DOI: https://doi.org/10.3758/s13415-024-01171-2
PMID: https://pubmed.ncbi.nlm.nih.gov/38413466
تاريخ النشر: 2024-02-27
اختبارات القوارض للاكتئاب والقلق: صلاحية البناء والأهمية الانتقالية
© المؤلفون 2024، نشر مصحح 2024
الملخص
تشكل الاختبارات السلوكية الطريقة الأساسية لقياس الحالات العاطفية للحيوانات غير البشرية في الأبحاث ما قبل السريرية. تظهر كأداة مميزة لمدرسة السلوك في علم النفس، يتم استخدام الاختبارات السلوكية للحيوانات، وخاصة القوارض، لفهم الأعراض المعرفية والعاطفية المعقدة للاضطرابات النفسية العصبية. بناءً على نموذج التشخيص القائم على الأعراض في DSM، تركز نماذج واختبارات القوارض للاكتئاب والقلق على أنماط سلوكية تشبه الأعراض السطحية لهذه الاضطرابات. بينما وفرت هذه الممارسات للباحثين منصة لفحص مرشحي الأدوية الجديدة المضادة للاكتئاب والقلق، تم التساؤل عن صلاحية بنائها – التي تتضمن الآليات الأساسية ذات الصلة. في هذه المراجعة، نقدم الإجراءات المخبرية المستخدمة لتقييم السلوكيات الشبيهة بالاكتئاب والقلق في الفئران والجرذان. تشمل هذه البنى التي تعتمد على الاستجابات الناتجة عن الضغط، مثل اليأس السلوكي، وتلك التي تظهر مع التدريب غير المؤلم، مثل التحيز المعرفي. نصف الاختبارات السلوكية المحددة المستخدمة لتقييم هذه البنى ونناقش الانتقادات المتعلقة بالخلفية النظرية لها. نستعرض المخاوف المحددة بشأن صلاحية البناء والأهمية الانتقالية للاختبارات السلوكية الفردية، ونحدد قيود التفسير التقليدي القائم على الأعراض، ونقدم أطر جديدة ذات صلة سلوكية تركز على أنماط سلوكية بسيطة. أخيرًا، نستكشف طرق المراقبة السلوكية والتحليل المورفولوجي التي يمكن دمجها في الاختبارات السلوكية ونناقش كيف يمكن أن تعزز صلاحية البناء لهذه الاختبارات.
المقدمة
“أفعال من جميع الأنواع، إذا كانت ترافق بانتظام أي حالة من حالات العقل، تُعترف على الفور بأنها تعبيرية. قد تتكون هذه من حركات أي جزء من الجسم، مثل اهتزاز ذيل الكلب، أو رفع أكتاف الرجل، أو انتصاب الشعر، أو إفراز العرق، أو حالة الدورة الدموية الشعرية، أو التنفس المتعثر، أو استخدام الآلات الصوتية أو غيرها من الآلات المنتجة للصوت. حتى الحشرات تعبر عن الغضب، والرعب، والغيرة، والحب من خلال صريرها.” تشارلز داروين، تعبير العواطف في الإنسان والحيوانات، 1872
غونش أونال
gunes.unal@boun.edu.tr
للاختبارات الرئيسية للقوارض المستخدمة لتقييم السلوكيات التي يُفترض أنها تشبه جوانب معينة من الاكتئاب والقلق السريري. نبدأ بالبنى السلوكية، أو الإطار النظري للسلوكيات المرتبطة بالأمراض في القوارض، ثم نشرح الاختبارات السلوكية الفردية المستخدمة لتقييم هذه البنى (الشكل 1). يوفر الجزء الأول من كل اختبار سلوكي النسخة الأكثر شيوعًا من الإجراء التجريبي، بينما تركز الفقرات اللاحقة على مناقشات حول صلاحية البناء والأهمية الانتقالية.
بالعوامل البيولوجية أو البيئية لتحفيز سلوكيات أو أعراض معينة في الكائن النموذجي. على الرغم من استخدامها بشكل متبادل في الأدبيات، هناك تمييز بين المصطلحين. تُستخدم النماذج الحيوانية لاستنباط أنماط استجابة سلوكية معينة أو لتحفيز سلوكيات عرضية تشبه اضطرابًا بشريًا. بينما تم تصميم الاختبارات السلوكية لالتقاط النتائج الناتجة عن النموذج. يمتلك الاختبار السلوكي متغيرًا تابعًا فقط – النتيجة الملاحظة للتلاعب؛ بينما يحتوي النموذج على متغير مستقل، وهو التلاعب، ومتغير تابع (Cryan & Slattery, 2007).
البنى المتعلقة بالاكتئاب | اليأس المتعلم | اليأس السلوكي | فقدان المتعة | التحيز العاطفي المعرفي | |||||||||||||||||
|
|
|
|
||||||||||||||||||
البنى المتعلقة بالقلق | ثيغموكسيس | صراع الاقتراب-تجنب | |||||||||||||||||||
|
|
|
تم دمج الأجهزة بشكل متزايد في اختبارات السلوك. تشمل هذه الطرق الجديدة تقييم الوضعية (Ebbesen & Froemke، 2021)، تعبيرات الوجه (Langford et al.، 2010؛ Perkins et al.، 2012)، والصوتيات فوق الصوتية (USV) (Simola & Granon، 2019؛ Wöhr & Schwarting، 2013) للحيوان. تستند هذه التقنيات إلى تسجيل وتحديد السلوكيات والتعبيرات النموذجية للأنواع التي يمكن استحضارها أثناء اختبارات السلوك أو تظهر بشكل طبيعي في قفص المنزل (Grieco et al.، 2021؛ Klein et al.، 2022).
المفاهيم المتعلقة بالاكتئاب
العجز المتعلم
اختبار سلوكي | بروتوكولات القوارض الأصلية والمحدثة |
|
||
العجز المتعلم |
|
فوسكو وجير، 1971؛ ثورنتون وجاكوبس، 1971؛ ميلر وسليغمان، 1975 | ||
اختبار السباحة القسري |
|
– | ||
اختبار تعليق الذيل |
|
– | ||
اختبار تفضيل السكروز |
|
أمستردام وآخرون، 1987؛ برلين وآخرون، 1998؛ ديشتر وآخرون، 2010 | ||
اختبار شم البول للإناث | الجرذ والفأر: مالكسمان وآخرون، 2010 | بايجباي، 2023 | ||
اختبار تحيز الحكم |
|
برنا وآخرون، 2011؛ بورك وآخرون، 2010؛ لوسون وآخرون، 2002؛ جيب هاردت ومتي، 2014؛ ماكليود وكوهين، 1993؛ نيفيل وآخرون، 2021؛ إيغايا وآخرون، 2016 | ||
اختبار التحيز العاطفي | جرذ: ستيوارت وآخرون، 2013؛ فأر: غراوليخ وآخرون، 2016 | هارمر، باجواجار، وآخرون، 2003أ، 2003ب؛ هارمر وآخرون، 2009أ، 2009ب؛ نوربوري وآخرون، 2007؛ رويزر وآخرون، 2012 | ||
اختبار المكافأة الاحتمالية |
|
بيزاجالي وآخرون، 2005، 2008أ، 2008ب | ||
اختبار التعلم العكسي الاحتمالي | جرذ: باري وآخرون، 2010 فأر: إينيشين وآخرون، 2012 | مورفي وآخرون، 2003؛ تايلور تافاريس وآخرون، 2008 | ||
اختبار الحقل المفتوح |
|
غرومر وآخرون، 2021؛ والز وآخرون، 2016 | ||
اختبار صندوق الضوء والظلام |
|
– | ||
متاهة مرتفعة زائد/صفر |
|
بيدرمان وآخرون، 2017 | ||
اختبار التغذية المثبط للحداثة | جرذ: ميتشل، 1976؛ بلاسكو-سيرا وآخرون، 2017 فأر: صامويلز وهين، 2011 | – | ||
التفاعل الاجتماعي / اختبار الاقتراب-الابتعاد |
|
لانغ وباولي، 2019؛ ويسر وآخرون، 2010 |
واليأس السلوكي، بدلاً من التعمق في الجوانب المعرفية. ومع ذلك، هناك اتجاه يشير إلى أن العجز المعرفي المرتبط بالعاطفة يمكن أن ينشأ أيضًا من عمليات من القاعدة إلى القمة ويمكن قياسه باستخدام اختبارات مماثلة في البشر والحيوانات الأخرى. وقد أدى ذلك إلى تطوير قياسات التحيز العاطفي المعرفي في الحيوانات، مما أعاد دمج المفاهيم المتباينة سابقًا للاكتئاب والمعرفة في اختبارات الحيوانات (روبنسون ورويسر، 2016) (انظر قسم التحيز العاطفي المعرفي).
اختبارات العجز المتعلم
بينما تواجه مجموعة التحكم الأخرى وضعًا مرهقًا يمكنهم الهروب منه. تواجه المجموعة التجريبية النسخة غير القابلة للهروب من نفس الوضع المرهق. سمح هذا التصميم التجريبي البسيط للباحثين بتمييز التأثيرات السلوكية للإجهاد عن إمكانية التحكم في الإجهاد. تبدأ الإجراءات بفترة تدريب، يتم خلالها تعريض المجموعتين الأخيرتين بشكل متتابع لعدد من المحفزات المزعجة (Chourbaji et al., 2005). يتبع ذلك جلسة اختبار، حيث يصبح الهروب من المحفز أو البيئة المزعجة ممكنًا للمجموعة التجريبية. يُعتبر تأثير العجز المتعلم ملحوظًا عندما تظهر المجموعة التجريبية محاولات أقل بكثير للهروب مقارنةً بمجموعة التحكم في تجارب الاختبار (Overmier & Seligman, 1967).
السلوك يقع تحت مفهوم التهديد المستمر. ومن الجدير بالذكر أن ماير (1984)، أحد مطوري اختبار العجز المكتسب، نظر في أن هذا المفهوم يقيم شكلًا عامًا من “الضغط والتكيف”، حيث يشير التكيف إلى سيطرة الحيوان على الوضع. وخلص ماير إلى أن العجز المكتسب يتعلق، بالتالي، ليس فقط بالاكتئاب، بل يمتد أيضًا إلى اضطرابات أخرى مرتبطة بالضغط (ماير، 1984). توسع هذه المصطلحات نطاق العجز المكتسب، متجاوزة التقييمات التي تركز فقط على الاكتئاب لتشمل قياسات السلوك الشبيه بالقلق (ماير وواتكينز، 1998).
اليأس السلوكي
اختبار السباحة القسري
نتيجة تفاضلية في اختبار السباحة المجهدة (FST). مضادات الاكتئاب سريعة المفعول، مثل الكيتامين (أكان وآخرون، 2023؛ إجيفيت أوغلو وآخرون، 2019؛ كينجير وآخرون، 2023)، كررت التأثير الشبيه بمضادات الاكتئاب. التلاعبات غير الدوائية المضادة للاكتئاب، مثل إثراء البيئة (غوفن وآخرون، 2022)، قد تنتج أيضًا تأثيرات علاجية، مما يوفر مزيدًا من الدعم للنظر في اختبار FST كاختبار عام لفعالية مضادات الاكتئاب. نماذج الإجهاد الحاد (يونال وآخرون، 2022) أو المزمن (كينجير وآخرون، 2023)، على النقيض، تزيد من اليأس السلوكي في FST من خلال زيادة عدم الحركة مقارنة بالمجموعات الضابطة. حساسة لعدة أدوية وتطبيقات معروفة بوجود تأثير علاجي في العيادة، ظهر اختبار FST كأداة ملائمة للتنبؤ بفعالية مضادات الاكتئاب وأصبح “المعيار الذهبي” لتقييم السلوك الشبيه بالاكتئاب في القوارض (يونال وكانبيلي، 2019).
قد تكون مرتبطة أكثر بالأعراض الحركية الحسية منخفضة المستوى للاكتئاب، بدلاً من جوانبه المعرفية أو العاطفية عالية المستوى (كانبيلي، 2010). يعتبر التباطؤ النفسي الحركي أحد الأعراض الأساسية للاكتئاب الشديد، والذي يمكن تقييمه أيضًا في الحيوانات غير البشرية (ويلنر، 1990). يمكن اعتبار تطوير استجابة عدم الحركة في اختبار السباحة المجهد مؤشراً منخفض المستوى للاكتئاب الذي يحاكي التباطؤ النفسي الحركي (أونال وكانبيلي، 2019). يمكن تقييم التغيرات النفسية الحركية في القوارض بطريقة خالية من الضغط باستخدام أنظمة مراقبة الأقفاص المنزلية (فوريكس وآخرون، 2022) (انظر قسم مراقبة الأقفاص المنزلية). من المهم أنه لوحظ أن الحالة غير النشطة ولكن اليقظة في القفص المنزلي تنبأت بعدم الحركة في اختبار السباحة المجهد (ماكليلان وآخرون، 2022).
اختبار تعليق الذيل
التأثير في اختبار السباحة المغلقة (FST) واختبار السباحة المفتوحة (TST)، بينما تتطلب معالجة مزمنة لتحسين الأعراض الاكتئابية لدى البشر (كرايان وهولمز، 2005؛ نيستلي وهيمن، 2010). تشير هذه المقارنة إلى وجود اختلافات مهمة بين المرافقات العصبية الحيوية لليأس السلوكي والاكتئاب البشري (أونال ومصطفى، 2020). على المستوى السلوكي، من المهم ملاحظة أن التأثير المضاد للاكتئاب لدى البشر يسبقه مؤشرات معينة. يتم ملاحظة اختلافات في معالجة الإشارات الاجتماعية (هارمر، بهاغواغار وآخرون، 2003أ، 2003ب) والتحيز العاطفي (هارمر، هيل وآخرون، 2003أ، 2003ب) قبل التأثيرات التحسينية الشائعة للمضادات الاكتئابية. يمكن القول إن زيادة الحركة في FST وTST هي مؤشر مبكر مشابه لعمل المضادات الاكتئابية. يفسر النموذج العصبي النفسي المعرفي للاكتئاب التأثيرات المتوقعة للمضادات الاكتئابية التي تم تقييمها من خلال اختبارات التحيز العاطفي المعرفي (يرجى الرجوع إلى القسم المخصص). لتحديد ما إذا كانت التغيرات الحركية في FST وTST تعكس هذه التأثيرات، قد يكون من المفيد إجراء تحليل مقارن مع اختبارات التحيز العاطفي المعرفي (CAB). على الرغم من وجود دراسة واحدة أفادت بعدم وجود ارتباط بين نتائج FST وCAB (أليفون وآخرون، 2022)، إلا أن هناك حاجة إلى مزيد من البحث للتحقيق في هذه العلاقة.
فقدان المتعة
أثر على سلوك البحث عن المكافآت في SPT (روبنسون، 2018).
اختبار تفضيل السكروز
محلول السكروز (ماركوف، 2022). بالإضافة إلى ذلك، فإن الجانبين من فقدان المتعة، وهما فقدان المتعة وفقدان الدافع، لهما أسس عصبية حيوية مختلفة (بيريجدج، 1996)، وقد ارتبط السلوك الفقداني للمتعة في القوارض بكلتا الدائرتين (كينجير وآخرون، 2023). لذلك، قد تعكس تفسير نتائج اختبار تفضيل السكر الجوانب الاستهلاكية والدافعة لفقدان المتعة.
اختبار شم البول للإناث
مراحل هرمونية متنوعة (بيكر وآخرون، 2016؛ بريندرغاست وآخرون، 2014). بينما تظهر إناث الفئران تفضيلًا لاستنشاق بول ذكور الفئران السليمة على بول الفئران المخصية (جيميولو وآخرون، 1985)، لا توجد حاليًا أبحاث تستخدم اختبارات استنشاق البول كمقياس للانهدونية لدى القوارض الإناث.
التحيز المعرفي العاطفي
التحيزات الملحوظة في الاكتئاب البشري من خلال اختبارات الحيوانات (روبنسون ورويسر، 2016). علاوة على ذلك، فإنه يقدم تفسيرًا لتأخر ظهور الفعالية الملحوظ في مضادات الاكتئاب التقليدية، حيث يفترض أنها لا تعمل كمعززات مباشرة للمزاج، بل كعوامل تعمل في البداية على تحسين المعالجة العاطفية (غودليوكا وهارمر، 2021؛ هارمر وآخرون، 2009أ، 2009ب).
اختبار تحيز الحكم
يرتبط ذلك بزيادة التوقعات للأحداث السلبية، في حين أن الاكتئاب يرتبط أيضًا بانخفاض التوقعات للأحداث الإيجابية (Eysenck et al., 2006). ومع ذلك، فإن الصلاحية التنبؤية لاختبار JBT للأدوية المضادة للاكتئاب محل نزاع (Anderson et al., 2013)، ويبدو أن هذا الاختبار أكثر حساسية في اكتشاف الآثار السلبية للمثبطات والقلق أكثر من الآثار العلاجية للأدوية المضادة للاكتئاب والمهدئات (Neville et al., 2020). لذلك، عند إجراء دراسات لاستكشاف تأثير الأدوية المضادة للاكتئاب والمهدئات، يُنصح إما باستخدام أحجام عينات أكبر (Neville et al., 2020) أو دمج اختبار التحيز العاطفي الذي تم تطويره مؤخرًا (Stuart et al., 2013).
اختبار التحيز العاطفي
الحيوان ضمن تجاربهم الاختبارية. تستند هذه المقاربة إلى الافتراض والملاحظة بأن الحيوانات لا تظهر تحيزًا عندما تكون كلتا الإشارتين مرتبطتين بمكافأة في ظل ظروف محايدة.
اختبار المكافأة الاحتمالية ومهمة التعلم العكسي الاحتمالي
تقيّم كل من الحساسية (القدرة على التمييز بين الإشارة والضوضاء) وتحامل الاستجابة (الاتجاه لتصنيف المدخلات على أنها إشارة أو ضوضاء) (ستانيسلاو وتودوروف، 1999). بعد هذه المنهجية، تم تصميم المهمة البشرية في الأصل (بيزاكالي وآخرون، 2005)، وبعد ذلك تم تطوير نظيرها على القوارض (دير-أفاكيان وآخرون، 2013). قامت PRT البشرية بتقييم تحيز الاستجابة الناشئ بين محفزين متشابهين عندما يتم مكافأة أحدهما بشكل متكرر أكثر. من المتوقع أن يقوم المشاركون بتكييف معايير استجابتهم تجاه المحفزات المرتبطة بمكافآت أعلى، ويُفترض أن غياب مثل هذا التعديل يشير إلى انخفاض استجابة المكافأة (بيزاكالي وآخرون، 2008أ، 2008ب). دعمًا لهذه الفرضية، أظهرت الدراسات التي تشمل الأفراد المكتئبين انخفاضًا في تحيز الاستجابة تجاه المحفزات التي يتم مكافأتها بشكل متكرر (بيزاكالي وآخرون، 2005، 2008أ، 2008ب). في تجارب القوارض، تم تحفيز تحيزات الاستجابة بشكل فعال باستخدام المحفزات الصوتية مع مهمة الضغط على الرافعة (دير-أفاكيان وآخرون، 2013) والمحفزات البصرية مع مهمة شاشة اللمس (إيتورا-مينا وآخرون، 2023؛ كانغاس وآخرون، 2020؛ لوك وكانغاس، 2023)، وكلاهما يشبه التجارب البشرية عن كثب. علاوة على ذلك، كما لوحظ في المرضى المكتئبين (ديليون وآخرون، 2014؛ بيزاكالي، إيفينس، وآخرون، 2008أ، 2008ب)، تؤثر التلاعبات الدوبامينية (دير-أفاكيان وآخرون، 2013) والتلاعبات الكولينيرجية (كانغاس وآخرون، 2020) على تحيز الاستجابة في الجرذان.
بالنسبة للقوارض أيضًا في حساسيتها المحدودة للتلاعبات غير السيروتونينية. استجابةً لهذه المخاوف، تم تقديم بروتوكول جديد، يتضمن فصل التمييز والتعلم العكسي على مدى يومين (ميثا وآخرون، 2020). لا يحسن هذا التصميم النجاح في التعلم العكسي للفئران فحسب، بل يميز أيضًا بين تعلم الاحتمالات والتعلم العكسي.
البنى المتعلقة بالقلق
ثيغمو تاكسي
اختبار الحقل المفتوح
السلوك (Seibenhener & Wooten، 2015). يُستخدم اختبار السلوك المفتوح (OFT) عادةً كإجراء تحكم في اختبارات سلوكية أخرى، مثل اختبار السباحة القسري (FST) واختبار السلوك الاجتماعي (TST)، لتقييم التغيرات المحتملة في مستويات النشاط الحركي العام للحيوانات (Gould et al.، 2009). نظرًا لأن OFT يُستخدم لتقييم سلوك القلق وقياس النشاط الحركي العام، فإن الاعتبار الدقيق مطلوب لتحديد أي متغير تابع يجب أن يُعطى الأولوية في كل اختبار. وهذا يبرز أهمية تكملة نتائج OFT باختبارات سلوكية إضافية. يمكن أن تساعد طرق المراقبة السلوكية الإضافية وطرق التحليل المورفولوجي (انظر القسم المخصص)، مثل مراقبة القفص المنزلي، في التمييز بين النشاط الحركي للحيوان في بيئة غير مرهقة. علاوة على ذلك، يمكن استخدام تحليل الصوتيات فوق الصوتية (USV) في OFT لتمييز الحالة العاطفية للحيوان (Stanford، 2007).
