, 3907-3925, https://doi.org/10.5194/essd-13-3907-2021, 2021.
Ye, S., Rogan, J., Zhu, Z., and Eastman, J. R.: A near-real-time approach for monitoring forest disturbance using Landsat time series: stochastic continuous change detection, Remote Sens. Environ., 252, 112167, https://doi.org/10.1016/j.rse.2020.112167, 2021.
Zhang, X., Liu, L., Chen, X., Xie, S., and Gao, Y.: Fine LandCover Mapping in China Using Landsat Datacube and an Operational SPECLib-Based Approach, Remote Sens., 11, 1056, https://doi.org/10.3390/rs11091056, 2019.
Zhang, X., Liu, L., Wu, C., Chen, X., Gao, Y., Xie, S., and Zhang, B.: Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the
Zhang, X., Liu, L., Chen, X., Gao, Y., and Jiang, M.: Automatically Monitoring Impervious Surfaces Using Spectral Generalization and Time Series Landsat Imagery from 1985 to 2020 in the Yangtze River Delta, J. Remote Sens., 2021, 1-16, https://doi.org/10.34133/2021/9873816, 2021a.
Zhang, X., Liu, L., Chen, X., Gao, Y., Xie, S., and Mi, J.: GLC_FCS30: global land-cover product with fine classification system at 30 m using time-series Landsat imagery, Earth Syst. Sci. Data, 13, 2753-2776, https://doi.org/10.5194/essd-13-27532021, 2021b.
Zhang, X., Liu, L., Zhao, T., Gao, Y., Chen, X., and Mi, J.: GISD30: global 30 m impervious-surface dynamic dataset from
uide1985 to 2020 using time-series Landsat imagery on the Google Earth Engine platform, Earth Syst. Sci. Data, 14, 1831-1856, https://doi.org/10.5194/essd-14-1831-2022, 2022.
Zhang, X., Liu, L., Zhao, T., Chen, X., Lin, S., Wang, J., Mi, J., and Liu, W.: GWL_FCS30: a global 30 m wetland map with a fine classification system using multi-sourced and time-series remote sensing imagery in 2020, Earth Syst. Sci. Data, 15, 265293, https://doi.org/10.5194/essd-15-265-2023, 2023.
Zhang, Y., Ling, F., Wang, X., Foody, G. M., Boyd, D. S., Li, X., Du, Y., and Atkinson, P. M.: Tracking smallscale tropical forest disturbances: Fusing the Landsat and Sentinel-2 data record, Remote Sens. Environ., 261, 112470, https://doi.org/10.1016/j.rse.2021.112470, 2021c.
Zhao, T., Zhang, X., Gao, Y., Mi, J., Liu, W., Wang, J., Jiang, M., and Liu, L.: Assessing the Accuracy and Consistency of Six FineResolution Global Land Cover Products Using a Novel Stratified Random Sampling Validation Dataset, Remote Sens., 15, 2285, https://doi.org/10.3390/rs15092285, 2023.
Zhu, Z., Wang, S. X., and Woodcock, C. E.: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4-7, 8, and Sentinel 2 images, Remote Sens. Environ., 159, 269-277, https://doi.org/10.1016/j.rse.2014.12.014, 2015.
Zhu, Z., Gallant, A. L., Woodcock, C. E., Pengra, B., Olofsson, P., Loveland, T. R., Jin, S., Dahal, D., Yang, L., and Auch, R. F.: Optimizing selection of training and auxiliary data for operational land cover classification for the LCMAP initiative, ISPRS J. Photogramm. Remote, 122, 206221, https://doi.org/10.1016/j.isprsjprs.2016.11.004, 2016.
Zhu, Z.: Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications, ISPRS J. Photogramm. Remote, 130, 370-384, https://doi.org/10.1016/j.isprsjprs.2017.06.013, 2017.
Zhu, Z. and Woodcock, C. E.: Object-based cloud and cloud shadow detection in Landsat imagery, Remote Sens. Environ., 118, 8394, https://doi.org/10.1016/j.rse.2011.10.028, 2012.
Zhu, Z. and Woodcock, C. E.: Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change, Remote Sens. Environ., 152, 217-234, https://doi.org/10.1016/j.rse.2014.06.012, 2014a.
Zhu, Z. and Woodcock, C. E.: Continuous change detection and classification of land cover using all available Landsat data, Remote Sens. Environ., 144, 152-171, https://doi.org/10.1016/j.rse.2014.01.011, 2014b.