تطبيق اختبارات القوارض على البشر باستخدام الواقع الافتراضي (الجدول 1) (غرومر وآخرون، 2021). لهذا الغرض، أظهر مهمة المشي في مدينة افتراضية، وهي النظير البشري لاختبار الانفتاح (OFT)، أن المشاركين الذين يعانون من رهاب الأماكن المفتوحة أو الذين لديهم درجات حساسية عالية تجاه القلق أظهروا ميلاً أكبر نحو التلامس مع الجدران مقارنة بمجموعة التحكم (والز وآخرون، 2016). لم تُظهر هذه الدراسة فقط أن اختبار الانفتاح هو مهمة حساسة للبشر، بل اقترحت أيضًا طريقة جديدة لقياس القلق لدى البشر، والذي غالبًا ما يتم تقييمه من خلال التقارير الذاتية (غريلون وإرنست، 2016). في دراسة أخرى باستخدام الواقع الافتراضي، أظهر المشاركون ميلاً لتفضيل المنطقة المحيطية في منطقة مفتوحة بغض النظر عن قلقهم السائد (غرومر وآخرون، 2021). وهذا يشير إلى علاقة ضعيفة بين القلق السائد وتجنب المساحات المفتوحة لدى البشر، بينما العلاقة بين قلق الحالة البشرية والتلامس مع الجدران تنتظر الاختبار.
صراع الاقتراب-الابتعاد
إلى قسمين (برود وبلزونغ، 2003). اختبار صندوق الضوء والظلام (LDB) (لا-فو وآخرون، 2020)، متاهة بلس المرتفعة (EPM) (رودجرز ودالفي، 1997)، أو متاهة الزيرو المرتفعة (EZM) (شيبرد وآخرون، 1994) جميعها توفر مناطق مضيئة/مفتوحة ومظلمة/مغلقة لإثارة صراع الاقتراب-التجنب بطريقة عفوية وغير مشروطة. اختبار صراع جيلر-سايفتر (جيلر وآخرون، 1962) واختبار صراع فogel (فوجل وآخرون، 1971)، على النقيض، يستخدمان سلوكيات مشروطة لتقييم صراع الاقتراب-التجنب. في كلا الاختبارين، يتم تدريب القوارض على ربط مكافأة غذائية (اختبار صراع جيلر-سايفتر) أو ماء (اختبار صراع فogel) بصدمات كهربائية خفيفة، مما يخلق صراعًا بين دوافع الاقتراب الطبيعية واستجابة التجنب المشروطة لهذه المحفزات المجزية (ميلا وبروكو، 2003). نادرًا ما يتم استخدام هذين الاختبارين بسبب بروتوكولاتهما المتطلبة وحساسيتها المحدودة للأدوية المضادة للقلق (هارو، 2018). كبديل، يجمع اختبار التغذية المثبطة للحداثة (ساميولز وهين، 2011)، الذي يستخدم أيضًا في دراسات الاكتئاب، بين مكافأة غذائية وضغط الحداثة لتقييم سلوك الاقتراب في القوارض. أخيرًا، يتم استخدام سلوك الاقتراب-التجنب الاجتماعي لتقييم سلوك القلق الشبيه في القوارض من خلال التفاعل الاجتماعي واختبارات الاقتراب-التجنب الاجتماعي (توث ونومان، 2013).
اختبار صندوق الضوء والظلام
صندوق الضوء قد يعكس تأثيرًا مهدئًا (بورن وهاسكو، 2003؛ كوستال وآخرون، 1989).
متاهة الزاوية المرتفعة – متاهة الصفر المرتفعة
الحاجة إلى تحليل وتفسير الوقت الذي يقضيه في المنطقة المركزية، والتي كانت مصدر قلق رئيسي في اختبار الأمان المرتفع (EPM). من ناحية، يمكن تفسير الوقت الذي يقضيه في مركز EPM كأثر خفيف مضاد للقلق (Shepherd et al., 1994). يزيل المتاهة المرتفعة الصفراء هذه الخيار ويجبر الحيوانات على الاختيار بين المناطق المفتوحة أو المغلقة. تم تطوير هذا الاختبار المعدل لزيادة حساسية البناء لمجموعة أوسع من الأدوية المضادة للقلق (Shepherd et al., 1994). أظهرت الدراسات اللاحقة التي قارنت EPM مع EZM نتائج متضاربة، حيث أشار البعض إلى زيادة الحساسية في المتاهة المرتفعة الصفراء (Kulkarni et al., 2007)، بينما لم يفعل الآخرون (Braun et al., 2011). فائدة إضافية لتصميم المتاهة الصفراء هي تجنب عدم التوازن السلوكي الذي قد يميل الحيوانات نحو اتجاه معين في EPM (Schwarting & Borta, 2005). يتجلى هذا عدم التوازن في تفضيل الأرجل لدى الجرذان وقد تم ربطه بأداء الذاكرة المكانية واليأس السلوكي (Ecevitoglu et al., 2020).
اختبار التغذية المثبط للحداثة
اختبارات التفاعل الاجتماعي والاقتراب-تجنب الاجتماعي
تسليط الضوء على الضغوط غير الاجتماعية (أي، ضغط الهزيمة الاجتماعية والصدمات الكهربائية، على التوالي) يبرز فائدتها كأداة لتقييم اضطراب القلق العام (هالر وآخرون، 2003). بينما تم تطوير هذا الاختبار واستخدامه بشكل أساسي مع الجرذان، يتم استخدام اختبار الاقتراب الاجتماعي ذو الغرف الثلاث بشكل أكثر شيوعًا في دراسات الفئران (توث ونيويمان، 2013).
طرق مراقبة السلوك والتحليل الشكلي
تحليل تعبير الوجه
تحليل الصوتيات فوق الصوتية (USV)
تحليل الوضع
الظهر المنحني (كارستنز وموبيرغ، 2000). خلال النزاعات مع الأنواع المماثلة والاحتكاك الجسدي مع المفترسات، قد تتبنى القوارض وضعيات دفاعية أو مهددة تعكس ميلها للقتال أو الهروب (بارنيت، 1963؛ بلانشارد وآخرون، 1977). يمكن أن تكون وضعية الجسم مؤشرًا على أنماط سلوكية محددة في سياق اختبار الحيوانات. مثال توضيحي هو وضعية الانتباه الممدودة (SAP)، حيث يبقى الحيوان ثابتًا بينما يمد جسمه العلوي لاستكشاف وشم منطقة جديدة. يعتبر هذا السلوك تجسيدًا لتقييم المخاطر (ريبي وووتجاك، 2012) وغالبًا ما يُلاحظ في اختبارات القلق المستندة إلى الدوافع الاستكشافية، مثل EPM (إسبيجو، 1997). علاوة على ذلك، تم إثبات أن SAP يستجيب لعدة أدوية مضادة للقلق (مولفايك وآخرون، 1995). تم تطوير أداة برمجية للكشف التلقائي وتحليل SAP لاستخدامها في OFT وEPM كقياس إضافي (هولي وآخرون، 2016).
مراقبة القفص المنزلي
هي حيوانات ليلية، إلا أن الاختبارات السلوكية تُجرى تقليديًا خلال النهار. يمكن أن تتداخل هذه العوامل مع نتائج الاختبارات السلوكية. لمعالجة هذه المخاوف، تم تطوير أنظمة مراقبة القفص المنزلي (HCM) لقياس سلوك الحيوانات داخل القفص الذي تعيش فيه، دون تدخل بشري أو تغييرات بيئية (غريكو وآخرون، 2021؛ كلاين وآخرون، 2022؛ مينغرون وآخرون، 2020). تسمح هذه الأنظمة بالمراقبة المستمرة، بما في ذلك الليل (أي بعد إطفاء أضواء الحضانة) عندما تكون القوارض أكثر نشاطًا بشكل ملحوظ.
2015). أظهر الباحثون أن إدخال بقعة ضوئية نشطة أدى إلى تقليل الوقت الذي تقضيه الفئران خارج ملجأها، وتم تخفيف هذا التأثير من خلال إعطاء الديازيبام، وهو دواء مضاد للقلق. أدى تعديل اختبار البقعة الضوئية للفئران إلى نتائج متسقة، مما يؤكد موثوقيته كمقياس لسلوك التجنب أو القلق (كيريكاو وآخرون، 2018). يخفف من تأثير العوامل المتعلقة بالتجربة، مثل التعامل (هندرسون، داني وآخرون، 2020أ، 2020ب؛ هندرسون، سمولدرز وآخرون، 2020أ، 2020ب) قبل الاختبار وجدة بيئة الاختبار. من الجدير بالذكر أن اختبار البقعة الضوئية يمكّن الباحثين من إجراء مقارنات مباشرة لسلوك الحيوانات قبل وأثناء وبعد التدخلات التلاعبية (بريفوت وآخرون، 2019). كشفت هذه المقارنات أن استجابة التجنب التي أثارتها الضوء تستمر لعدة ساعات بعد أن لم يعد الضوء موجودًا، وتسمى التجنب المتبقي، ويمكن أن تمتد حتى 6 أسابيع (بريفوت وآخرون، 2019). تظهر هذه النتائج أنه يمكن تقييم كل من سلوك التجنب الحاد وطويل الأمد من خلال مراقبة القفص المنزلي.
الاستنتاجات
References
Abramson, L. Y., Seligman, M. E., & Teasdale, J. D. (1978). Learned helplessness in humans: Critique and reformulation. Journal of Abnormal Psychology, 87(1), 49-74. https://doi.org/10.1037/ 0021-843x.87.1.49
Acikgoz, B., Dalkiran, B., & Dayi, A. (2022). An overview of the currency and usefulness of behavioral tests used from past to present to assess anxiety, social behavior and depression in rats and mice. Behavioural Processes, 200, 104670. https://doi.org/ 10.1016/j.beproc.2022.104670
Akmese, C., Sevinc, C., Halim, S., & Unal, G. (2023). Differential role of GABAergic and cholinergic ventral pallidal neurons in behavioral despair, conditioned fear memory and active coping. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 125. https://doi.org/10.1016/j.pnpbp. 2023.110760
Alboni, S., Van DIjk, R. M., Poggini, S., Milior, G., Perrotta, M., Drenth, T., Brunello, N., Wolfer, D. P., Limatola, C., Amrein, I., Cirulli, F., Maggi, L., & Branchi, I. (2015). Fluoxetine effects on molecular, cellular and behavioral endophenotypes of depression are driven by the living environment. Molecular Psychiatry 2015 22:4, 22(4), 552-561. https://doi.org/10.1038/ mp.2015.142
Aliphon, B., Dai, T., Moretti, J., Penrose-Menz, M., Mulders, W. H. A. M., Blache, D., & Rodger, J. (2022). A repeated measures cognitive affective bias test in rats: comparison with forced swim test. Psychopharmacology, 1, 1-14. https://doi.org/10. 1007/s00213-022-06281-8
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th edn). https://doi.org/10.1176/ appi.books. 9780890425596
Amsterdam, J. D., Settle, R. G., Doty, R. L., Abelman, E., & Winokur, A. (1987). Taste and smell perception in depression. Biological Psychiatry, 22(12), 1481-1485. https://doi.org/10. 1016/0006-3223(87)90108-9
Anderson, M. H., Hardcastle, C., Munafò, M. R., & Robinson, E. S. J. (2012). Evaluation of a novel translational task for assessing emotional biases in different species. Cognitive, Affective and
Anderson, M. H., Munafò, M. R., & Robinson, E. S. J. (2013). Investigating the psychopharmacology of cognitive affective bias in rats using an affective tone discrimination task. Psychopharmacology, 226(3), 601-613. https://doi.org/10.1007/ s00213-012-2932-5
Andreatini, R., & Bacellar, L. F. S. (2000). Animal models: trait or state measure? The test-retest reliability of the elevated plusmaze and behavioral despair. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 24(4), 549-560. https:// doi.org/10.1016/s0278-5846(00)00092-0
Araujo, S. M., Poetini, M. R., Bortolotto, V. C., de Freitas Couto, S., Pinheiro, F. C., Meichtry, L. B., de Almeida, F. P., Santos Musachio, E. A., de Paula, M. T., & Prigol, M. (2018). Chronic unpredictable mild stress-induced depressive-like behavior and dysregulation of brain levels of biogenic amines in Drosophila melanogaster. Behavioural Brain Research, 351, 104-113. https://doi.org/10.1016/j.bbr.2018.05.016
Armario, A. (2021). The forced swim test: Historical, conceptual and methodological considerations and its relationship with individual behavioral traits. Neuroscience & Biobehavioral Reviews, 128, 74-86. https://doi.org/10.1016/j.neubiorev.2021.06.014
Atesyakar, N., Canbeyli, R., & Unal, G. (2020). Low cognitive competence as a vulnerability factor for behavioral despair in rats. Behavioural Processes, 174. https://doi.org/10.1016/j.beproc. 2020.104103
Baciadonna, L., & McElligott, A. G. (2015). The use of judgement bias to assess welfare in farm livestock. Animal Welfare, 24(1), 81-91. https://doi.org/10.7120/09627286.24.1.081
Bains, R. S., Wells, S., Sillito, R. R., Armstrong, J. D., Cater, H. L., Banks, G., & Nolan, P. M. (2018). Assessing mouse behaviour throughout the light/dark cycle using automated in-cage analysis tools. Journal of Neuroscience Methods, 300, 37-47. https://doi. org/10.1016/j.jneumeth.2017.04.014
Bajpai, M. (2023). Brief Smell Identification Test-1, An odor impairment Test in Patients of Depression. Physiology, 38(S1), 5735287. https://doi.org/10.1152/physiol.2023.38.s1.5735287
Baratta, M. V., Leslie, N. R., Fallon, I. P., Dolzani, S. D., Chun, L. E., Tamalunas, A. M., Watkins, L. R., & Maier, S. F. (2018). Behavioural and neural sequelae of stressor exposure are not modulated by controllability in females. European Journal of Neuroscience, 47(8), 959-967. https://doi.org/10.1111/ejn. 13833
Bari, A., Theobald, D. E., Caprioli, D., Mar, A. C., Aidoo-Micah, A., Dalley, J. W., & Robbins, T. W. (2010). Serotonin modulates sensitivity to reward and negative feedback in a probabilistic reversal learning task in rats. Neuropsychopharmacology 2010 35:6, 35(6), 1290-1301. https://doi.org/10.1038/npp.2009.233
Barlow, D. H. (2000). Unraveling the mysteries of anxiety and its disorders from the perspective of emotion theory. American Psychologist, 55(11), 1247-1263. https://doi.org/10.1037/0003-066x.55. 11.1247
Barros, H. M. T., & Ferigolo, M. (1998). Ethopharmacology of imipramine in the forced-swimming test: gender differences. Neuroscience & Biobehavioral Reviews, 23(2), 279-286. https://doi.org/ 10.1016/s0149-7634(98)00029-3
Bateson, M., Desire, S., Gartside, S. E., & Wright, G. A. (2011). Agitated honeybees exhibit pessimistic cognitive biases. Current Biology, 21(12), 1070-1073. https://doi.org/10.1016/j.cub. 2011.05.017
Beck, A. T. (1967). Depression: Clinical experimental and theoretical aspects. Hoeber.
Becker, J. B., Prendergast, B. J., & Liang, J. W. (2016). Female rats are not more variable than male rats: A meta-analysis of neuroscience studies. Biology of Sex Differences, 7(1), 1-7. https://doi. org/10.1186/s13293-016-0087-5
Becker, M., Pinhasov, A., & Ornoy, A. (2021). Animal models of depression: what can they teach us about the human disease? Diagnostics, 11(1), 123. https://doi.org/10.3390/diagnostics1101 0123
Beery, A. K., & Zucker, I. (2011). Sex bias in neuroscience and biomedical research. Neuroscience & Biobehavioral Reviews, 35(3), 565-572. https://doi.org/10.1016/j.neubiorev.2010.07.002
Belovicova, K., Bogi, E., Csatlosova, K., & Dubovicky, M. (2017). Animal tests for anxiety-like and depression-like behavior in rats. Interdisciplinary Toxicology, 10(1), 40. https://doi.org/10.1515/ intox-2017-0006
Belzung, C., & Lemoine, M. (2011). Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. Biology of Mood & Anxiety Disorders, 1(1), 1-14. https://doi.org/10.1186/2045-5380-1-9
Berlin, I., Givry-Steiner, L., Lecrubier, Y., & Puech, A. J. (1998). Measures of anhedonia and hedonic responses to sucrose in depressive and schizophrenic patients in comparison with healthy subjects. European Psychiatry, 13(6), 303-309. https://doi.org/ 10.1016/s0924-9338(98)80048-5
Berridge, K. C. (2000). Measuring hedonic impact in animals and infants: microstructure of affective taste reactivity patterns. Neuroscience & Biobehavioral Reviews, 24(2), 173-198. https://doi. org/10.1016/s0149-7634(99)00072-x
Berridge, K. C., & Robinson, T. E. (2003). Parsing reward. Trends in Neurosciences, 26(9), 507-513. https://doi.org/10.1016/s0166-2236(03)00233-9
Berrio, J. P., Hestehave, S., Kalliokoski, O., Paola, J., & Sanchez, B. (2023). Reliability of sucrose preference testing following short or no food and water deprivation: A systematic review and metaanalysis of rat models of chronic unpredictable stress. BioRxiv, 2023-02. https://doi.org/10.1101/2023.02.22.529490
Bespalov, A. Y., van Gaalen, M. M., & Gross, G. (2009). Antidepressant treatment in anxiety disorders. Behavioral Neurobiology of Anxiety and its Treatment, 361-390. https://doi.org/10.1007/ 7854_2009_3
Bethell, E. J. (2015). A “how-to” guide for designing judgment bias studies to assess captive animal welfare. Journal of Applied Animal Welfare Science, 18(sup1), S18-S42. https://doi.org/10. 1080/10888705.2015.1075833
Biedermann, S. V., Biedermann, D. G., Wenzlaff, F., Kurjak, T., Nouri, S., Auer, M. K., Wiedemann, K., Briken, P., Haaker, J., Lonsdorf, T. B., & Fuss, J. (2017). An elevated plus-maze in mixed reality
for studying human anxiety-related behavior. BMC Biology, 15(1), 1-13. https://doi.org/10.1186/s12915-017-0463-6
Bilkei-Gorzó, A., Gyertyán, I., & Lévay, G. (1998). mCPP-induced anxiety in the light-dark box in rats – A new method for screening anxiolytic activity. Psychopharmacology, 136(3), 291-298. https://doi.org/10.1007/s002130050568
Blanchard, R. J., Blanchard, D. C., Takahashi, T., & Kelley, M. J. (1977). Attack and defensive behaviour in the albino rat. Animal Behaviour, 25, 622-634. https://doi.org/10.1016/0003-3472(77) 90113-0
Blasco-Serra, A., González-Soler, E. M., Cervera-Ferri, A., TeruelMartí, V., & Valverde-Navarro, A. A. (2017). A standardization of the Novelty-Suppressed Feeding Test protocol in rats. Neuroscience Letters, 658, 73-78. https://doi.org/10.1016/j.neulet. 2017.08.019
Bogdanova, O. V., Kanekar, S., D’Anci, K. E., & Renshaw, P. F. (2013). Factors influencing behavior in the forced swim test. Physiology & Behavior, 118, 227-239. https://doi.org/10. 1016/j.physbeh.2013.05.012
Boissy, A., Manteuffel, G., Jensen, M. B., Moe, R. O., Spruijt, B., Keeling, L. J., … & Aubert, A. (2007). Assessment of positive emotions in animals to improve their welfare. Physiology & Behavior, 92(3), 375-397. https://doi.org/10.1016/j.physbeh. 2007.02.003
Borsini, F., Volterra, G., & Meli, A. (1986). Does the behavioral “despair” test measure “despair”? Physiology & Behavior, 38(3), 385-386. https://doi.org/10.1016/0031-9384(86) 90110-1
Bourin, M., & Hascoët, M. (2003). The mouse light/dark box test. European Journal of Pharmacology, 463(1-3), 55-65. https:// doi.org/10.1016/s0014-2999(03)01274-3
Bourin, M., Petit-Demoulière, B., Nic Dhonnchadha, B., & Hascöet, M. (2007). Animal models of anxiety in mice. Fundamental & Clinical Pharmacology, 21(6), 567-574. https://doi.org/10. 1111/j.1472-8206.2007.00526.x
Bourke, C., Douglas, K., & Porter, R. (2010). Processing of facial emotion expression in major depression: a review. Australian & New Zealand Journal of Psychiatry, 44(8), 681-696. https://doi.org/ 10.3109/00048674.2010.496359
Braud, W., Wepman, B., & Russo, D. (1969). Task and species generality of the “helplessness” phenomenon. Psychonomic Science, 16(3), 154-155. https://doi.org/10.3758/bf03336349
Braun, A. A., Skelton, M. R., Vorhees, C. V., & Williams, M. T. (2011). Comparison of the elevated plus and elevated zero mazes in treated and untreated male Sprague-Dawley rats: Effects of anxiolytic and anxiogenic agents. Pharmacology Biochemistry and Behavior, 97(3), 406-415. https://doi.org/10.1016/j.pbb. 2010.09.013
Brennan, P. A., & Zufall, F. (2006). Pheromonal communication in vertebrates. Nature, 444(7117), 308-315. https://doi.org/10. 1038/nature05404
Brown, L. A., Hasan, S., Foster, R. G., & Peirson, S. N. (2016). COMPASS: Continuous open mouse phenotyping of activity and sleep status. Wellcome Open Research, 1. https://doi.org/10.12688/ wellcomeopenres. 9892.2
Brudzynski, S. M., & Chiu, E. M. C. (1995). Behavioural responses of laboratory rats to playback of 22 kHz ultrasonic calls. Physiology & Behavior, 57(6), 1039-1044. https://doi.org/10.1016/ 0031-9384(95)00003-2
Brydges, N. M., Hall, L., Nicolson, R., Holmes, M. C., & Hall, J. (2012). The effects of juvenile stress on anxiety, cognitive bias and decision making in adulthood: A rat model. PLOS ONE, 7(10), e48143. https://doi.org/10.1371/journal.pone. 0048143
Burke, C. J., Kisko, T. M., Euston, D. R., & Pellis, S. M. (2018). Do juvenile rats use specific ultrasonic calls to coordinate their social play? Animal Behaviour, 140, 81-92. https://doi.org/10.1016/j. anbehav.2018.03.019
Burman, O. H. P., Parker, R. M. A., Paul, E. S., & Mendl, M. T. (2009). Anxiety-induced cognitive bias in non-human animals. Physiology & Behavior, 98(3), 345-350. https://doi.org/10.1016/j.physb eh.2009.06.012
Burstein, O., & Doron, R. (2018). The Unpredictable Chronic Mild Stress Protocol for Inducing Anhedonia in Mice. JoVE (Journal of Visualized Experiments), 140, e58184. https://doi.org/10. 3791/58184
Butler, G., & Mathews, A. (1983). Cognitive processes in anxiety. Advances in Behaviour Research and Therapy, 5(1), 51-62. https://doi.org/10.1016/0146-6402(83)90015-2
Can, A., Dao, D. T., Terrillion, C. E., Piantadosi, S. C., Bhat, S., & Gould, T. D. (2012). The Tail Suspension Test. JoVE (Journal of Visualized Experiments), 59, e3769. ://doi.org/https://doi.org/ 10.3791/3769
Carobrez, A. P., & Bertoglio, L. J. (2005). Ethological and temporal analyses of anxiety-like behavior: The elevated plus-maze model 20 years on. Neuroscience & Biobehavioral Reviews, 29(8), 1193-1205. https://doi.org/10.1016/j.neubiorev.2005.04.017
Carstens, E., & Moberg, G. P. (2000). Recognizing Pain and Distress in Laboratory Animals. ILAR Journal, 41(2), 62-71. https://doi. org/10.1093/ilar.41.2.62
Castagné, V., Moser, P., Roux, S., & Porsolt, R. D. (2010). Rodent Models of Depression: Forced Swim and Tail Suspension Behavioral Despair Tests in Rats and Mice. Current Protocols in Pharmacology, 49(1), 5.8.1-5.8.14. https://doi.org/10.1002/ 0471141755.ph0508s49
Chermat, R., Thierry, B., Mico, J. A., Steru, L., & Simon, P. (1986). Adaptation of the tail suspension test to the rat. Journal de Pharmacologie, 17(3), 348-350. https://europepmc.org/article/med/ 3795979
Chesler, E. J., Wilson, S. G., Lariviere, W. R., Rodriguez-Zas, S. L., & Mogil, J. S. (2002). Influences of laboratory environment on behavior. Nature Neuroscience, 5(11), 1101-1102. https://doi. org/10.1038/nn1102-1101
Commissaris, R. L. (1993). Conflict behaviors as animal models for the study of anxiety. In Techniques in the behavioral and neural sciences (Vol. 10, pp. 443-474). Elsevier. https://doi.org/10.1016/ B978-0-444-81444-9.50022-5
Commons, K. G., Cholanians, A. B., Babb, J. A., & Ehlinger, D. G. (2017). The rodent forced swim test measures stress-coping strategy, not depression-like behavior. ACS chemical neuroscience, 8(5), 955-960. https://doi.org/10.1021/acschemneuro.7b00042
Costall, B., Jones, B. J., Kelly, M. E., Naylor, R. J., & Tomkins, D. M. (1989). Exploration of mice in a black and white test box: Validation as a model of anxiety. Pharmacology Biochemistry and Behavior, 32(3), 777-785. https://doi.org/10.1016/0091-3057(89)90033-6
Costello, C. G. (1978). A critical review of Seligman’s laboratory experiments on learned helplessness and depression in humans. Journal of Abnormal Psychology, 87(1), 21-31. https://doi.org/ 10.1037/0021-843X.87.1.21
Crawley, J. N. (2007). Mouse behavioral assays relevant to the symptoms of autism. Brain Pathology, 17(4), 448-459. https://doi.org/ 10.1111/J.1750-3639.2007.00096.X
Cryan, J. F., Mombereau, C., & Vassout, A. (2005). The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice. Neuroscience & Biobehavioral Reviews, 29(4-5), 571-625. https://doi.org/10. 1016/j.neubiorev.2005.03.009
Cryan, J. F., & Slattery, D. A. (2007). Animal models of mood disorders: Recent developments. Current Opinion in Psychiatry, 20(1), 1-7. https://doi.org/10.1097/yco.0b013e3280117733
Dalla, C., Edgecomb, C., Whetstone, A. S., & Shors, T. J. (2007). Females do not Express Learned Helplessness like Males do. Neuropsychopharmacology 2008 33:7, 33(7), 1559-1569. https://doi.org/10.1038/sj.npp. 1301533
Dalla, C., & Shors, T. J. (2009). Sex differences in learning processes of classical and operant conditioning. Physiology & Behavior, 97(2), 229-238. https://doi.org/10.1016/j.physbeh.2009.02.035
Davis, M., Walker, D. L., Miles, L., & Grillon, C. (2010). Phasic vs. sustained fear in rats and humans: Role of the extended amygdala in fear vs. anxiety. Neuropsychopharmacology, 35(1), 105-135. https://doi.org/10.1038/npp.2009.109
De Kloet, E. R., & Molendijk, M. L. (2016). Coping with the Forced Swim Stressor: Towards understanding an adaptive mechanism. Neural Plasticity. https://doi.org/10.1155/2016/6503162
De Pablo, J. M., Parra, A., Segovia, S., & Guillamón, A. (1989). Learned immobility explains the behavior of rats in the forced swimming test. Physiology & Behavior, 46(2), 229-237. https:// doi.org/10.1016/0031-9384(89)90261-8
Defensor, E. B., Corley, M. J., Blanchard, R. J., & Blanchard, D. C. (2012). Facial expressions of mice in aggressive and fearful contexts. Physiology & Behavior, 107(5), 680-685. https://doi.org/ 10.1016/j.physbeh.2012.03.024
Deldin, P. J., Keller, J., Gergen, J. A., & Miller, G. A. (2001). Cognitive bias and emotion in neuropsychological models of depression. Cognition & Emotion, 15(6), 787-802. https://doi.org/10.1080/ 02699930143000248
Dember, W. N., Martin, S. H., Hummer, M. K., Howe, S. R., & Melton, R. S. (1989). The measurement of optimism and pessimism. Current Psychology, 8(2), 102-119. https://doi.org/10.1007/bf026 86675
Demuyser, T., Deneyer, L., Bentea, E., Albertini, G., Van Liefferinge, J., Merckx, E., De Prins, A., De Bundel, D., Massie, A., & Smolders, I. (2016). In-depth behavioral characterization of the corticosterone mouse model and the critical involvement of housing conditions. Physiology & Behavior, 156, 199-207. https:// doi.org/10.1016/j.physbeh.2015.12.018
Depue, R. A., & Monroe, S. M. (1978). Learned helplessness in the perspective of the depressive disorders: Conceptual and definitional issues. Journal of Abnormal Psychology, 87(1), 3. https:// doi.org/10.1037/0021-843x.87.1.3
Der-Avakian, A., Barnes, S. A., Markou, A., & Pizzagalli, D. A. (2016). Translational assessment of reward and motivational deficits in psychiatric disorders. Current Topics in Behavioral Neurosciences, 28, 231. https://doi.org/10.1007/7854_2015_5004
Der-Avakian, A., D’Souza, M. S., Pizzagalli, D. A., & Markou, A. (2013). Assessment of reward responsiveness in the response bias probabilistic reward task in rats: implications for crossspecies translational research. Translational Psychiatry, 3(8), e297-e297. https://doi.org/10.1038/tp.2013.74
Der-Avakian, A., & Pizzagalli, D. A. (2018). Translational Assessments of Reward and Anhedonia: A Tribute to Athina Markou. Biological Psychiatry, 83(11), 932-939. https://doi.org/10. 1016/j.biopsych.2018.02.008
Detke, M. J., Rickels, M., & Lucki, I. (1995). Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology, 121(1), 66-72. https://doi.org/10.1007/bf02245592
Dichter, G. S., Smoski, M. J., Kampov-Polevoy, A. B., Gallop, R., & Garbutt, J. C. (2010). Unipolar depression does not moderate responses to the Sweet Taste Test. Depression and anxiety, 27(9), 859-863. ://doi.org/https://doi.org/10.1002/da. 20690
Dillon, D. G., Rosso, I. M., Pechtel, P., Killgore, W. D., Rauch, S. L., & Pizzagalli, D. A. (2014). Peril and pleasure: An RDOC-inspired examination of threat responses and reward processing in anxiety and depression. Depression and anxiety, 31(3), 233-249. https:// doi.org/10.1002/da. 22202
Dimberg, U., Thunberg, M., & Grunedal, S. (2002). Facial reactions to emotional stimuli: Automatically controlled emotional responses.
Dolensek, N., Gehrlach, D. A., Klein, A. S., & Gogolla, N. (2020). Facial expressions of emotion states and their neuronal correlates in mice. Science, 368(6486). https://doi.org/10.1126/scien ce.aaz9468
Doyle, R. E., Hinch, G. N., Fisher, A. D., Boissy, A., Henshall, J. M., & Lee, C. (2011). Administration of serotonin inhibitor p-Chlorophenylalanine induces pessimistic-like judgement bias in sheep. Psychoneuroendocrinology, 36(2), 279-288. https://doi.org/10. 1016/j.psyneuen.2010.07.018
Drugan, R. C., Basile, A. S., Ha, J. H., Healy, D., & Ferland, R. J. (1997). Analysis of the importance of controllable versus uncontrollable stress on subsequent behavioral and physiological functioning. Brain Research Protocols, 2(1), 69-74. https://doi.org/
Dulawa, S. C., & Hen, R. (2005). Recent advances in animal models of chronic antidepressant effects: The novelty-induced hypophagia test. Neuroscience & Biobehavioral Reviews, 29(4-5), 771-783. https://doi.org/10.1016/j.neubiorev.2005.03.017
Dwyer, D. M. (2012). Licking and liking: The assessment of hedonic responses in rodents. Quarterly Journal of Experimental Psychology, 65(3), 371-394. ://doi.org/https://doi.org/10.1080/17470 218.2011.652969
Ecevitoglu, A., Canbeyli, R., & Unal, G. (2019). Oral ketamine alleviates behavioral despair without cognitive impairment in Wistar rats. Behavioural Brain Research, 372, 112058. https://doi.org/ 10.1016/j.bbr.2019.112058
Ekman, P. (1973). Darwin and facial expression: A century of research in review. Academic Press.
Ekman P. (1989). The argument and evidence about universals in facial expressions of emotion. In Wagner H., Manstead A. (Eds.), Wiley handbooks of psychophysiology. Handbook of social psychophysiology (pp. 143-164). Oxford, England: John Wiley.
Ekman, P. (1993). Facial expression and emotion. American Psychologist, 48(4), 384. https://doi.org/10.1037/0003-066x.48.4.384
El Yacoubi, M., & Vaugeois, J. M. (2007). Genetic rodent models of depression. Current Opinion in Pharmacology, 7(1), 3-7. https:// doi.org/10.1016/j.coph.2006.11.002
Elliott, R., Sahakian, B. J., Herrod, J. J., Robbins, T. W., & Paykel, E. S. (1997). Abnormal response to negative feedback in unipolar depression: evidence for a diagnosis specific impairment. Journal of Neurology, Neurosurgery & Psychiatry, 63(1), 74-82. https://doi.org/10.1136/jnnp.63.1.74
Elliott, R., Zahn, R., Deakin, J. F. W., & Anderson, I. M. (2011). Affective Cognition and its Disruption in Mood Disorders. Neuropsychopharmacology, 36(1), 153-182. https://doi.org/10.1038/npp. 2010.77
Ennaceur, A. (2014). Tests of unconditioned anxiety – pitfalls and disappointments. Physiology & Behavior, 135, 55-71. https://doi. org/10.1016/j.physbeh.2014.05.032
Esch, T., Stefano, G. B., Fricchione, G. L., & Benson, H. (2002). The role of stress in neurodegenerative diseases and mental disorders. Neuroendocrinology Letters, 23(3), 199-208.
Eysenck, M., Payne, S., & Santos, R. (2006). Anxiety and depression: Past, present, and future events. Cognition & Emotion, 20(2), 274-294.
Falkenberg, T., Mohammed, A. K., Henriksson, B., Persson, H., Winblad, B., & Lindefors, N. (1992). Increased expression of brainderived neurotrophic factor mRNA in rat hippocampus is associated with improved spatial memory and enriched environment. Neuroscience Letters, 138(1), 153-156. https://doi.org/10.1016/ 0304-3940(92)90494-r
Faure, A., Pittaras, E., Nosjean, A., Chabout, J., Cressant, A., & Granon, S. (2017). Social behaviors and acoustic vocalizations in different strains of mice. Behavioural Brain Research, 320, 383-390. https://doi.org/10.1016/j.bbr.2016.11.003
Fichtel, C., & Manser, M. (2010). Vocal communication in social groups. In Animal behaviour: Evolution and mechanisms (pp. 29-54). Berlin: Springer. https://doi.org/10.1007/ 978-3-642-02624-9_2
File, S. E., & Hyde, J. R. G. (1978). Can social interaction be used to measure anxiety? British Journal of Pharmacology, 62(1), 19. https://doi.org/10.1111/j.1476-5381.1978.tb07001.x
File, S. E. (1985). Animal models for predicting clinical efficacy of anxiolytic drugs: Social behaviour. Neuropsychobiology, 13(12), 55-62. https://doi.org/10.1159/000118163
Finlayson, K., Lampe, J. F., Hintze, S., Würbel, H., & Melotti, L. (2016). Facial indicators of positive emotions in rats. PLOS ONE, 11(11), e0166446. https://doi.org/10.1371/journal.pone. 0166446
Fonio, E., Golani, I., & Benjamini, Y. (2012). Measuring behavior of animal models: faults and remedies. Nature Methods, 9(12), 1167-1170. https://doi.org/10.1038/nmeth. 2252
Fonseca, A. H. O., Santana, G. M., Bosque Ortiz, G. M., Bampi, S., & Dietrich, M. O. (2021). Analysis of ultrasonic vocalizations from mice using computer vision and machine learning. ELife, 10. https://doi.org/10.7554/elife.59161
Fussner, L. M., Mancini, K. J., & Luebbe, A. M. (2018). Depression and Approach Motivation: Differential Relations to Monetary, Social, and Food Reward. Journal of Psychopathology and Behavioral Assessment, 40(1), 117-129. https://doi.org/10.1007/ s10862-017-9620-z
Gebhardt, C., & Mitte, K. (2014). Seeing through the eyes of anxious individuals: an investigation of anxiety-related interpretations of emotional expressions. Cognition and Emotion, 28(8), 13671381. ://doi.org/https://doi.org/10.1080/02699931.2014.881328
Geyer M.A & Markou A. (1995): Animal models of psychiatric disorders. In F. E. Bloom, D. J. Kupfer (eds), Psychopharmacology:
Godlewska, B. R. (2019). Cognitive neuropsychological theory: Reconciliation of psychological and biological approaches for depression. Pharmacology & Therapeutics, 197, 38-51. https://doi.org/ 10.1016/j.pharmthera.2018.12.010
Gong, L., Yin, Y., He, C., Ye, Q., Bai, F., Yuan, Y., Zhang, H., Lv, L., Zhang, H., Xie, C., & Zhang, Z. (2017). Disrupted reward circuits is associated with cognitive deficits and depression severity in major depressive disorder. Journal of Psychiatric Research, 84, 9-17. https://doi.org/10.1016/j.jpsychires.2016.09.016
Goodwill, H. L., Manzano-Nieves, G., Gallo, M., Lee, H. I., Oyerinde, E., Serre, T., & Bath, K. G. (2019). Early life stress leads to sex differences in development of depressive-like outcomes in a mouse model. Neuropsychopharmacology, 44(4), 711-720. https://doi.org/10.1038/s41386-018-0195-5
Goswami, S., Rodríguez-Sierra, O., Cascardi, M., & Paré, D. (2013). Animal models of post-traumatic stress disorder: Face validity. Frontiers in Neuroscience, 7, 89. https://doi.org/10.3389/fnins. 2013.00089
Gould, T.D., Dao, D.T., & Kovacsics, C.E. (2009). The open field test. In: T.D. Gould, editor. Mood and anxiety related phenotypes in mice (pp. 1-20), Series: Neuromethods 42. New York: Humana Press. https://doi.org/10.1007/978-1-60761-303-9_1
Graulich, D. M., Kaiser, S., Sachser, N., & Richter, S. H. (2016). Looking on the bright side of bias-Validation of an affective bias test for laboratory mice. Applied Animal Behaviour Science, 181, 173-181. https://doi.org/10.1016/j.applanim.2016.05.011
Gregg, B., & Thiessen, D. D. (1981). A simple method of olfactory discrimination of urines for the Mongolian gerbil. Meriones unguiculatus. Physiology & Behavior, 26(6), 1133-1136. https:// doi.org/10.1016/0031-9384(81)90221-3
Grieco, F., Bernstein, B. J., Biemans, B., Bikovski, L., Burnett, C. J., Cushman, J. D., van Dam, E. A., Fry, S. A., Richmond-Hacham, B., Homberg, J. R., Kas, M. J. H., Kessels, H. W., Koopmans, B., Krashes, M. J., Krishnan, V., Logan, S., Loos, M., McCann, K. E., Parduzi, Q., … Noldus, L. P. J. J. (2021). Measuring behavior in the home cage: study design, applications, challenges, and perspectives. Frontiers in Behavioral Neuroscience, 15, 735387. https://doi.org/10.3389/fnbeh.2021.735387
Grill, H. J., & Norgren, R. (1978). The taste reactivity test. I. Mimetic responses to gustatory stimuli in neurologically normal rats. Brain research, 143(2), 263-279. https://doi.org/10.1016/ 0006-8993(78)90568-1
Grillon, C., & Ernst, M. (2016). Gain in translation: is it time for thigmotaxis studies in humans? Biological Psychiatry, 80(5), 343-344. https://doi.org/10.1016/j.biopsych.2016.07.003
Gromer, D., Kiser, D. P., & Pauli, P. (2021). Thigmotaxis in a virtual human open field test. Scientific Reports, 2021, 1-13. https://doi. org/10.1038/s41598-021-85678-5
Grossen, N. E., & Kelley, M. J. (1972). Species-specific behavior and acquisition of avoidance behavior in rats. Journal of Comparative and Physiological Psychology, 81(2), 307-310. https://doi.org/ 10.1037/h0033536
conditioned fear responses in rats. Elife, 4, e11352. https://doi. org/10.7554/eLife. 11352.001
Gururajan, A., Reif, A., Cryan, J. F., & Slattery, D. A. (2019). The future of rodent models in depression research. Nature Reviews Neuroscience, 20(11), 686-701. https://doi.org/10.1038/ s41583-019-0221-6
Guven, E. B., Pranic, N. M., & Unal, G. (2022). The differential effects of brief environmental enrichment following social isolation in rats. Cognitive, Affective and Behavioral Neuroscience, 22(4), 818-832. https://doi.org/10.3758/s13415-022-00989-y
Hales, C. A., Stuart, S. A., Anderson, M. H., & Robinson, E. S. J. (2014). Modelling cognitive affective biases in major depressive disorder using rodents. British Journal of Pharmacology, 171(20), 4524-4538. https://doi.org/10.1111/bph. 12603
Hall, C., & Ballachey, E. L. (1932). A study of the rat’s behavior in a field. A contribution to method in comparative psychology. University of California Publications in Psychology, 6, 1-12.
Hall, C. S. (1934). Emotional behavior in the rat. I. Defecation and urination as measures of individual differences in emotionality. Journal of Comparative Psychology, 18(3), 385-403. https://doi. org/10.1037/h0071444
Haller, J., & Bakos, N. (2002). Stress-induced social avoidance: A new model of stress-induced anxiety? Physiology & Behavior, 77(23), 327-332. https://doi.org/10.1016/s0031-9384(02)00860-0
Handley, S. L., & Mithani, S. (1984). Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of ‘fear’motivated behaviour. Naunyn-Schmiedeberg’s Archives of Pharmacology, 327(1), 1-5. https://doi.org/10.1007/bf00504983
Harding, E. J., Paul, E. S., & Mendl, M. (2004). Cognitive bias and affective state. Nature, 427(6972), 312-312. https://doi.org/10. 1038/427312a
Harmer, C. J., Bhagwagar, Z., Perrett, D. I., Völlm, B. A., Cowen, P. J., & Goodwin, G. M. (2003a). Acute SSRI Administration Affects the Processing of Social Cues in Healthy Volunteers. Neuropsychopharmacology, 28(1), 148-152. https://doi.org/10. 1038/sj.npp. 1300004
Harmer, C. J., & Cowen, P. J. (2013). ‘It’s the way that you look at it’-a cognitive neuropsychological account of SSRI action in depression. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1615). https://doi.org/10.1098/rstb. 2012.0407
Harmer, C. J., Hill, S. A., Taylor, M. J., Cowen, P. J., & Goodwin, G. M. (2003b). Toward a neuropsychological theory of antidepressant drug action: Increase in positive emotional bias after potentiation of norepinephrine activity. American Journal of Psychiatry, 160(5), 990-992. https://doi.org/10.1176/APPI.AJP.160.5.990
Harmer, C. J., O’Sullivan, U., Favaron, E., Massey-Chase, R., Ayres, R., Reinecke, A., Goodwin, G. M., & Cowen, P. J. (2009b). Effect of acute antidepressant administration on negative affective bias in depressed patients. American Journal of Psychiatry, 166(10), 1178-1184. https://doi.org/10.1176/appi.ajp.2009.09020149
Harro, J. (2018). Animals, anxiety, and anxiety disorders: How to measure anxiety in rodents and why. Behavioural Brain Research, 352, 81-93. https://doi.org/10.1016/j.bbr.2017.10.016
Hawkins, J., Hicks, R. A., Phillips, N., & Moore, J. D. (1978). Swimming rats and human depression. Nature, 274(5670), 512-512. https://doi.org/10.1038/274512a0
Henderson, L. J., Dani, B., Serrano, E. M. N., Smulders, T. V., & Roughan, J. V. (2020a). Benefits of tunnel handling persist after repeated restraint, injection and anaesthesia. Scientific Reports, 10(1), 1-12. https://doi.org/10.1038/s41598-020-71476-y
Henderson, L. J., Smulders, T. V., & Roughan, J. V. (2020b). Identifying obstacles preventing the uptake of tunnel handling methods for laboratory mice: An international thematic survey. PLOS ONE, 15(4), e0231454. https://doi.org/10.1371/journal.pone. 0231454
Hibicke, M., & Nichols, C. D. (2022). Validation of the forced swim test in Drosophila, and its use to demonstrate psilocybin has long-lasting antidepressant-like effects in flies. Scientific Reports, 12(1), 1-11. https://doi.org/10.1038/s41598-022-14165-2
Hiroto, D. S., & Seligman, M. E. (1975). Generality of learned helplessness in man. Journal of personality and social psychology, 31(2), 311. https://doi.org/10.1037/h0076270
Hobson, L., Bains, R. S., Greenaway, S., Wells, S., & Nolan, P. M. (2020). Phenotyping in Mice Using Continuous Home Cage Monitoring and Ultrasonic Vocalization Recordings. Current Protocols in Mouse Biology, 10(3), e80. https://doi.org/10.1002/ cpmo. 80
Hodos, W. (1961). Progressive Ratio as a Measure of Reward Strength. Science, 134(3483), 943-944. https://doi.org/10.1126/science. 134.3483.943
Hunziker, M. H. L., & dos Santos, C. V. (2007). Learned helplessness: Effects of response requirement and interval between treatment and testing. Behavioural Processes, 76(3), 183-191. ://doi. org/https://doi.org/10.1016/j.beproc.2007.02.012
Iigaya, K., Jolivald, A., Jitkrittum, W., Gilchrist, I. D., Dayan, P., Paul, E., & Mendl, M. (2016). Cognitive bias in ambiguity judgements: using computational models to dissect the effects of mild mood manipulation in humans. PloS One, 11, https://doi.org/10.1371/ journal.pone. 0165840
Ineichen, C., Sigrist, H., Spinelli, S., Lesch, K. P., Sautter, E., Seifritz, E., & Pryce, C. R. (2012). Establishing a probabilistic reversal learning test in mice: evidence for the processes mediating reward-stay and punishment-shift behaviour and for their modulation by serotonin. Neuropharmacology, 63(6), 1012-1021. https://doi.org/10.1016/j.neuropharm.2012.07.025
Isik, S., & Unal, G. (2023). Open-source software for automated rodent behavioral analysis. Frontiers in Neuroscience, 17, 1149027. https://doi.org/10.3389/fnins.2023.1149027
Ito, R., & Lee, A. C. H. (2016). The role of the hippocampus in approach-avoidance conflict decision-making: Evidence from rodent and human studies. Behavioural Brain Research, 313, 345-357. https://doi.org/10.1016/j.bbr.2016.07.039
Iturra-Mena, A. M., Kangas, B. D., Luc, O. T., Potter, D., & Pizzagalli, D. A. (2023). Electrophysiological signatures of reward learning in the rodent touchscreen-based Probabilistic Reward Task. Neuropsychopharmacology, 48(4), 700-709. https://doi.org/10. 1038/s41386-023-01532-4
Jabarin, R., Netser, S., & Wagner, S. (2022). Beyond the three-chamber test: toward a multimodal and objective assessment of social behavior in rodents. Molecular Autism, 13(1), 1-29. https://doi. org/10.1186/s13229-022-00521-6
Jemiolo, B., Alberts, J., Sochinski-Wiggins, S., Harvey, S., & Novotny, M. (1985). Behavioural and endocrine responses of female mice to synthetic analogues of volatile compounds in male urine. Animal Behaviour, 33(4), 1114-1118. ://doi.org/https://doi.org/10. 1016/s0003-3472(85)80170-6
Kalueff, A. V., Wheaton, M., & Murphy, D. L. (2007). What’s wrong with my mouse model?: Advances and strategies in animal modeling of anxiety and depression. Behavioural Brain Research, 179(1), 1-18. https://doi.org/10.1016/j.bbr.2007.01.023
Kangas, B. D., Wooldridge, L. M., Luc, O. T., Bergman, J., & Pizzagalli, D. A. (2020). Empirical validation of a touchscreen probabilistic reward task in rats. Translational Psychiatry, 10(1), 1-11. https://doi.org/10.1038/s41398-020-00969-1
Karagiannis, C. I., Burman, O. H. P., & Mills, D. S. (2015). Dogs with separation-related problems show a “less pessimistic” cognitive bias during treatment with fluoxetine (Reconcile
Katz, R. J. (1982). Animal Model of Depression: Pharmacological Sensitivity of a Hedonic Deficit. Pharmacology Biochemistry & Behavior, 16, 965-968.
Kelliher, K. R., & Wersinger, S. R. (2009). olfactory regulation of the sexual behavior and reproductive physiology of the laboratory mouse: effects and neural mechanisms. ILAR Journal, 50(1), 28-42. https://doi.org/10.1093/ilar.50.1.28
Kessler, R. C., Sampson, N. A., Berglund, P., Gruber, M. J., AlHamzawi, A., Andrade, L., Bunting, B., Demyttenaere, K., Florescu, S., De Girolamo, G., Gureje, O., He, Y., Hu, C., Huang, Y., Karam, E., Kovess-Masfety, V., Lee, S., Levinson, D., Medina Mora, M. E., … Wilcox, M. A. (2015). Anxious and non-anxious major depressive disorder in the World Health Organization World Mental Health Surveys. Epidemiology and Psychiatric Sciences, 24(3), 210-226. https://doi.org/10.1017/s204579601 5000189
Kingir, E., Sevinc, C., & Unal, G. (2023). Chronic oral ketamine prevents anhedonia and alters neuronal activation in the lateral habenula and nucleus accumbens in rats under chronic unpredictable mild stress. Neuropharmacology, 228. https://doi.org/10. 1016/j.neuropharm.2023.109468
Kirlic, N., Young, J., & Aupperle, R. L. (2017). Animal to human translational paradigms relevant for approach avoidance conflict decision making. Behaviour Research and Therapy, 96, 14-29. https://doi.org/10.1016/j.brat.2017.04.010
Kiryk, A., Janusz, A., Zglinicki, B., Turkes, E., Knapska, E., Konopka, W., Lipp, H. P., & Kaczmarek, L. (2020). IntelliCage as a tool for measuring mouse behavior – 20 years perspective. Behavioural Brain Research, 388, 112620. https://doi.org/10.1016/j. bbr.2020.112620
Kitamura, Y., Araki, H., & Gomita, Y. (2002). Influence of ACTH on the effects of imipramine, desipramine and lithium on duration of immobility of rats in the forced swim test. Pharmacology Biochemistry and Behavior, 71(1-2), 63-69. https://doi.org/10.1016/ s0091-3057(01)00625-6
Klein, C. J. M. I., Budiman, T., Homberg, J. R., Verma, D., Keijer, J., & van Schothorst, E. M. (2022). Measuring locomotor activity and behavioral aspects of rodents living in the home-cage. Frontiers in Behavioral Neuroscience, 16, 877323. https://doi.org/10.3389/ fnbeh.2022.877323
Klein, D. C., Fencil-Morse, E., & Seligman, M. E. (1976). Learned helplessness, depression, and the attribution of failure. Journal of personality and social psychology, 33(5), 508. https://doi.org/ 10.1037/0022-3514.33.5.508
Komada, M., Takao, K., & Miyakawa, T. (2008). Elevated Plus Maze for Mice. JoVE (Journal of Visualized Experiments), 22, e1088. https://doi.org/10.3791/1088
Kondrakiewicz, K., Kostecki, M., Szadzińska, W., & Knapska, E. (2019). Ecological validity of social interaction tests in rats and mice. Genes, Brain and Behavior, 18(1), e12525. https://doi.org/ 10.1111/gbb. 12525
Kulkarni, S. K., Singh, K., & Bishnoi, M. (2007). Elevated zero maze: a paradigm to evaluate antianxiety effects of drugs. Methods and Findings in Experimental and Clinical Pharmacology, 29(5), 343-348. https://doi.org/10.1358/mf.2007.29.5.1117557
Kumar, V., Bhat, Z. A., & Kumar, D. (2013). Animal models of anxiety: A comprehensive review. Journal of Pharmacological and Toxicological Methods, 68(2), 175-183. https://doi.org/10. 1016/j.vascn.2013.05.003
Kyriakou, E. I., Nguyen, H. P., Homberg, J. R., & Van der Harst, J. E. (2018). Home-cage anxiety levels in a transgenic rat model for Spinocerebellar ataxia type 17 measured by an approachavoidance task: The light spot test. Journal of Neuroscience Methods, 300, 48-58. https://doi.org/10.1016/j.jneumeth.2017. 08.012
Lamers, F., Van Oppen, P., Comijs, H. C., Smit, J. H., Spinhoven, P., Van Balkom, A. J. L. M., Nolen, W. A., Zitman, F. G., Beekman, A. T. F., & Penninx, B. W. J. H. (2011). Comorbidity patterns of anxiety and depressive disorders in a large cohort study: the Netherlands Study of Depression and Anxiety (NESDA). The Journal of Clinical Psychiatry, 72(3), 3397. https://doi.org/10. 4088/jcp.10m06176blu
Landauer, M. R., & Balster, R. L. (1982). A new test for social investigation in mice: Effects of d-amphetamine. Psychopharmacology, 78(4), 322-325. https://doi.org/10.1007/bf00433734
Lange, B., & Pauli, P. (2019). Social anxiety changes the way we move-A social approach-avoidance task in a virtual reality CAVE system. PLOS ONE, 14(12), e0226805. https://doi.org/ 10.1371/journal.pone. 0226805
La-Vu, M., Tobias, B. C., Schuette, P. J., & Adhikari, A. (2020). To approach or avoid: An introductory overview of the study of anxiety using rodent assays. Frontiers in Behavioral Neuroscience, 14, 566016. https://doi.org/10.3389/fnbeh.2020.00145
Lawson, C., MacLeod, C., & Hammond, G. (2002). Interpretation revealed in the blink of an eye: Depressive bias in the resolution of ambiguity. Journal of Abnormal Psychology, 111(2), 321-328. https://doi.org/10.1037/0021-843x.111.2.321
LeMoult, J., & Gotlib, I. H. (2019). Depression: A cognitive perspective. Clinical Psychology Review, 69, 51-66. https://doi.org/10. 1016/j.cpr.2018.06.008
Leppänen, J. M. (2006). Emotional information processing in mood disorders: A review of behavioral and neuroimaging findings. Current Opinion in Psychiatry, 19(1), 34-39. https://doi.org/10. 1097/01.yco.0000191500.46411.00
Liu, M. Y., Yin, C. Y., Zhu, L. J., Zhu, X. H., Xu, C., Luo, C. X., Chen, H., Zhu, D. Y., & Zhou, Q. G. (2018). Sucrose preference test for measurement of stress-induced anhedonia in mice. Nature Protocols, 13(7), 1686-1698. https://doi.org/10.1038/ s41596-018-0011-z
Looney, T. A., & Cohen, P. S. (1972). Retardation of jump-up escape responding in rats pretreated with different frequencies of noncontingent electric shock. Journal of Comparative and Physiological Psychology, 78(2), 317-322. https://doi.org/10.1037/ h0032300
Luc, O. T., & Kangas, B. D. (2023). Validation of a touchscreen probabilistic reward task for mice: A reverse-translated assay with cross-species continuity. Cognitive, Affective and Behavioral Neuroscience, 1-8. https://doi.org/10.3758/ s13415-023-01128-x
Lynn, S. K., & Barrett, L. F. (2014). “Utilizing” Signal Detection Theory. Psychological Science, 25(9), 1663-1673. ://doi.org/https:// doi.org/10.1177/0956797614541991
MacLellan, A., Nazal, B., Young, L., & Mason, G. (2022). Waking inactivity as a welfare indicator in laboratory mice: investigating postures, facial expressions and depression-like states. Royal Society Open Science, 9(11), 221083. https://doi.org/10.1098/ rsos. 221083
MacLeod, C., & Cohen, I. L. (1993). Anxiety and the Interpretation of Ambiguity: A Text Comprehension Study. Journal of Abnormal Psychology, 102(2), 238-247. https://doi.org/10.1037/0021843x.102.2.238
Maier, S. F. (1984). Learned helplessness and animal models of depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 8(3), 435-446. ://doi.org/https://doi.org/10.1016/ s0278-5846(84)80032-9
Maier, S. F., & Seligman, M. E. (1976). Learned helplessness: Theory and evidence. Journal of Experimental Psychology: General, 105(1), 3-46. https://doi.org/10.1037/0096-3445.105.1.3
Maier, S. F., & Watkins, L. R. (1998). Stressor controllability, anxiety, and serotonin. Cognitive Therapy and Research, 22(6), 595-613. https://doi.org/10.1023/a:1018794104325
Malkesman, O. (2011). The Female Urine Sniffing Test (FUST) of Reward-Seeking Behavior. In T. Gould (Eds.), Mood and Anxiety Related Phenotypes in Mice. Neuromethods, vol 63. Humana Press. https://doi.org/10.1007/978-1-61779-313-4_20
Malkesman, O., Scattoni, M. L., Paredes, D., Tragon, T., Pearson, B., Shaltiel, G., Chen, G., Crawley, J. N., & Manji, H. K. (2010). The female urine sniffing test: a novel approach for assessing reward-seeking behavior in rodents. Biological Psychiatry, 67(9), 864-871. https://doi.org/10.1016/j.biopsych.2009.10.018
Mao, Y., Xu, Y., & Yuan, X. (2022). Validity of chronic restraint stress for modeling anhedonic-like behavior in rodents: a systematic review and meta-analysis. Journal of International Medical Research, 50(2). https://doi.org/10.1177/03000605221075816
Markou, A., Chiamulera, C., Geyer, M. A., Tricklebank, M., & Steckler, T. (2009). Removing obstacles in neuroscience drug discovery: the future path for animal models. Neuropsychopharmacology, 34(1), 74-89. https://doi.org/10.1038/npp.2008.173
Martínez-García, F., Martínez-Ricós, J., Agustín-Pavón, C., MartínezHernández, J., Novejarque, A., & Lanuza, E. (2009). Refining the
dual olfactory hypothesis: Pheromone reward and odour experience. Behavioural Brain Research, 200(2), 277-286. https://doi. org/10.1016/j.bbr.2008.10.002
McGinnis, M. Y., & Vakulenko, M. (2003). Characterization of
McNaughton, N., & Corr, P. J. (2004). A two-dimensional neuropsychology of defense: fear/anxiety and defensive distance. Neuroscience & Biobehavioral Reviews, 28(3), 285-305. https://doi. org/10.1016/j.neubiorev.2004.03.005
Mendl, M., Kurosu, G., Cuthill, I. C., Norton, V., Woodgate, J., Margetts, A., … & Paul, E. S. (2006). Studies of emotion-cognition links in humans as a basis for developing new measures of animal emotion. In Proceedings of the 40th International Congress of the ISAE, Bristol, UK (pp. 46-46).
Metha, J. A., Brian, M. L., Oberrauch, S., Barnes, S. A., Featherby, T. J., Bossaerts, P., Murawski, C., Hoyer, D., & Jacobson, L. H. (2020). separating probability and reversal learning in a novel probabilistic reversal learning task for mice. Frontiers in Behavioral Neuroscience, 13, 488522. https://doi.org/10.3389/fnbeh. 2019.00270
Miller, W. R., & Seligman, M. E. (1973). Depression and the perception of reinforcement. Journal of Abnormal Psychology, 82(1), 62-73. https://doi.org/10.1037/h0034954
Miller, W. R., & Seligman, M. E. (1975). Depression and learned helplessness in man. Journal of Abnormal Psychology, 84(3), 228-238. https://doi.org/10.1037/H0076720
Mingrone, A., Kaffman, A., & Kaffman, A. (2020). The promise of automated home-cage monitoring in improving translational utility of psychiatric research in rodents. Frontiers in Neuroscience, 14, 618593. https://doi.org/10.3389/fnins.2020.618593
Mitchell, D. (1976). Experiments on neophobia in wild and laboratory rats: A reevaluation. Journal of Comparative and Physiological Psychology, 90(2), 190-197. https://doi.org/10.1037/h0077196
Molendijk, M. L., & de Kloet, E. R. (2015). Immobility in the forced swim test is adaptive and does not reflect depression. Psychoneuroendocrinology, 62, 389-391. https://doi.org/10.1016/j.psyne uen.2015.08.028
Molendijk, M. L., & de Kloet, E. R. (2019). Coping with the forced swim stressor: Current state-of-the-art. Behavioural Brain Research, 364, 1-10. https://doi.org/10.1016/j.bbr.2019.02.005
Molewijk, H. E., van der Poel, A. M., & Olivier, B. (1995). The ambivalent behaviour “stretched approach posture” in the rat as a paradigm to characterize anxiolytic drugs. Psychopharmacology, 121(1), 81-90. https://doi.org/10.1007/bf02245594
Montgomery, K. C. (1955). The relation between fear induced by novel stimulation and exploratory drive. Journal of Comparative and Physiological Psychology, 48(4), 254-260. https://doi.org/10. 1037/h0043788
Montgomery, K. C., & Monkman, J. A. (1955). The relation between fear and exploratory behavior. Journal of Comparative and Physiological Psychology, 48(2), 132-136. https://doi.org/10. 1037/h0048596
Moy, S. S., Nadler, J. J., Perez, A., Barbaro, R. P., Johns, J. M., Magnuson, T. R., Piven, J., & Crawley, J. N. (2004). Sociability and preference for social novelty in five inbred strains: an approach
to assess autistic-like behavior in mice. Genes, Brain and Behavior, 3(5), 287-302. https://doi.org/10.1111/j.1601-1848.2004. 00076.x
Nadler, J. J., Moy, S. S., Dold, G., Trang, D., Simmons, N., Perez, A., Young, N. B., Barbaro, R. P., Piven, J., Magnuson, T. R., & Crawley, J. N. (2004). Automated apparatus for quantitation of social approach behaviors in mice. Genes, Brain and Behavior, 3(5), 303-314. https://doi.org/10.1111/j.1601-183x.2004. 00071.x
Neckameyer, W. S., & Nieto-Romero, A. R. (2015). Response to stress in Drosophila is mediated by gender, age and stress paradigm. Stress, 18(2), 254-266. https://doi.org/10.3109/10253890.2015. 1017465
Nestler, E. J., Gould, E., & Manji, H. (2002). Preclinical models: status of basic research in depression. Biological Psychiatry, 52(6), 503-528. https://doi.org/10.1016/s0006-3223(02)01405-1
Nestler, E. J., & Hyman, S. E. (2010). Animal models of neuropsychiatric disorders. Nature Neuroscience, 13(10), 1161-1169. https:// doi.org/10.1038/nn. 2647
Neville, V., Nakagawa, S., Zidar, J., Paul, E. S., Lagisz, M., Bateson, M., Løvlie, H., & Mendl, M. (2020). Pharmacological manipulations of judgement bias: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 108, 269-286. https:// doi.org/10.1016/j.neubiorev.2019.11.008
Neville, V., Dayan, P., Gilchrist, I. D., Paul, E. S., & Mendl, M. (2021). Using primary reinforcement to enhance translatability of a human affect and decision-making judgment bias task. Journal of Cognitive Neuroscience, 33(12), 2523-2535. https://doi.org/ 10.1162/jocn_a_01776
Nishimura, H., Tsuda, A., Oguchi, M., Ida, Y., & Tanaka, M. (1988). Is immobility of rats in the forced swim test “behavioral despair?” Physiology & Behavior, 42(1), 93-95. https://doi.org/10.1016/ 0031-9384(88)90266-1
Norbury, R., Mackay, C. E., Cowen, P. J., Goodwin, G. M., & Harmer, C. J. (2007). Short-term antidepressant treatment and facial processing: Functional magnetic resonance imaging study. The British Journal of Psychiatry, 190(6), 531-532. https://doi.org/10. 1192/bjp.bp.106.031393
Olivier, B., Molewijk, H. E., Van Der Heyden, J. A. M., Van Oorschot, R., Ronken, E., Mos, J., & Miczek, K. A. (1998). Ultrasonic vocalizations in rat pups: effects of serotonergic ligands. Neuroscience & Biobehavioral Reviews, 23(2), 215-227. https://doi. org/10.1016/S0149-7634(98)00022-0
World Health Organization. (1992). The ICD-10 classification of mental and behavioural disorders: Clinical descriptions and diagnostic guidelines. World Health Organization.
Overmier, J. B., & Seligman, M. E. (1967). Effects of inescapable shock upon subsequent escape and avoidance responding.
Padilla, A. M., Padilla, C., Ketterer, T., & Giacalone, D. (1970). Inescapable shocks and subsequent escape/avoidance conditioning in goldfish. Carassius auratus. Psychonomic Science, 20(5), 295-296. https://doi.org/10.3758/bf03329075
Paul, E. S., Harding, E. J., & Mendl, M. (2005). Measuring emotional processes in animals: the utility of a cognitive approach. Neuroscience & Biobehavioral Reviews, 29(3), 469-491. https://doi. org/10.1016/j.neubiorev.2005.01.002
Peleh, T., Bai, X., Kas, M. J. H., & Hengerer, B. (2019). RFID-supported video tracking for automated analysis of social behaviour in groups of mice. Journal of Neuroscience Methods, 325, 108323. https://doi.org/10.1016/j.jneumeth.2019.108323
Pellow, S., & File, S. E. (1986). Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: A novel test of anxiety in the rat. Pharmacology Biochemistry and Behavior, 24(3), 525-529. https://doi.org/10.1016/0091-3057(86)90552-6
Perkins, A. M., Inchley-Mort, S. L., Pickering, A. D., Corr, P. J., & Burgess, A. P. (2012). A facial expression for anxiety. Journal of Personality and Social Psychology, 102(5), 910-924. https:// doi.org/10.1037/a0026825
Perusini, J. N., & Fanselow, M. S. (2015). Neurobehavioral perspectives on the distinction between fear and anxiety. Learning & Memory, 22(9), 417-425. https://doi.org/10.1101/lm.039180. 115
Petit-Demouliere, B., Chenu, F., & Bourin, M. (2005). Forced swimming test in mice: A review of antidepressant activity. Psychopharmacology, 177(3), 245-255. https://doi.org/10.1007/ S00213-004-2048-7
Phillips, B. U., Dewan, S., Nilsson, S. R. O., Robbins, T. W., Heath, C. J., Saksida, L. M., Bussey, T. J., & Alsiö, J. (2018). Selective effects of 5-HT2C receptor modulation on performance of a novel valence-probe visual discrimination task and probabilistic reversal learning in mice. Psychopharmacology, 235(7), 21012111. https://doi.org/10.1007/s00213-018-4907-7
Pizzagalli, D. A., Iosifescu, D., Hallett, L. A., Ratner, K. G., & Fava, M. (2008b). Reduced hedonic capacity in major depressive disorder: Evidence from a probabilistic reward task. Journal of Psychiatric Research, 43(1), 76-87. https://doi.org/10.1016/j.jpsyc hires.2008.03.001
Pizzagalli, D. A., Jahn, A. L., & O’Shea, J. P. (2005). Toward an objective characterization of an anhedonic phenotype: A signal-detection approach. Biological Psychiatry, 57(4), 319-327. https://doi. org/10.1016/j.biopsych.2004.11.026
Planchez, B., Surget, A., & Belzung, C. (2019). Animal models of major depression: drawbacks and challenges. Journal of Neural Transmission, 126(11), 1383-1408. https://doi.org/10.1007/ s00702-019-02084-y
Poirier, C., Bateson, M., Gualtieri, F., Armstrong, E. A., Laws, G. C., Boswell, T., & Smulders, T. V. (2019). Validation of hippocampal biomarkers of cumulative affective experience. Neuroscience & Biobehavioral Reviews, 101, 113-121. https://doi.org/ 10.1016/j.neubiorev.2019.03.024
Porsolt, R. D., Bertin, A., & Jalfre, M. (1977a). Behavioral despair in mice: a primary screening test for antidepressants. Archives internationales de pharmacodynamie et de therapie, 229(2), 327-336.
Porsolt, R. D., Le Pichon, M., & Jalfre, M. (1977b). Depression: a new animal model sensitive to antidepressant treatments. Nature, 266(5604), 730-732. https://doi.org/10.1038/266730a0
Porter, J., Craven B., Khan, R. M., Chang, S., Kang, I., Judkewitz, B., . . . , Sobel N. (2007). Mechanisms of scent-tracking in humans. Nature Neuroscience, 10(1), 27-29. https://www.nature.com/ articles/nn1819
Portfors, C. V. (2007). Types and functions of ultrasonic vocalizations in laboratory rats and mice. Journal of the American Association for Laboratory Animal Science, 46(1), 28-34.
Poschel, B. P. H. (1971). A simple and specific screen for benzodiaze-pine-like drugs. Psychopharmacologia, 19(2), 193-198. https:// doi.org/10.1007/bf00402642
Premoli, M., Baggi, D., Bianchetti, M., Gnutti, A., Bondaschi, M., Mastinu, A., Migliorati, P., Signoroni, A., Leonardi, R., Memo, M., & Bonini, S. A. (2021). Automatic classification of mice vocalizations using Machine Learning techniques and Convolutional Neural Networks. PLOS ONE, 16(1), e0244636. https:// doi.org/10.1371/journal.pone. 0244636
Prendergast, B. J., Onishi, K. G., & Zucker, I. (2014). Female mice liberated for inclusion in neuroscience and biomedical research. Neuroscience & Biobehavioral Reviews, 40, 1-5. https://doi.org/ 10.1016/j.neubiorev.2014.01.001
Prut, L., & Belzung, C. (2003). The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. European Journal of Pharmacology, 463(1-3), 3-33. https://doi.org/ 10.1016/s0014-2999(03)01272-x
Pryce, C. R., Rüedi-Bettschen, D., Dettling, A. C., Weston, A., Russig, H., Ferger, B., & Feldon, J. (2005). Long-term effects of early-life environmental manipulations in rodents and primates: Potential animal models in depression research. Neuroscience & Biobehavioral Reviews, 29(4-5), 649-674. https://doi.org/10. 1016/j.neubiorev.2005.03.011
Regier, D. A., Narrow, W. E., Kuhl, E. A., & Kupfer, D. J. (2009). The conceptual development of DSM-V. American Journal of Psychiatry, 166(6), 645-650. https://doi.org/10.1176/appi.ajp. 2009.09020279
Riebe, C. J., Wotjak, C. T. (2012). A practical guide to evaluating anxiety-related behavior in rodents. In: A. Szallasi, T. Biro (eds), TRP channels in drug discovery. Methods in pharmacology and toxicology. Humana Press, Totowa, NJ. ://doi.org/https://doi.org/ 10.1007/978-1-62703-095-3_10
Robinson, E., Roiser, J. (2016). Affective Biases in Humans and Animals. In: T.W. Robbins, B.J. Sahakian. (Eds.), Translational Neuropsychopharmacology. Current Topics in Behavioral Neurosciences, vol 28. Springer, Cham. https://doi.org/10.1007/ 7854_2015_5011
Robinson, E. S. J. (2018). Translational new approaches for investigating mood disorders in rodents and what they may reveal about the underlying neurobiology of major depressive disorder. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 373(1742), 20170036. https://doi.org/10. 1098/rstb. 2017.0036
Robinson, O. J., Pike, A. C., Cornwell, B., & Grillon, C. (2019). The translational neural circuitry of anxiety. Journal of Neurology, Neurosurgery & Psychiatry, 90(12), 1353-1360. https://doi.org/ 10.1136/jnnp-2019-321400
Rodgers, R. J., & Dalvi, A. (1997). Anxiety, defence and the elevated plus-maze. Neuroscience & Biobehavioral Reviews, 21(6), 801810. https://doi.org/10.1016/s0149-7634(96)00058-9
Roiser, J. P., Elliott, R., & Sahakian, B. J. (2012). Cognitive Mechanisms of Treatment in Depression. Neuropsychopharmacology 2011 37:1, 37(1), 117-136. https://doi.org/10.1038/npp.2011.183
Roiser, J. P., & Sahakian, B. J. (2013). Hot and cold cognition in depression. CNS spectrums, 18(3), 139-149. https://doi.org/10. 1017/s1092852913000072
Rosen, J. B., & Schulkin, J. (1998). From normal fear to pathological anxiety. Psychological Review, 105(2), 325-350. https://doi.org/ 10.1037/0033-295X.105.2.325
Sabiniewicz, A., Hoffmann, L., Haehner, A., & Hummel, T. (2022). Symptoms of depression change with olfactory function. Scientific Reports, 12(1), 1-8. https://doi.org/10.1038/ s41598-022-09650-7
Salamone, J. D., Steinpreis, R. E., Mccullough, L. D., Smith, P., Grebel, D., & Mahan, K. (1991). Haloperidol and nucleus accumbens dopamine depletion suppress lever pressing for food but increase free food consumption in a novel food choice procedure. Psychopharmacology, 104, 515-521.
Samuels, B.A., Hen, R. (2011). Novelty-Suppressed Feeding in the Mouse. In: T. Gould (Eds.), Mood and Anxiety Related Phenotypes in Mice. Neuromethods, vol 63. Humana Press. https://doi. org/10.1007/978-1-61779-313-4_7
Sanislow, C. A., Pine, D. S., Quinn, K. J., Kozak, M. J., Garvey, M. A., Heinssen, R. K., Wang, P.S.-E., & Cuthbert, B. N. (2010). Developing constructs for psychopathology research: Research domain criteria. Journal of Abnormal Psychology, 119(4), 631639. https://doi.org/10.1037/a0020909
Schick, A., Wessa, M., Vollmayr, B., Kuehner, C., & Kanske, P. (2013). Indirect assessment of an interpretation bias in humans:
Schrijver, N. C. A., Bahr, N. I., Weiss, I. C., & Würbel, H. (2002). Dissociable effects of isolation rearing and environmental enrichment on exploration, spatial learning and HPA activity in adult rats. Pharmacology Biochemistry and Behavior, 73(1), 209-224. https://doi.org/10.1016/s0091-3057(02)00790-6
Schulz, M., Zieglowski, L., Kopaczka, M., & Tolba, R. H. (2023). The Open Field Test as a Tool for Behaviour Analysis in Pigs: Recommendations for Set-Up Standardization – A Systematic Review. European Surgical Research, 64(1), 7-26. https://doi. org/10.1159/000525680
Schwarting, R. K. W., & Borta, A. (2005). Analysis of behavioral asymmetries in the elevated plus-maze and in the T-maze. Journal of Neuroscience Methods, 141(2), 251-260. https://doi.org/ 10.1016/j.jneumeth.2004.06.013
Seligman, M. E. (1972). Learned helplessness. Annual Review of Medicine, 23, 407-412. https://doi.org/10.1146/annurev.me.23. 020172.002203
Seligman, M. E., & Maier, S. F. (1967). Failure to escape traumatic shock. Journal of Experimental Psychology, 74(1), 1-9. https:// doi.org/10.1037/h0024514
Shepherd, J. K., Grewal, S. S., Fletcher, A., Bill, D. J., & Dourish, C. T. (1994). Behavioural and pharmacological characterisation of the elevated “zero-maze” as an animal model of anxiety. Psychopharmacology, 116(1), 56-64. https://doi.org/10.1007/bf022 44871
Silveira, K.M., Joca, S. (2023). Learned Helplessness in Rodents. In: J. Harro (Ed.), Psychiatric Vulnerability, Mood, and Anxiety Disorders. Neuromethods, vol 190. Humana, New York, NY. https:// doi.org/10.1007/978-1-0716-2748-8_9
Simola N, Brudzynski SM. (2018) Repertoire and biological function of ultrasonic vocalizations in adolescent and adult rats. In S.M. Brudzynski (Ed.), Handbook of Ultrasonic Vocalization (Vol. 25, pp. 177-186). A window into the emotional brain. Elsevier. https://doi.org/10.1016/b978-0-12-809600-0.00017-2
Simola, N., & Granon, S. (2019). Ultrasonic vocalizations as a tool in studying emotional states in rodent models of social behavior and brain disease. Neuropharmacology, 159, 107420. https://doi.org/ 10.1016/j.neuropharm.2018.11.008
Sotocinal, S. G., Sorge, R. E., Zaloum, A., Tuttle, A. H., Martin, L. J., Wieskopf, J. S., Mapplebeck, J. C. S., Wei, P., Zhan, S., Zhang, S., McDougall, J. J., King, O. D., & Mogil, J. S. (2011). The Rat Grimace Scale: A partially automated method for quantifying pain in the laboratory rat via facial expressions. Molecular Pain, 7. https://doi.org/10.1186/1744-8069-7-55
Steimer, T. (2002). The biology of fear- and anxiety-related behaviors. Dialogues in Clinical Neuroscience, 4(3), 231-249. https://doi. org/10.31887/dcns.2002.4.3/tsteimer
Steru, L., Chermat, R., Thierry, B., & Simon, P. (1985). The tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology, 85(3), 367-370. https://doi.org/10. 1007/bf00428203
Storbeck, J., & Clore, G. L. (2007). On the interdependence of cognition and emotion. Cognition And Emotion, 21(6), 1212-1237. https://doi.org/10.1080/02699930701438020
Strekalova, T. (2023). How the sucrose preference succeeds or fails as a measurement of anhedonia. In J. Harro (edn), Psychiatric vulnerability, mood, and anxiety disorders. Neuromethods, vol 190. Humana, New York. https://doi.org/10.1007/ 978-1-0716-2748-8_6
Stuart, S. A., Butler, P., Munafò, M. R., Nutt, D. J., & Robinson, E. S. J. (2013). A translational rodent assay of affective biases in depression and antidepressant therapy. Neuropsychopharmacology, 38(9), 1625-1635. https://doi.org/10.1038/npp. 2013.69
Stuart, S. A., Butler, P., Munafò, M. R., Nutt, D. J., & Robinson, E. S. J. (2015). Distinct neuropsychological mechanisms may explain delayed- versus rapid-onset antidepressant efficacy. Neuropsychopharmacology, 40(9), 2165-2174. https://doi. org/10.1038/npp.2015.59
Stuart, S. A., Hinchcliffe, J. K., & Robinson, E. S. J. (2019). Evidence that neuropsychological deficits following early life adversity may underlie vulnerability to depression. Neuropsychopharmacology, 44(9), 1623-1630. https://doi.org/10.1038/ s41386-019-0388-6
Markov, D. D. (2022). Sucrose preference test as a measure of anhedonic behavior in a chronic unpredictable mild stress model of depression: outstanding issues. Brain Sciences, 12(10), 1287. https://doi.org/10.3390/brainsci12101287
Takahashi, L. K., Nakashima, B. R., Hong, H., & Watanabe, K. (2005). The smell of danger: A behavioral and neural analysis of predator odor-induced fear. Neuroscience & Biobehavioral Reviews, 29(8), 1157-1167. https://doi.org/10.1016/j.neubi orev.2005.04.008
Taylor Tavares, J. V., Clark, L., Furey, M. L., Williams, G. B., Sahakian, B. J., & Drevets, W. C. (2008). Neural basis of abnormal response to negative feedback in unmedicated mood disorders. NeuroImage, 42(3), 1118-1126. https://doi.org/10.1016/j. neuroimage.2008.05.049
Thierry, B., Stéru, L., Simon, P., & Porsolt, R. D. (1986). The tail suspension test: Ethical considerations. Psychopharmacology, 90(2), 284-285. https://doi.org/10.1007/bf00181261
Thomas, D. A., Takahashi, L. K., & Barfield, R. J. (1983). Analysis of ultrasonic vocalizations emitted by intruders during aggressive encounters among rats (Rattus norvegicus). Journal of Comparative Psychology, 97(3), 201-206. https://doi.org/10. 1037/0735-7036.97.3.201
Thornton, J. W., & Jacobs, P. D. (1971). Learned helplessness in human subjects. Journal of Experimental Psychology, 87(3), 367-372. ://doi.org/https://doi.org/10.1037/h0030529
Toth, I., & Neumann, I. D. (2013). Animal models of social avoidance and social fear. Cell and Tissue Research, 354(1), 107118. https://doi.org/10.1007/s00441-013-1636-4
reactivity: A new animal model for affective disorders. Psychoneuroendocrinology, 33(6), 839-862. https://doi.org/10.1016/j. psyneuen.2008.03.013
Tractenberg, S. G., Levandowski, M. L., de Azeredo, L. A., Orso, R., Roithmann, L. G., Hoffmann, E. S., Brenhouse, H., & Grassi-Oliveira, R. (2016). An overview of maternal separation effects on behavioural outcomes in mice: Evidence from a four-stage methodological systematic review. Neuroscience & Biobehavioral Reviews, 68, 489-503. https://doi.org/10.1016/j. neubiorev.2016.06.021
Treadway, M. T., & Zald, D. H. (2011). Reconsidering anhedonia in depression: Lessons from translational neuroscience. Neuroscience & Biobehavioral Reviews, 35(3), 537-555. https://doi.org/ 10.1016/j.neubiorev.2010.06.006
Unal, G. (2021). Social isolation as a laboratory model of depression. In A. A. Moustafa (Ed.), Mental Health Effects of COVID19 (pp. 133-151). https://doi.org/10.1016/B978-0-12-824289-6. 00005-2
Unal, G., & Canbeyli, R. (2019). Psychomotor retardation in depression: A critical measure of the forced swim test. Behavioural Brain Research, 372, 112047. https://doi.org/10.1016/j.bbr.2019. 112047
Unal, G., & Moustafa, A. A. (2020). The neural substrates of different depression symptoms: Animal and human studies. In A. A. Moustafa (ed), The Nature of Depression (pp. 59-79). Academic Press. https://doi.org/10.1016/B978-0-12-817676-4.00004-3
Ünal, G., Gizem, E., Rabia, K., & Demircan, K. (2022). The behavioral effects of social buffering in Rats. Turkish Journal of Psychology, 37(89), 116-118. https://doi.org/10.31828/tpd130044332019 1125 m 000042
Van De Weerd, H. A., Bulthuis, R. J. A., Bergman, A. F., Schlingmann, F., Tolboom, J., Van Loo, P. L. P., Remie, R., Baumans, V., & Van Zutphen, L. F. M. (2001). Validation of a new system for the automatic registration of behaviour in mice and rats. Behavioural Processes, 53(1-2), 11-20. https://doi.org/10.1016/s0376-6357(00)00135-2
Van Segbroeck, M., Knoll, A. T., Levitt, P., & Narayanan, S. (2017). MUPET-mouse ultrasonic profile extraction: a signal processing tool for rapid and unsupervised analysis of ultrasonic vocalizations. Neuron, 94(3), 465-485. https://doi.org/10.1016/j. neuron.2017.04.005
Vogel, A. P., Tsanas, A., & Scattoni, M. L. (2019). Quantifying ultrasonic mouse vocalizations using acoustic analysis in a supervised statistical machine learning framework. Scientific Reports, 9(1), 1-10. https://doi.org/10.1038/s41598-019-44221-3
Vogel, J. R., Beer, B., & Clody, D. E. (1971). A simple and reliable conflict procedure for testing anti-anxiety agents. Psychopharmacologia, 21(1), 1-7. https://doi.org/10.1007/bf00403989
Vollmayr, B., & Gass, P. (2013). Learned helplessness: Unique features and translational value of a cognitive depression model. Cell and Tissue Research, 354(1), 171-178. https://doi.org/10.1007/ s00441-013-1654-2
Vollmayr, B., & Henn, F. A. (2001). Learned helplessness in the rat: Improvements in validity and reliability. Brain Research Protocols, 8(1), 1-7. https://doi.org/10.1016/s1385-299x(01)00067-8
von Ziegler, L., Sturman, O., & Bohacek, J. (2020). Big behavior: challenges and opportunities in a new era of deep behavior profiling. Neuropsychopharmacology, 46(1), 33-44. https://doi.org/10. 1038/s41386-020-0751-7
Waller, B. M., & Micheletta, J. (2013). Facial Expression in Nonhuman Animals. Emotion Review, 5(1), 54-59. https://doi.org/10.1177/ 1754073912451503
Walsh, R. N., & Cummins, R. A. (1976). The open-field test: A critical review. Psychological Bulletin, 83(3), 482-504. https://doi.org/ 10.1037/0033-2909.83.3.482
Wee, B. E. F., Francis, T. J., Lee, C. Y., Lee, J. M., & Dohanich, G. P. (1995). Mate preference and avoidance in female rats following treatment with scopolamine. Physiology & Behavior, 58(1), 97-100. https://doi.org/10.1016/0031-9384(95)00029-I
West, A. P. (1990). Neurobehavioral studies of forced swimming: The role of learning and memory in the forced swim test. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 14(6), 863-877. https://doi.org/10.1016/0278-5846(90) 90073-p
Wiborg, O. (2013). Chronic mild stress for modeling anhedonia. Cell and Tissue Research, 354(1), 155-169. https://doi.org/10.1007/ s00441-013-1664-0
Wieser, M. J., Pauli, P., Grosseibl, M., Molzow, I., & Mühlberger, A. (2010). Virtual social interactions in social anxiety-the impact of sex, gaze, and interpersonal distance. Cyberpsychology, Behavior, and Social Networking, 13(5), 547-554. https://doi. org/10.1089/cyber.2009. 0432
Wilkinson, M. P., Grogan, J. P., Mellor, J. R., & Robinson, E. S. (2020). Comparison of conventional and rapid-acting antidepressants in a rodent probabilistic reversal learning task. Brain and Neuroscience Advances, 4. https://doi.org/10.1177/2398212820907177
Willner, P. (1986). Validation criteria for animal models of human mental disorders: Learned helplessness as a paradigm case. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 10(6), 677-690. https://doi.org/10.1016/0278-5846(86)90051-5
Willner, P. (1990). Animal models of depression: An overview. Pharmacology & Therapeutics, 45(3), 425-455. https://doi.org/10. 1016/0163-7258(90)90076-E
Willner, P. (1997). Validity, reliability and utility of the chronic mild stress model of depression: A 10-year review and evaluation. Psychopharmacology, 134(4), 319-329. https://doi.org/10.1007/ S002130050456
Willner, P. (2017). The chronic mild stress (CMS) model of depression: History, evaluation and usage. Neurobiology of Stress, 6, 78. https://doi.org/10.1016/j.ynstr.2016.08.002
Willner, P., Towell, A., Sampson, D., Sophokleous, S., & Muscat, R. (1987). Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology, 93, 358-364.
Wilson, C. A., & Koenig, J. I. (2014). Social interaction and social withdrawal in rodents as readouts for investigating the negative symptoms of schizophrenia. European Neuropsychopharmacology, 24(5), 759-773. https://doi.org/10.1016/j.euroneuro.2013. 11.008
Wiltschko, A. B., Tsukahara, T., Zeine, A., Anyoha, R., Gillis, W. F., Markowitz, J. E., Peterson, R. E., Katon, J., Johnson, M. J., & Datta, S. R. (2020). Revealing the structure of pharmacobehavioral space through motion sequencing. Nature Neuroscience, 23(11), 1433-1443. https://doi.org/10.1038/s41593-020-00706-3
William, R. M., Martin, E. S., & Harold, M. K. (1975). Learned helplessness, depression, and anxiety. The Journal of Nervous and Mental Disease, 161(5), 347-357.
Wöhr, M., & Scattoni, M. L. (2013). Behavioural methods used in rodent models of autism spectrum disorders: Current standards and new developments. Behavioural Brain Research, 251, 5-17. https://doi.org/10.1016/j.bbr.2013.05.047
Wöhr, M., & Schwarting, R. K. W. (2007). Ultrasonic communication in rats: can playback of
Wöhr, M., & Schwarting, R. K. W. (2008). Maternal care, isolationinduced infant ultrasonic calling, and their relations to adult
anxiety-related behavior in the rat. Behavioral Neuroscience, 122(2), 310-330. https://doi.org/10.1037/0735-7044.122.2.310
Wöhr, M., & Schwarting, R. K. W. (2013). Affective communication in rodents: ultrasonic vocalizations as a tool for research on emotion and motivation. Cell and Tissue Research, 354(1), 81-97. https:// doi.org/10.1007/S00441-013-1607-9
Yankelevitch-Yahav, R., Franko, M., Huly, A., & Doron, R. (2015). The Forced Swim test as a model of depressive-like behavior. JoVE (Journal of Visualized Experiments), 2015(97), e52587. https:// doi.org/10.3791/52587
Zilkha, N., Sofer, Y., Beny, Y., & Kimchi, T. (2016). From classic ethology to modern neuroethology: overcoming the three biases in social behavior research. Current Opinion in Neurobiology, 38, 96-108. https://doi.org/10.1016/j.conb.2016.04.014
Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
DOI: https://doi.org/10.3758/s13415-024-01171-2
PMID: https://pubmed.ncbi.nlm.nih.gov/38413466
Publication Date: 2024-02-27
Rodent tests of depression and anxiety: Construct validity and translational relevance
© The Author(s) 2024, corrected publication 2024
Abstract
Behavioral testing constitutes the primary method to measure the emotional states of nonhuman animals in preclinical research. Emerging as the characteristic tool of the behaviorist school of psychology, behavioral testing of animals, particularly rodents, is employed to understand the complex cognitive and affective symptoms of neuropsychiatric disorders. Following the symptom-based diagnosis model of the DSM, rodent models and tests of depression and anxiety focus on behavioral patterns that resemble the superficial symptoms of these disorders. While these practices provided researchers with a platform to screen novel antidepressant and anxiolytic drug candidates, their construct validity-involving relevant underlying mechanisms-has been questioned. In this review, we present the laboratory procedures used to assess depres-sive- and anxiety-like behaviors in rats and mice. These include constructs that rely on stress-triggered responses, such as behavioral despair, and those that emerge with nonaversive training, such as cognitive bias. We describe the specific behavioral tests that are used to assess these constructs and discuss the criticisms on their theoretical background. We review specific concerns about the construct validity and translational relevance of individual behavioral tests, outline the limitations of the traditional, symptom-based interpretation, and introduce novel, ethologically relevant frameworks that emphasize simple behavioral patterns. Finally, we explore behavioral monitoring and morphological analysis methods that can be integrated into behavioral testing and discuss how they can enhance the construct validity of these tests.
Introduction
“Actions of all kinds, if regularly accompanying any state of the mind, are at once recognized as expressive. These may consist of movements of any part of the body, as the wagging of a dog’s tail, the shrugging of a man’s shoulders, the erection of the hair, the exudation of perspiration, the state of the capillary circulation, laboured breathing, and the use of the vocal or other sound-producing instruments. Even insects express anger, terror, jealousy, and love by their stridulation.” Charles Darwin, The Expression of the Emotions in Man and Animals, 1872
Gunes Unal
gunes.unal@boun.edu.tr
validity of the major rodent tests used to assess behaviors that are hypothesized to resemble certain aspects of clinical depression and anxiety. We start with behavioral constructs, or theoretical framework of specific disease-related rodent behavior, and then explain individual behavioral tests used to assess these constructs (Fig. 1). The first part of each behavioral test provides the most common version of the experimental procedure, whereas subsequent paragraphs focus on discussions of construct validity and translational relevance.
biological or environmental factors to prompt specific behaviors or symptoms in the model organism. Although frequently used interchangeably in the literature, there is a distinction between the two terms. Animal models are used to elicit particular behavioral response patterns or to induce symptomatic behaviors that resemble a human disorder. Behavioral tests, in contrast, are designed to capture the readouts of the model. A behavioral test possesses only a dependent variable-the observed outcome of the manipulation; whereas a model has an independent variable, the manipulation, and a dependent variable (Cryan & Slattery, 2007).
Depression Related Constructs | Learned Helplessness | Behavioral Despair | Anhedonia | Cognitive Affective Bias | |||||||||||||||||
|
|
|
|
||||||||||||||||||
Anxiety Related Constructs | Thigmotaxis | Approach-Avoidance Conflict | |||||||||||||||||||
|
|
|
apparatus have increasingly been incorporated into behavioral testing. These novel methods include assessing the posture (Ebbesen & Froemke, 2021), facial expressions (Langford et al., 2010; Perkins et al., 2012), and ultrasonic vocalizations (USV) (Simola & Granon, 2019; Wöhr & Schwarting, 2013) of the animal. These techniques are based on recording and identifying species-typical behaviors and expressions that can be elicited during behavioral testing or emerge naturally in the home cage (Grieco et al., 2021; Klein et al., 2022).
Depression-related constructs
Learned helplessness
Behavioral test | Original and updated rodent protocols |
|
||
Learned helplessness |
|
Fosco & Geer, 1971; Thornton & Jacobs, 1971; Miller & Seligman, 1975 | ||
Forced swim test |
|
– | ||
Tail suspension test |
|
– | ||
Sucrose preference test |
|
Amsterdam et al., 1987; Berlin et al., 1998; Dichter et al., 2010 | ||
Female urine sniffing test | Rat and Mouse: Malkesman et al., 2010 | Bajpai, 2023 | ||
Judgement bias test |
|
Berna et al., 2011; Bourke et al., 2010; Lawson et al., 2002; Gebhardt & Mitte, 2014; MacLeod & Cohen, 1993; Neville et al. 2021; Iigaya et al. 2016 | ||
Affective bias test | Rat: Stuart et al., 2013; Mouse: Graulich et al., 2016 | Harmer, Bhagwagar, et al., 2003a, 2003b; Harmer et al., 2009a, 2009b; Norbury et al., 2007; Roiser et al., 2012 | ||
Probabilistic reward test |
|
Pizzagalli et al., 2005, 2008a, 2008b | ||
Probabilistic reversal learning test | Rat: Bari et al., 2010 Mouse: Ineichen et al., 2012 | Murphy et al., 2003; Taylor Tavares et al., 2008 | ||
Open field test |
|
Gromer et al., 2021; Walz et al., 2016 | ||
Light-dark box test |
|
– | ||
Elevated plus/zero maze |
|
Biedermann et al., 2017 | ||
Novelty-suppressed feeding test | Rat: Mitchell, 1976; Blasco-Serra et al., 2017 Mouse: Samuels & Hen, 2011 | – | ||
Social interaction / Approach-avoidance test |
|
Lange & Pauli, 2019; Wieser et al., 2010 |
and behavioral despair, rather than delving into the cognitive aspects. However, there is a trend suggesting that affectionrelated cognitive impairments also can arise by bottom-up processes and be measured by using similar tests in humans and other animals. This has led to the development of cognitive affective bias measurements in animals, reintegrating the once-divergent concepts of depression and cognition in animal testing (Robinson & Roiser, 2016) (refer to the Cognitive Affective Bias section).
Learned helplessness tests
whereas the other control group faces a stressful situation from which they can escape. The experimental group experiences the inescapable version of the same stressful situation. This simple experimental design allowed researchers to distinguish the behavioral effects of stress from the controllability of the stress. The procedure starts with a training period, during which the latter two groups are successively exposed to a number of aversive stimuli (Chourbaji et al., 2005). This is followed by a test session, where the escape from the aversive stimulus or environment is made possible for the experimental group. The learned helplessness effect is deemed to be observed when the experimental group exhibits significantly fewer attempts to escape compared with the control group in the test trials (Overmier & Seligman, 1967).
behavior falls under the sustained threat construct. Notably, Maier (1984), one of the developers of the learned helplessness test, theorized that this construct evaluates a generic form of “stress and coping,” where coping denotes an animal’s control over a situation. Maier concluded that learned helplessness therefore pertains not only to depression, but it also extends to other stress-related disorders (Maier, 1984). This terminology expands the scope of learned helplessness, moving beyond assessments solely focused on depression to encompass measurements of anxiety-like behavior (Maier & Watkins, 1998).
Behavioral despair
Forced swim test
differential result in the FST. Rapid-acting antidepressants, such as ketamine (Akan et al., 2023; Ecevitoglu et al., 2019; Kingir et al., 2023), replicated the antidepressant-like effect. Nonpharmacological antidepressant manipulations, such as environmental enrichment (Guven et al., 2022), also may produce therapeutic effects, providing further support for considering FST as a general test of antidepressant efficacy. Acute (Ünal et al., 2022) or chronic stress models (Kingir et al., 2023), in contrast, worsen behavioral despair in the FST by further increasing immobility compared with control groups. Sensitive to several drugs and applications that are known to have a therapeutic effect in the clinic, the FST emerged as a convenient tool to predict antidepressant efficacy and became the “gold standard” for assessing depressive-like behavior in rodents (Unal & Canbeyli, 2019).
might be more connected to the low-level, sensorimotor symptoms of depression, rather than its high-level cognitive or affective aspects (Canbeyli, 2010). Psychomotor retardation is one of the core symptoms of severe depression, which also can be assessed in nonhuman animals (Willner, 1990). Development of the immobility response in the FST can be considered as a low-level indicator of depression that mimics psychomotor retardation (Unal & Canbeyli, 2019). Psychomotor alterations in rodents can be evaluated in a stress-free way by using home cage monitoring systems (Fureix et al., 2022) (refer to the Home Cage Monitoring section). Importantly, it was observed that the inactive but awake state in the home cage predicted immobility in the FST (Maclellan et al., 2022).
Tail suspension test
effect in the FST and TST, while they require chronic treatment to ameliorate depressive symptoms in humans (Cryan & Holmes, 2005; Nestler & Hyman, 2010). This comparison suggests that there are important differences between the neurobiological correlates of behavioral despair and human depression (Unal & Moustafa, 2020). At the behavioral level, however, it is important to note that the antidepressant effect in humans is preceded by certain indicators. Differences in social cue processing (Harmer, Bhagwagar et al., 2003a, 2003b) and emotional bias (Harmer, Hill et al., 2003a, 2003b) are observed before the common ameliorative effects of antidepressants. It can be argued that increased mobility in the FST and TST is a similar early indicator of antidepressant action. The cognitive neuropsychological model of depression explains the anticipated impacts of antidepressants assessed through cognitive affective bias tests (refer to the dedicated section). To determine if motor changes in FST and TST reflect these effects, a comparative analysis with cognitive affective bias (CAB) tests could be beneficial. Despite one study that reported no correlation between FST results and CAB (Aliphon et al., 2022), further research is required to investigate this relationship.
Anhedonia
effect on reward-seeking behavior in the SPT (Robinson, 2018).
Sucrose preference test
sucrose solution (Markov, 2022). In addition, the two sides of anhedonia, the loss of pleasure and the loss of motivation have different neurobiological foundations (Berridge, 1996), and anhedonic behavior in rodents have been associated with both circuits (Kingir et al., 2023). The interpretation of the results of SPT may therefore reflect both consummatory and motivational aspects of anhedonia.
Female urine sniffing test
various hormonal stages (Becker et al., 2016; Prendergast et al., 2014). While female mice exhibit a preference for sniffing the urine of intact male mice over castrated ones (Jemiolo et al., 1985), there is currently no research that employs urine sniffing tests as a measure of anhedonia for female rodents.
Cognitive affective bias
biases observed in human depression through animal testing (Robinson & Roiser, 2016). Moreover, it provides an explanation for the delayed onset of action observed in typical antidepressants, positing that they function not as direct mood enhancers but as agents that initially ameliorate affective processing (Godlewska & Harmer, 2021; Harmer et al., 2009a, 2009b).
Judgement bias test
is associated with increased anticipation of negative events, whereas depression is additionally associated with decreased anticipation of positive events (Eysenck et al., 2006). However, the predictive validity of the JBT for antidepressants is disputed (Anderson et al., 2013), and this test appears to be more sensitive in detecting the negative effects of depressants and anxiogenics than the therapeutic effects of antidepressant and anxiolytic drugs (Neville et al., 2020). Hence, when conducting studies to explore the impact of antidepressants and anxiolytics, it is advisable to either employ larger sample sizes (Neville et al., 2020) or incorporate the recently developed affective bias test (Stuart et al., 2013).
Affective bias test
animal within their test trials. This approach is grounded in the assumption and observation that animals do not demonstrate bias when both cues are linked to a reward under neutral conditions.
Probabilistic reward test and probabilistic reversal learning task
assesses both the sensitivity (the capability to differentiate between signal and noise) and response bias (the tendency to categorize input as either signal or noise) (Stanislaw & Todorov, 1999). Following this methodology, the human task was originally devised (Pizzagalli et al., 2005), and subsequently, the rodent counterpart was developed (Der-Avakian et al., 2013). The human PRT assessed response bias emerging between two similar stimuli when one of them is rewarded more frequently. Participants are expected to adapt their response criteria toward stimuli linked with higher rewards, and the absence of such adjustment is theorized to suggest reduced reward responsiveness (Pizzagalli et al., 2008a, 2008b). Supporting this hypothesis, studies involving depressed individuals have demonstrated a reduced response bias toward stimuli that are frequently rewarded (Pizzagalli et al., 2005, 2008a, 2008b). In rodent experiments, response biases have been effectively induced using acoustic stimuli with a lever-press task (Der-Avakian et al., 2013) and visual stimuli with a touchscreen task (Iturra-Mena et al., 2023; Kangas et al., 2020; Luc & Kangas, 2023), both of which closely resemble the human experiments. Furthermore, as observed in depressed patients (Dillon et al., 2014; Pizzagalli, Evins, et al., 2008a, 2008b), dopaminergic (Der-Avakian et al., 2013) and cholinergic manipulations (Kangas et al., 2020) influence the response bias in rats.
for rodents also may contribute to its limited sensitivity to non-serotonergic manipulations. In response to this concern, a novel protocol has been introduced, featuring the separation of discrimination and reversal learning over 2 days (Metha et al., 2020). This design not only improves success in reversal learning for mice but also distinguishes between probability learning and reversal learning.
Anxiety-related constructs
Thigmotaxis
Open field test
behavior (Seibenhener & Wooten, 2015). The OFT is commonly applied as a control measure in other behavioral tests, such as the FST and TST, to assess potential alterations in general locomotor activity levels of the animals (Gould et al., 2009). As the OFT is used both to assess anxiety-like behavior and measure general locomotor activity, careful consideration is required to determine which dependent variable should be prioritized in each test. This highlights the importance of complementing the OFT findings with supplementary behavioral tests. Additional behavioral monitoring and morphological analysis methods (refer to the dedicated section), such as home cage monitoring, can help to differentiate the locomotor activity of the animal in a nonstressful environment. Furthermore, conducting ultrasonic vocalization (USV) analysis in the OFT can be used to discern the emotional state of the animal (Stanford, 2007).
apply rodent tests to human by using virtual reality (Table 1) (Gromer et al., 2021). To this end, a virtual city walk task, the human analogue of the OFT, revealed that participants with agoraphobia or with high sensitivity scores to anxiety showed greater thigmotaxis compared with the control group (Walz et al., 2016). This study did not only show that the OFT is a human-sensitive task, but it also suggested a novel way to measure anxiety in humans, which often is assessed by self-reports (Grillon & Ernst, 2016). In another virtual reality study, participants exhibited tendency to prefer the peripheral region of an open area irrespective of their trait anxiety (Gromer et al., 2021). This suggests a weak relation between trait anxiety and open-space avoidance in humans, while the relationship between human state anxiety and thigmotaxis awaits to be tested.
Approach-avoidance conflict
into two compartments (Prut & Belzung, 2003). The lightdark box test (LDB) (La-Vu et al., 2020), the elevated plus maze (EPM) (Rodgers & Dalvi, 1997), or the elevated zero maze (EZM) (Shepherd et al., 1994) all provide bright/open and dark/closed areas to elicit approach-avoidance conflict in a spontaneous, unconditioned manner. The Geller-Seifter conflict test (Geller et al., 1962) and the Vogel conflict test (Vogel et al., 1971), in contrast, use conditioned behaviors to assess approach-avoidance conflict. In both of these tests, rodents are trained to associate a food reward (Geller-Seifter conflict test) or water (Vogel conflict test) with a mild electric shock, creating a conflict between their natural approach drives and conditioned avoidance response to these rewarding stimuli (Millan & Brocco, 2003). These two tests are rarely used because of their demanding protocols and limited sensitivity to anxiolytic drugs (Harro, 2018). As an alternative, the novelty-suppressed feeding test (Samuels & Hen, 2011), also utilized in depression studies, combines a food reward with novelty stress to assess the approach behavior in rodents. Finally, social approach-avoidance behavior is used to assess anxiety-like behavior in rodents via social interaction and social approach-avoidance tests (Toth & Neumann, 2013).
Light-dark box test
light box would reflect an anxiolytic effect (Bourin & Hascoët, 2003; Costall et al., 1989).
Elevated plus maze – Elevated zero maze
the need to analyze and interpret the time spent in the central area, which was a main concern in the EPM. On the one hand, time spent in the center of the EPM can be interpreted as a mild anxiolytic effect (Shepherd et al., 1994). The elevated zero maze removes this option and forces the animals to choose between open or closed areas. This modified test was developed to increase the sensitivity of the construct to a broader range of anxiolytic drugs (Shepherd et al., 1994). Subsequent studies comparing the EPM with the EZM yielded conflicting findings, with some indicating enhanced sensitivity in the elevated zero maze (Kulkarni et al., 2007), whereas others did not (Braun et al., 2011). An additional benefit of the zero maze design is averting behavioral asymmetry that could predispose animals toward a specific direction in the EPM (Schwarting & Borta, 2005). This asymmetry is manifested in the paw preference of rats and has been linked to spatial memory performance and behavioral despair (Ecevitoglu et al., 2020).
Novelty-suppressed feeding test
Social interaction and social approach-avoidance tests
nonsocial stressors (i.e., social defeat stress and electric shocks, respectively) highlights its usefulness as a tool for assessing generalized anxiety disorder (Haller et al., 2003). While this test is developed and primarily used with rats, the three-chambered social approach test is more commonly employed in mouse studies (Toth & Neumann, 2013).
Behavioral monitoring and morphological analysis methods
Facial expression analysis
Ultrasonic Vocalization (USV) analysis
Posture analysis
hunched back posture (Carstens & Moberg, 2000). During conflicts with conspecifics and physical encounter with predators, rodents may adopt defensive or threatening postures that reflect their tendency to fight or flight (Barnett, 1963; Blanchard et al., 1977). The body posture can serve as an indicator of specific behavioral patterns in the context of animal testing. An illustrative example is the stretched attend posture (SAP), where the animal remains motionless while stretching its upper body to explore and sniff a new area. This behavior is considered a manifestation of risk assessment (Riebe & Wotjak, 2012) and often is observed in anxiety-related tests based on exploratory drives, such as the EPM (Espejo, 1997). Moreover, it has been demonstrated that the SAP is responsive to several anxiolytic drugs (Molewijk et al., 1995). A software tool has been developed for the automatic detection and analysis of the SAP to be used in the OFT and EPM as an additional measure (Holly et al., 2016).
Home cage monitoring
are nocturnal animals, behavioral tests are conventionally conducted during daytime. These factors can interfere with the results of behavioral testing. To address these concerns, home cage monitoring (HCM) systems have been developed to measure animals’ behavior within the cage they live in, without human intervention or environmental alterations (Grieco et al., 2021; Klein et al., 2022; Mingrone et al., 2020). These systems allow for continuous monitoring, including nighttime (i.e., after the vivarium lights are turned off) when the rodents are substantially more active.
2015). Researchers showed that the introduction of an active light spot led to a decrease in the time mice spent outside their shelter, and this effect was mitigated by the administration of the anxiolytic, diazepam. The adaptation of the light spot test to rats produced consistent findings, confirming its reliability as a measure of avoidance behavior or anxiety (Kyriakou et al., 2018). It alleviates the impact of exper-iment-related factors, such as handling (Henderson, Dani et al., 2020a, 2020b; Henderson, Smulders et al., 2020a, 2020b) before the test and the novelty of the test environment. Notably, the light spot test enables researchers to make direct comparisons of animal behaviors before, during, and after manipulative interventions (Prevot et al., 2019). These comparisons revealed that the avoidance response elicited by light persists for hours after the light is no longer present, termed residual avoidance, and can extend up to 6 weeks (Prevot et al., 2019). These findings show that both acute and long-term avoidance behavior can be assessed through home cage monitoring.
Conclusions
References
Abramson, L. Y., Seligman, M. E., & Teasdale, J. D. (1978). Learned helplessness in humans: Critique and reformulation. Journal of Abnormal Psychology, 87(1), 49-74. https://doi.org/10.1037/ 0021-843x.87.1.49
Acikgoz, B., Dalkiran, B., & Dayi, A. (2022). An overview of the currency and usefulness of behavioral tests used from past to present to assess anxiety, social behavior and depression in rats and mice. Behavioural Processes, 200, 104670. https://doi.org/ 10.1016/j.beproc.2022.104670
Akmese, C., Sevinc, C., Halim, S., & Unal, G. (2023). Differential role of GABAergic and cholinergic ventral pallidal neurons in behavioral despair, conditioned fear memory and active coping. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 125. https://doi.org/10.1016/j.pnpbp. 2023.110760
Alboni, S., Van DIjk, R. M., Poggini, S., Milior, G., Perrotta, M., Drenth, T., Brunello, N., Wolfer, D. P., Limatola, C., Amrein, I., Cirulli, F., Maggi, L., & Branchi, I. (2015). Fluoxetine effects on molecular, cellular and behavioral endophenotypes of depression are driven by the living environment. Molecular Psychiatry 2015 22:4, 22(4), 552-561. https://doi.org/10.1038/ mp.2015.142
Aliphon, B., Dai, T., Moretti, J., Penrose-Menz, M., Mulders, W. H. A. M., Blache, D., & Rodger, J. (2022). A repeated measures cognitive affective bias test in rats: comparison with forced swim test. Psychopharmacology, 1, 1-14. https://doi.org/10. 1007/s00213-022-06281-8
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th edn). https://doi.org/10.1176/ appi.books. 9780890425596
Amsterdam, J. D., Settle, R. G., Doty, R. L., Abelman, E., & Winokur, A. (1987). Taste and smell perception in depression. Biological Psychiatry, 22(12), 1481-1485. https://doi.org/10. 1016/0006-3223(87)90108-9
Anderson, M. H., Hardcastle, C., Munafò, M. R., & Robinson, E. S. J. (2012). Evaluation of a novel translational task for assessing emotional biases in different species. Cognitive, Affective and
Anderson, M. H., Munafò, M. R., & Robinson, E. S. J. (2013). Investigating the psychopharmacology of cognitive affective bias in rats using an affective tone discrimination task. Psychopharmacology, 226(3), 601-613. https://doi.org/10.1007/ s00213-012-2932-5
Andreatini, R., & Bacellar, L. F. S. (2000). Animal models: trait or state measure? The test-retest reliability of the elevated plusmaze and behavioral despair. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 24(4), 549-560. https:// doi.org/10.1016/s0278-5846(00)00092-0
Araujo, S. M., Poetini, M. R., Bortolotto, V. C., de Freitas Couto, S., Pinheiro, F. C., Meichtry, L. B., de Almeida, F. P., Santos Musachio, E. A., de Paula, M. T., & Prigol, M. (2018). Chronic unpredictable mild stress-induced depressive-like behavior and dysregulation of brain levels of biogenic amines in Drosophila melanogaster. Behavioural Brain Research, 351, 104-113. https://doi.org/10.1016/j.bbr.2018.05.016
Armario, A. (2021). The forced swim test: Historical, conceptual and methodological considerations and its relationship with individual behavioral traits. Neuroscience & Biobehavioral Reviews, 128, 74-86. https://doi.org/10.1016/j.neubiorev.2021.06.014
Atesyakar, N., Canbeyli, R., & Unal, G. (2020). Low cognitive competence as a vulnerability factor for behavioral despair in rats. Behavioural Processes, 174. https://doi.org/10.1016/j.beproc. 2020.104103
Baciadonna, L., & McElligott, A. G. (2015). The use of judgement bias to assess welfare in farm livestock. Animal Welfare, 24(1), 81-91. https://doi.org/10.7120/09627286.24.1.081
Bains, R. S., Wells, S., Sillito, R. R., Armstrong, J. D., Cater, H. L., Banks, G., & Nolan, P. M. (2018). Assessing mouse behaviour throughout the light/dark cycle using automated in-cage analysis tools. Journal of Neuroscience Methods, 300, 37-47. https://doi. org/10.1016/j.jneumeth.2017.04.014
Bajpai, M. (2023). Brief Smell Identification Test-1, An odor impairment Test in Patients of Depression. Physiology, 38(S1), 5735287. https://doi.org/10.1152/physiol.2023.38.s1.5735287
Baratta, M. V., Leslie, N. R., Fallon, I. P., Dolzani, S. D., Chun, L. E., Tamalunas, A. M., Watkins, L. R., & Maier, S. F. (2018). Behavioural and neural sequelae of stressor exposure are not modulated by controllability in females. European Journal of Neuroscience, 47(8), 959-967. https://doi.org/10.1111/ejn. 13833
Bari, A., Theobald, D. E., Caprioli, D., Mar, A. C., Aidoo-Micah, A., Dalley, J. W., & Robbins, T. W. (2010). Serotonin modulates sensitivity to reward and negative feedback in a probabilistic reversal learning task in rats. Neuropsychopharmacology 2010 35:6, 35(6), 1290-1301. https://doi.org/10.1038/npp.2009.233
Barlow, D. H. (2000). Unraveling the mysteries of anxiety and its disorders from the perspective of emotion theory. American Psychologist, 55(11), 1247-1263. https://doi.org/10.1037/0003-066x.55. 11.1247
Barros, H. M. T., & Ferigolo, M. (1998). Ethopharmacology of imipramine in the forced-swimming test: gender differences. Neuroscience & Biobehavioral Reviews, 23(2), 279-286. https://doi.org/ 10.1016/s0149-7634(98)00029-3
Bateson, M., Desire, S., Gartside, S. E., & Wright, G. A. (2011). Agitated honeybees exhibit pessimistic cognitive biases. Current Biology, 21(12), 1070-1073. https://doi.org/10.1016/j.cub. 2011.05.017
Beck, A. T. (1967). Depression: Clinical experimental and theoretical aspects. Hoeber.
Becker, J. B., Prendergast, B. J., & Liang, J. W. (2016). Female rats are not more variable than male rats: A meta-analysis of neuroscience studies. Biology of Sex Differences, 7(1), 1-7. https://doi. org/10.1186/s13293-016-0087-5
Becker, M., Pinhasov, A., & Ornoy, A. (2021). Animal models of depression: what can they teach us about the human disease? Diagnostics, 11(1), 123. https://doi.org/10.3390/diagnostics1101 0123
Beery, A. K., & Zucker, I. (2011). Sex bias in neuroscience and biomedical research. Neuroscience & Biobehavioral Reviews, 35(3), 565-572. https://doi.org/10.1016/j.neubiorev.2010.07.002
Belovicova, K., Bogi, E., Csatlosova, K., & Dubovicky, M. (2017). Animal tests for anxiety-like and depression-like behavior in rats. Interdisciplinary Toxicology, 10(1), 40. https://doi.org/10.1515/ intox-2017-0006
Belzung, C., & Lemoine, M. (2011). Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. Biology of Mood & Anxiety Disorders, 1(1), 1-14. https://doi.org/10.1186/2045-5380-1-9
Berlin, I., Givry-Steiner, L., Lecrubier, Y., & Puech, A. J. (1998). Measures of anhedonia and hedonic responses to sucrose in depressive and schizophrenic patients in comparison with healthy subjects. European Psychiatry, 13(6), 303-309. https://doi.org/ 10.1016/s0924-9338(98)80048-5
Berridge, K. C. (2000). Measuring hedonic impact in animals and infants: microstructure of affective taste reactivity patterns. Neuroscience & Biobehavioral Reviews, 24(2), 173-198. https://doi. org/10.1016/s0149-7634(99)00072-x
Berridge, K. C., & Robinson, T. E. (2003). Parsing reward. Trends in Neurosciences, 26(9), 507-513. https://doi.org/10.1016/s0166-2236(03)00233-9
Berrio, J. P., Hestehave, S., Kalliokoski, O., Paola, J., & Sanchez, B. (2023). Reliability of sucrose preference testing following short or no food and water deprivation: A systematic review and metaanalysis of rat models of chronic unpredictable stress. BioRxiv, 2023-02. https://doi.org/10.1101/2023.02.22.529490
Bespalov, A. Y., van Gaalen, M. M., & Gross, G. (2009). Antidepressant treatment in anxiety disorders. Behavioral Neurobiology of Anxiety and its Treatment, 361-390. https://doi.org/10.1007/ 7854_2009_3
Bethell, E. J. (2015). A “how-to” guide for designing judgment bias studies to assess captive animal welfare. Journal of Applied Animal Welfare Science, 18(sup1), S18-S42. https://doi.org/10. 1080/10888705.2015.1075833
Biedermann, S. V., Biedermann, D. G., Wenzlaff, F., Kurjak, T., Nouri, S., Auer, M. K., Wiedemann, K., Briken, P., Haaker, J., Lonsdorf, T. B., & Fuss, J. (2017). An elevated plus-maze in mixed reality
for studying human anxiety-related behavior. BMC Biology, 15(1), 1-13. https://doi.org/10.1186/s12915-017-0463-6
Bilkei-Gorzó, A., Gyertyán, I., & Lévay, G. (1998). mCPP-induced anxiety in the light-dark box in rats – A new method for screening anxiolytic activity. Psychopharmacology, 136(3), 291-298. https://doi.org/10.1007/s002130050568
Blanchard, R. J., Blanchard, D. C., Takahashi, T., & Kelley, M. J. (1977). Attack and defensive behaviour in the albino rat. Animal Behaviour, 25, 622-634. https://doi.org/10.1016/0003-3472(77) 90113-0
Blasco-Serra, A., González-Soler, E. M., Cervera-Ferri, A., TeruelMartí, V., & Valverde-Navarro, A. A. (2017). A standardization of the Novelty-Suppressed Feeding Test protocol in rats. Neuroscience Letters, 658, 73-78. https://doi.org/10.1016/j.neulet. 2017.08.019
Bogdanova, O. V., Kanekar, S., D’Anci, K. E., & Renshaw, P. F. (2013). Factors influencing behavior in the forced swim test. Physiology & Behavior, 118, 227-239. https://doi.org/10. 1016/j.physbeh.2013.05.012
Boissy, A., Manteuffel, G., Jensen, M. B., Moe, R. O., Spruijt, B., Keeling, L. J., … & Aubert, A. (2007). Assessment of positive emotions in animals to improve their welfare. Physiology & Behavior, 92(3), 375-397. https://doi.org/10.1016/j.physbeh. 2007.02.003
Borsini, F., Volterra, G., & Meli, A. (1986). Does the behavioral “despair” test measure “despair”? Physiology & Behavior, 38(3), 385-386. https://doi.org/10.1016/0031-9384(86) 90110-1
Bourin, M., & Hascoët, M. (2003). The mouse light/dark box test. European Journal of Pharmacology, 463(1-3), 55-65. https:// doi.org/10.1016/s0014-2999(03)01274-3
Bourin, M., Petit-Demoulière, B., Nic Dhonnchadha, B., & Hascöet, M. (2007). Animal models of anxiety in mice. Fundamental & Clinical Pharmacology, 21(6), 567-574. https://doi.org/10. 1111/j.1472-8206.2007.00526.x
Bourke, C., Douglas, K., & Porter, R. (2010). Processing of facial emotion expression in major depression: a review. Australian & New Zealand Journal of Psychiatry, 44(8), 681-696. https://doi.org/ 10.3109/00048674.2010.496359
Braud, W., Wepman, B., & Russo, D. (1969). Task and species generality of the “helplessness” phenomenon. Psychonomic Science, 16(3), 154-155. https://doi.org/10.3758/bf03336349
Braun, A. A., Skelton, M. R., Vorhees, C. V., & Williams, M. T. (2011). Comparison of the elevated plus and elevated zero mazes in treated and untreated male Sprague-Dawley rats: Effects of anxiolytic and anxiogenic agents. Pharmacology Biochemistry and Behavior, 97(3), 406-415. https://doi.org/10.1016/j.pbb. 2010.09.013
Brennan, P. A., & Zufall, F. (2006). Pheromonal communication in vertebrates. Nature, 444(7117), 308-315. https://doi.org/10. 1038/nature05404
Brown, L. A., Hasan, S., Foster, R. G., & Peirson, S. N. (2016). COMPASS: Continuous open mouse phenotyping of activity and sleep status. Wellcome Open Research, 1. https://doi.org/10.12688/ wellcomeopenres. 9892.2
Brudzynski, S. M., & Chiu, E. M. C. (1995). Behavioural responses of laboratory rats to playback of 22 kHz ultrasonic calls. Physiology & Behavior, 57(6), 1039-1044. https://doi.org/10.1016/ 0031-9384(95)00003-2
Brydges, N. M., Hall, L., Nicolson, R., Holmes, M. C., & Hall, J. (2012). The effects of juvenile stress on anxiety, cognitive bias and decision making in adulthood: A rat model. PLOS ONE, 7(10), e48143. https://doi.org/10.1371/journal.pone. 0048143
Burke, C. J., Kisko, T. M., Euston, D. R., & Pellis, S. M. (2018). Do juvenile rats use specific ultrasonic calls to coordinate their social play? Animal Behaviour, 140, 81-92. https://doi.org/10.1016/j. anbehav.2018.03.019
Burman, O. H. P., Parker, R. M. A., Paul, E. S., & Mendl, M. T. (2009). Anxiety-induced cognitive bias in non-human animals. Physiology & Behavior, 98(3), 345-350. https://doi.org/10.1016/j.physb eh.2009.06.012
Burstein, O., & Doron, R. (2018). The Unpredictable Chronic Mild Stress Protocol for Inducing Anhedonia in Mice. JoVE (Journal of Visualized Experiments), 140, e58184. https://doi.org/10. 3791/58184
Butler, G., & Mathews, A. (1983). Cognitive processes in anxiety. Advances in Behaviour Research and Therapy, 5(1), 51-62. https://doi.org/10.1016/0146-6402(83)90015-2
Can, A., Dao, D. T., Terrillion, C. E., Piantadosi, S. C., Bhat, S., & Gould, T. D. (2012). The Tail Suspension Test. JoVE (Journal of Visualized Experiments), 59, e3769. ://doi.org/https://doi.org/ 10.3791/3769
Carobrez, A. P., & Bertoglio, L. J. (2005). Ethological and temporal analyses of anxiety-like behavior: The elevated plus-maze model 20 years on. Neuroscience & Biobehavioral Reviews, 29(8), 1193-1205. https://doi.org/10.1016/j.neubiorev.2005.04.017
Carstens, E., & Moberg, G. P. (2000). Recognizing Pain and Distress in Laboratory Animals. ILAR Journal, 41(2), 62-71. https://doi. org/10.1093/ilar.41.2.62
Castagné, V., Moser, P., Roux, S., & Porsolt, R. D. (2010). Rodent Models of Depression: Forced Swim and Tail Suspension Behavioral Despair Tests in Rats and Mice. Current Protocols in Pharmacology, 49(1), 5.8.1-5.8.14. https://doi.org/10.1002/ 0471141755.ph0508s49
Chermat, R., Thierry, B., Mico, J. A., Steru, L., & Simon, P. (1986). Adaptation of the tail suspension test to the rat. Journal de Pharmacologie, 17(3), 348-350. https://europepmc.org/article/med/ 3795979
Chesler, E. J., Wilson, S. G., Lariviere, W. R., Rodriguez-Zas, S. L., & Mogil, J. S. (2002). Influences of laboratory environment on behavior. Nature Neuroscience, 5(11), 1101-1102. https://doi. org/10.1038/nn1102-1101
Commissaris, R. L. (1993). Conflict behaviors as animal models for the study of anxiety. In Techniques in the behavioral and neural sciences (Vol. 10, pp. 443-474). Elsevier. https://doi.org/10.1016/ B978-0-444-81444-9.50022-5
Commons, K. G., Cholanians, A. B., Babb, J. A., & Ehlinger, D. G. (2017). The rodent forced swim test measures stress-coping strategy, not depression-like behavior. ACS chemical neuroscience, 8(5), 955-960. https://doi.org/10.1021/acschemneuro.7b00042
Costall, B., Jones, B. J., Kelly, M. E., Naylor, R. J., & Tomkins, D. M. (1989). Exploration of mice in a black and white test box: Validation as a model of anxiety. Pharmacology Biochemistry and Behavior, 32(3), 777-785. https://doi.org/10.1016/0091-3057(89)90033-6
Costello, C. G. (1978). A critical review of Seligman’s laboratory experiments on learned helplessness and depression in humans. Journal of Abnormal Psychology, 87(1), 21-31. https://doi.org/ 10.1037/0021-843X.87.1.21
Crawley, J. N. (2007). Mouse behavioral assays relevant to the symptoms of autism. Brain Pathology, 17(4), 448-459. https://doi.org/ 10.1111/J.1750-3639.2007.00096.X
Cryan, J. F., Mombereau, C., & Vassout, A. (2005). The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice. Neuroscience & Biobehavioral Reviews, 29(4-5), 571-625. https://doi.org/10. 1016/j.neubiorev.2005.03.009
Cryan, J. F., & Slattery, D. A. (2007). Animal models of mood disorders: Recent developments. Current Opinion in Psychiatry, 20(1), 1-7. https://doi.org/10.1097/yco.0b013e3280117733
Dalla, C., Edgecomb, C., Whetstone, A. S., & Shors, T. J. (2007). Females do not Express Learned Helplessness like Males do. Neuropsychopharmacology 2008 33:7, 33(7), 1559-1569. https://doi.org/10.1038/sj.npp. 1301533
Dalla, C., & Shors, T. J. (2009). Sex differences in learning processes of classical and operant conditioning. Physiology & Behavior, 97(2), 229-238. https://doi.org/10.1016/j.physbeh.2009.02.035
Davis, M., Walker, D. L., Miles, L., & Grillon, C. (2010). Phasic vs. sustained fear in rats and humans: Role of the extended amygdala in fear vs. anxiety. Neuropsychopharmacology, 35(1), 105-135. https://doi.org/10.1038/npp.2009.109
De Kloet, E. R., & Molendijk, M. L. (2016). Coping with the Forced Swim Stressor: Towards understanding an adaptive mechanism. Neural Plasticity. https://doi.org/10.1155/2016/6503162
De Pablo, J. M., Parra, A., Segovia, S., & Guillamón, A. (1989). Learned immobility explains the behavior of rats in the forced swimming test. Physiology & Behavior, 46(2), 229-237. https:// doi.org/10.1016/0031-9384(89)90261-8
Defensor, E. B., Corley, M. J., Blanchard, R. J., & Blanchard, D. C. (2012). Facial expressions of mice in aggressive and fearful contexts. Physiology & Behavior, 107(5), 680-685. https://doi.org/ 10.1016/j.physbeh.2012.03.024
Deldin, P. J., Keller, J., Gergen, J. A., & Miller, G. A. (2001). Cognitive bias and emotion in neuropsychological models of depression. Cognition & Emotion, 15(6), 787-802. https://doi.org/10.1080/ 02699930143000248
Dember, W. N., Martin, S. H., Hummer, M. K., Howe, S. R., & Melton, R. S. (1989). The measurement of optimism and pessimism. Current Psychology, 8(2), 102-119. https://doi.org/10.1007/bf026 86675
Demuyser, T., Deneyer, L., Bentea, E., Albertini, G., Van Liefferinge, J., Merckx, E., De Prins, A., De Bundel, D., Massie, A., & Smolders, I. (2016). In-depth behavioral characterization of the corticosterone mouse model and the critical involvement of housing conditions. Physiology & Behavior, 156, 199-207. https:// doi.org/10.1016/j.physbeh.2015.12.018
Depue, R. A., & Monroe, S. M. (1978). Learned helplessness in the perspective of the depressive disorders: Conceptual and definitional issues. Journal of Abnormal Psychology, 87(1), 3. https:// doi.org/10.1037/0021-843x.87.1.3
Der-Avakian, A., Barnes, S. A., Markou, A., & Pizzagalli, D. A. (2016). Translational assessment of reward and motivational deficits in psychiatric disorders. Current Topics in Behavioral Neurosciences, 28, 231. https://doi.org/10.1007/7854_2015_5004
Der-Avakian, A., D’Souza, M. S., Pizzagalli, D. A., & Markou, A. (2013). Assessment of reward responsiveness in the response bias probabilistic reward task in rats: implications for crossspecies translational research. Translational Psychiatry, 3(8), e297-e297. https://doi.org/10.1038/tp.2013.74
Der-Avakian, A., & Pizzagalli, D. A. (2018). Translational Assessments of Reward and Anhedonia: A Tribute to Athina Markou. Biological Psychiatry, 83(11), 932-939. https://doi.org/10. 1016/j.biopsych.2018.02.008
Detke, M. J., Rickels, M., & Lucki, I. (1995). Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology, 121(1), 66-72. https://doi.org/10.1007/bf02245592
Dichter, G. S., Smoski, M. J., Kampov-Polevoy, A. B., Gallop, R., & Garbutt, J. C. (2010). Unipolar depression does not moderate responses to the Sweet Taste Test. Depression and anxiety, 27(9), 859-863. ://doi.org/https://doi.org/10.1002/da. 20690
Dillon, D. G., Rosso, I. M., Pechtel, P., Killgore, W. D., Rauch, S. L., & Pizzagalli, D. A. (2014). Peril and pleasure: An RDOC-inspired examination of threat responses and reward processing in anxiety and depression. Depression and anxiety, 31(3), 233-249. https:// doi.org/10.1002/da. 22202
Dimberg, U., Thunberg, M., & Grunedal, S. (2002). Facial reactions to emotional stimuli: Automatically controlled emotional responses.
Dolensek, N., Gehrlach, D. A., Klein, A. S., & Gogolla, N. (2020). Facial expressions of emotion states and their neuronal correlates in mice. Science, 368(6486). https://doi.org/10.1126/scien ce.aaz9468
Doyle, R. E., Hinch, G. N., Fisher, A. D., Boissy, A., Henshall, J. M., & Lee, C. (2011). Administration of serotonin inhibitor p-Chlorophenylalanine induces pessimistic-like judgement bias in sheep. Psychoneuroendocrinology, 36(2), 279-288. https://doi.org/10. 1016/j.psyneuen.2010.07.018
Drugan, R. C., Basile, A. S., Ha, J. H., Healy, D., & Ferland, R. J. (1997). Analysis of the importance of controllable versus uncontrollable stress on subsequent behavioral and physiological functioning. Brain Research Protocols, 2(1), 69-74. https://doi.org/
Dulawa, S. C., & Hen, R. (2005). Recent advances in animal models of chronic antidepressant effects: The novelty-induced hypophagia test. Neuroscience & Biobehavioral Reviews, 29(4-5), 771-783. https://doi.org/10.1016/j.neubiorev.2005.03.017
Dwyer, D. M. (2012). Licking and liking: The assessment of hedonic responses in rodents. Quarterly Journal of Experimental Psychology, 65(3), 371-394. ://doi.org/https://doi.org/10.1080/17470 218.2011.652969
Ecevitoglu, A., Canbeyli, R., & Unal, G. (2019). Oral ketamine alleviates behavioral despair without cognitive impairment in Wistar rats. Behavioural Brain Research, 372, 112058. https://doi.org/ 10.1016/j.bbr.2019.112058
Ekman, P. (1973). Darwin and facial expression: A century of research in review. Academic Press.
Ekman P. (1989). The argument and evidence about universals in facial expressions of emotion. In Wagner H., Manstead A. (Eds.), Wiley handbooks of psychophysiology. Handbook of social psychophysiology (pp. 143-164). Oxford, England: John Wiley.
Ekman, P. (1993). Facial expression and emotion. American Psychologist, 48(4), 384. https://doi.org/10.1037/0003-066x.48.4.384
El Yacoubi, M., & Vaugeois, J. M. (2007). Genetic rodent models of depression. Current Opinion in Pharmacology, 7(1), 3-7. https:// doi.org/10.1016/j.coph.2006.11.002
Elliott, R., Sahakian, B. J., Herrod, J. J., Robbins, T. W., & Paykel, E. S. (1997). Abnormal response to negative feedback in unipolar depression: evidence for a diagnosis specific impairment. Journal of Neurology, Neurosurgery & Psychiatry, 63(1), 74-82. https://doi.org/10.1136/jnnp.63.1.74
Elliott, R., Zahn, R., Deakin, J. F. W., & Anderson, I. M. (2011). Affective Cognition and its Disruption in Mood Disorders. Neuropsychopharmacology, 36(1), 153-182. https://doi.org/10.1038/npp. 2010.77
Ennaceur, A. (2014). Tests of unconditioned anxiety – pitfalls and disappointments. Physiology & Behavior, 135, 55-71. https://doi. org/10.1016/j.physbeh.2014.05.032
Esch, T., Stefano, G. B., Fricchione, G. L., & Benson, H. (2002). The role of stress in neurodegenerative diseases and mental disorders. Neuroendocrinology Letters, 23(3), 199-208.
Eysenck, M., Payne, S., & Santos, R. (2006). Anxiety and depression: Past, present, and future events. Cognition & Emotion, 20(2), 274-294.
Falkenberg, T., Mohammed, A. K., Henriksson, B., Persson, H., Winblad, B., & Lindefors, N. (1992). Increased expression of brainderived neurotrophic factor mRNA in rat hippocampus is associated with improved spatial memory and enriched environment. Neuroscience Letters, 138(1), 153-156. https://doi.org/10.1016/ 0304-3940(92)90494-r
Faure, A., Pittaras, E., Nosjean, A., Chabout, J., Cressant, A., & Granon, S. (2017). Social behaviors and acoustic vocalizations in different strains of mice. Behavioural Brain Research, 320, 383-390. https://doi.org/10.1016/j.bbr.2016.11.003
Fichtel, C., & Manser, M. (2010). Vocal communication in social groups. In Animal behaviour: Evolution and mechanisms (pp. 29-54). Berlin: Springer. https://doi.org/10.1007/ 978-3-642-02624-9_2
File, S. E., & Hyde, J. R. G. (1978). Can social interaction be used to measure anxiety? British Journal of Pharmacology, 62(1), 19. https://doi.org/10.1111/j.1476-5381.1978.tb07001.x
File, S. E. (1985). Animal models for predicting clinical efficacy of anxiolytic drugs: Social behaviour. Neuropsychobiology, 13(12), 55-62. https://doi.org/10.1159/000118163
Finlayson, K., Lampe, J. F., Hintze, S., Würbel, H., & Melotti, L. (2016). Facial indicators of positive emotions in rats. PLOS ONE, 11(11), e0166446. https://doi.org/10.1371/journal.pone. 0166446
Fonio, E., Golani, I., & Benjamini, Y. (2012). Measuring behavior of animal models: faults and remedies. Nature Methods, 9(12), 1167-1170. https://doi.org/10.1038/nmeth. 2252
Fonseca, A. H. O., Santana, G. M., Bosque Ortiz, G. M., Bampi, S., & Dietrich, M. O. (2021). Analysis of ultrasonic vocalizations from mice using computer vision and machine learning. ELife, 10. https://doi.org/10.7554/elife.59161
Fussner, L. M., Mancini, K. J., & Luebbe, A. M. (2018). Depression and Approach Motivation: Differential Relations to Monetary, Social, and Food Reward. Journal of Psychopathology and Behavioral Assessment, 40(1), 117-129. https://doi.org/10.1007/ s10862-017-9620-z
Gebhardt, C., & Mitte, K. (2014). Seeing through the eyes of anxious individuals: an investigation of anxiety-related interpretations of emotional expressions. Cognition and Emotion, 28(8), 13671381. ://doi.org/https://doi.org/10.1080/02699931.2014.881328
Geyer M.A & Markou A. (1995): Animal models of psychiatric disorders. In F. E. Bloom, D. J. Kupfer (eds), Psychopharmacology:
Godlewska, B. R. (2019). Cognitive neuropsychological theory: Reconciliation of psychological and biological approaches for depression. Pharmacology & Therapeutics, 197, 38-51. https://doi.org/ 10.1016/j.pharmthera.2018.12.010
Gong, L., Yin, Y., He, C., Ye, Q., Bai, F., Yuan, Y., Zhang, H., Lv, L., Zhang, H., Xie, C., & Zhang, Z. (2017). Disrupted reward circuits is associated with cognitive deficits and depression severity in major depressive disorder. Journal of Psychiatric Research, 84, 9-17. https://doi.org/10.1016/j.jpsychires.2016.09.016
Goodwill, H. L., Manzano-Nieves, G., Gallo, M., Lee, H. I., Oyerinde, E., Serre, T., & Bath, K. G. (2019). Early life stress leads to sex differences in development of depressive-like outcomes in a mouse model. Neuropsychopharmacology, 44(4), 711-720. https://doi.org/10.1038/s41386-018-0195-5
Goswami, S., Rodríguez-Sierra, O., Cascardi, M., & Paré, D. (2013). Animal models of post-traumatic stress disorder: Face validity. Frontiers in Neuroscience, 7, 89. https://doi.org/10.3389/fnins. 2013.00089
Gould, T.D., Dao, D.T., & Kovacsics, C.E. (2009). The open field test. In: T.D. Gould, editor. Mood and anxiety related phenotypes in mice (pp. 1-20), Series: Neuromethods 42. New York: Humana Press. https://doi.org/10.1007/978-1-60761-303-9_1
Graulich, D. M., Kaiser, S., Sachser, N., & Richter, S. H. (2016). Looking on the bright side of bias-Validation of an affective bias test for laboratory mice. Applied Animal Behaviour Science, 181, 173-181. https://doi.org/10.1016/j.applanim.2016.05.011
Gregg, B., & Thiessen, D. D. (1981). A simple method of olfactory discrimination of urines for the Mongolian gerbil. Meriones unguiculatus. Physiology & Behavior, 26(6), 1133-1136. https:// doi.org/10.1016/0031-9384(81)90221-3
Grieco, F., Bernstein, B. J., Biemans, B., Bikovski, L., Burnett, C. J., Cushman, J. D., van Dam, E. A., Fry, S. A., Richmond-Hacham, B., Homberg, J. R., Kas, M. J. H., Kessels, H. W., Koopmans, B., Krashes, M. J., Krishnan, V., Logan, S., Loos, M., McCann, K. E., Parduzi, Q., … Noldus, L. P. J. J. (2021). Measuring behavior in the home cage: study design, applications, challenges, and perspectives. Frontiers in Behavioral Neuroscience, 15, 735387. https://doi.org/10.3389/fnbeh.2021.735387
Grill, H. J., & Norgren, R. (1978). The taste reactivity test. I. Mimetic responses to gustatory stimuli in neurologically normal rats. Brain research, 143(2), 263-279. https://doi.org/10.1016/ 0006-8993(78)90568-1
Grillon, C., & Ernst, M. (2016). Gain in translation: is it time for thigmotaxis studies in humans? Biological Psychiatry, 80(5), 343-344. https://doi.org/10.1016/j.biopsych.2016.07.003
Gromer, D., Kiser, D. P., & Pauli, P. (2021). Thigmotaxis in a virtual human open field test. Scientific Reports, 2021, 1-13. https://doi. org/10.1038/s41598-021-85678-5
Grossen, N. E., & Kelley, M. J. (1972). Species-specific behavior and acquisition of avoidance behavior in rats. Journal of Comparative and Physiological Psychology, 81(2), 307-310. https://doi.org/ 10.1037/h0033536
conditioned fear responses in rats. Elife, 4, e11352. https://doi. org/10.7554/eLife. 11352.001
Gururajan, A., Reif, A., Cryan, J. F., & Slattery, D. A. (2019). The future of rodent models in depression research. Nature Reviews Neuroscience, 20(11), 686-701. https://doi.org/10.1038/ s41583-019-0221-6
Guven, E. B., Pranic, N. M., & Unal, G. (2022). The differential effects of brief environmental enrichment following social isolation in rats. Cognitive, Affective and Behavioral Neuroscience, 22(4), 818-832. https://doi.org/10.3758/s13415-022-00989-y
Hales, C. A., Stuart, S. A., Anderson, M. H., & Robinson, E. S. J. (2014). Modelling cognitive affective biases in major depressive disorder using rodents. British Journal of Pharmacology, 171(20), 4524-4538. https://doi.org/10.1111/bph. 12603
Hall, C., & Ballachey, E. L. (1932). A study of the rat’s behavior in a field. A contribution to method in comparative psychology. University of California Publications in Psychology, 6, 1-12.
Hall, C. S. (1934). Emotional behavior in the rat. I. Defecation and urination as measures of individual differences in emotionality. Journal of Comparative Psychology, 18(3), 385-403. https://doi. org/10.1037/h0071444
Haller, J., & Bakos, N. (2002). Stress-induced social avoidance: A new model of stress-induced anxiety? Physiology & Behavior, 77(23), 327-332. https://doi.org/10.1016/s0031-9384(02)00860-0
Handley, S. L., & Mithani, S. (1984). Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of ‘fear’motivated behaviour. Naunyn-Schmiedeberg’s Archives of Pharmacology, 327(1), 1-5. https://doi.org/10.1007/bf00504983
Harding, E. J., Paul, E. S., & Mendl, M. (2004). Cognitive bias and affective state. Nature, 427(6972), 312-312. https://doi.org/10. 1038/427312a
Harmer, C. J., Bhagwagar, Z., Perrett, D. I., Völlm, B. A., Cowen, P. J., & Goodwin, G. M. (2003a). Acute SSRI Administration Affects the Processing of Social Cues in Healthy Volunteers. Neuropsychopharmacology, 28(1), 148-152. https://doi.org/10. 1038/sj.npp. 1300004
Harmer, C. J., & Cowen, P. J. (2013). ‘It’s the way that you look at it’-a cognitive neuropsychological account of SSRI action in depression. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1615). https://doi.org/10.1098/rstb. 2012.0407
Harmer, C. J., Hill, S. A., Taylor, M. J., Cowen, P. J., & Goodwin, G. M. (2003b). Toward a neuropsychological theory of antidepressant drug action: Increase in positive emotional bias after potentiation of norepinephrine activity. American Journal of Psychiatry, 160(5), 990-992. https://doi.org/10.1176/APPI.AJP.160.5.990
Harmer, C. J., O’Sullivan, U., Favaron, E., Massey-Chase, R., Ayres, R., Reinecke, A., Goodwin, G. M., & Cowen, P. J. (2009b). Effect of acute antidepressant administration on negative affective bias in depressed patients. American Journal of Psychiatry, 166(10), 1178-1184. https://doi.org/10.1176/appi.ajp.2009.09020149
Harro, J. (2018). Animals, anxiety, and anxiety disorders: How to measure anxiety in rodents and why. Behavioural Brain Research, 352, 81-93. https://doi.org/10.1016/j.bbr.2017.10.016
Hawkins, J., Hicks, R. A., Phillips, N., & Moore, J. D. (1978). Swimming rats and human depression. Nature, 274(5670), 512-512. https://doi.org/10.1038/274512a0
Henderson, L. J., Dani, B., Serrano, E. M. N., Smulders, T. V., & Roughan, J. V. (2020a). Benefits of tunnel handling persist after repeated restraint, injection and anaesthesia. Scientific Reports, 10(1), 1-12. https://doi.org/10.1038/s41598-020-71476-y
Henderson, L. J., Smulders, T. V., & Roughan, J. V. (2020b). Identifying obstacles preventing the uptake of tunnel handling methods for laboratory mice: An international thematic survey. PLOS ONE, 15(4), e0231454. https://doi.org/10.1371/journal.pone. 0231454
Hibicke, M., & Nichols, C. D. (2022). Validation of the forced swim test in Drosophila, and its use to demonstrate psilocybin has long-lasting antidepressant-like effects in flies. Scientific Reports, 12(1), 1-11. https://doi.org/10.1038/s41598-022-14165-2
Hiroto, D. S., & Seligman, M. E. (1975). Generality of learned helplessness in man. Journal of personality and social psychology, 31(2), 311. https://doi.org/10.1037/h0076270
Hobson, L., Bains, R. S., Greenaway, S., Wells, S., & Nolan, P. M. (2020). Phenotyping in Mice Using Continuous Home Cage Monitoring and Ultrasonic Vocalization Recordings. Current Protocols in Mouse Biology, 10(3), e80. https://doi.org/10.1002/ cpmo. 80
Hodos, W. (1961). Progressive Ratio as a Measure of Reward Strength. Science, 134(3483), 943-944. https://doi.org/10.1126/science. 134.3483.943
Hunziker, M. H. L., & dos Santos, C. V. (2007). Learned helplessness: Effects of response requirement and interval between treatment and testing. Behavioural Processes, 76(3), 183-191. ://doi. org/https://doi.org/10.1016/j.beproc.2007.02.012
Iigaya, K., Jolivald, A., Jitkrittum, W., Gilchrist, I. D., Dayan, P., Paul, E., & Mendl, M. (2016). Cognitive bias in ambiguity judgements: using computational models to dissect the effects of mild mood manipulation in humans. PloS One, 11, https://doi.org/10.1371/ journal.pone. 0165840
Ineichen, C., Sigrist, H., Spinelli, S., Lesch, K. P., Sautter, E., Seifritz, E., & Pryce, C. R. (2012). Establishing a probabilistic reversal learning test in mice: evidence for the processes mediating reward-stay and punishment-shift behaviour and for their modulation by serotonin. Neuropharmacology, 63(6), 1012-1021. https://doi.org/10.1016/j.neuropharm.2012.07.025
Isik, S., & Unal, G. (2023). Open-source software for automated rodent behavioral analysis. Frontiers in Neuroscience, 17, 1149027. https://doi.org/10.3389/fnins.2023.1149027
Ito, R., & Lee, A. C. H. (2016). The role of the hippocampus in approach-avoidance conflict decision-making: Evidence from rodent and human studies. Behavioural Brain Research, 313, 345-357. https://doi.org/10.1016/j.bbr.2016.07.039
Iturra-Mena, A. M., Kangas, B. D., Luc, O. T., Potter, D., & Pizzagalli, D. A. (2023). Electrophysiological signatures of reward learning in the rodent touchscreen-based Probabilistic Reward Task. Neuropsychopharmacology, 48(4), 700-709. https://doi.org/10. 1038/s41386-023-01532-4
Jabarin, R., Netser, S., & Wagner, S. (2022). Beyond the three-chamber test: toward a multimodal and objective assessment of social behavior in rodents. Molecular Autism, 13(1), 1-29. https://doi. org/10.1186/s13229-022-00521-6
Jemiolo, B., Alberts, J., Sochinski-Wiggins, S., Harvey, S., & Novotny, M. (1985). Behavioural and endocrine responses of female mice to synthetic analogues of volatile compounds in male urine. Animal Behaviour, 33(4), 1114-1118. ://doi.org/https://doi.org/10. 1016/s0003-3472(85)80170-6
Kalueff, A. V., Wheaton, M., & Murphy, D. L. (2007). What’s wrong with my mouse model?: Advances and strategies in animal modeling of anxiety and depression. Behavioural Brain Research, 179(1), 1-18. https://doi.org/10.1016/j.bbr.2007.01.023
Kangas, B. D., Wooldridge, L. M., Luc, O. T., Bergman, J., & Pizzagalli, D. A. (2020). Empirical validation of a touchscreen probabilistic reward task in rats. Translational Psychiatry, 10(1), 1-11. https://doi.org/10.1038/s41398-020-00969-1
Karagiannis, C. I., Burman, O. H. P., & Mills, D. S. (2015). Dogs with separation-related problems show a “less pessimistic” cognitive bias during treatment with fluoxetine (Reconcile
Katz, R. J. (1982). Animal Model of Depression: Pharmacological Sensitivity of a Hedonic Deficit. Pharmacology Biochemistry & Behavior, 16, 965-968.
Kelliher, K. R., & Wersinger, S. R. (2009). olfactory regulation of the sexual behavior and reproductive physiology of the laboratory mouse: effects and neural mechanisms. ILAR Journal, 50(1), 28-42. https://doi.org/10.1093/ilar.50.1.28
Kessler, R. C., Sampson, N. A., Berglund, P., Gruber, M. J., AlHamzawi, A., Andrade, L., Bunting, B., Demyttenaere, K., Florescu, S., De Girolamo, G., Gureje, O., He, Y., Hu, C., Huang, Y., Karam, E., Kovess-Masfety, V., Lee, S., Levinson, D., Medina Mora, M. E., … Wilcox, M. A. (2015). Anxious and non-anxious major depressive disorder in the World Health Organization World Mental Health Surveys. Epidemiology and Psychiatric Sciences, 24(3), 210-226. https://doi.org/10.1017/s204579601 5000189
Kingir, E., Sevinc, C., & Unal, G. (2023). Chronic oral ketamine prevents anhedonia and alters neuronal activation in the lateral habenula and nucleus accumbens in rats under chronic unpredictable mild stress. Neuropharmacology, 228. https://doi.org/10. 1016/j.neuropharm.2023.109468
Kirlic, N., Young, J., & Aupperle, R. L. (2017). Animal to human translational paradigms relevant for approach avoidance conflict decision making. Behaviour Research and Therapy, 96, 14-29. https://doi.org/10.1016/j.brat.2017.04.010
Kiryk, A., Janusz, A., Zglinicki, B., Turkes, E., Knapska, E., Konopka, W., Lipp, H. P., & Kaczmarek, L. (2020). IntelliCage as a tool for measuring mouse behavior – 20 years perspective. Behavioural Brain Research, 388, 112620. https://doi.org/10.1016/j. bbr.2020.112620
Kitamura, Y., Araki, H., & Gomita, Y. (2002). Influence of ACTH on the effects of imipramine, desipramine and lithium on duration of immobility of rats in the forced swim test. Pharmacology Biochemistry and Behavior, 71(1-2), 63-69. https://doi.org/10.1016/ s0091-3057(01)00625-6
Klein, C. J. M. I., Budiman, T., Homberg, J. R., Verma, D., Keijer, J., & van Schothorst, E. M. (2022). Measuring locomotor activity and behavioral aspects of rodents living in the home-cage. Frontiers in Behavioral Neuroscience, 16, 877323. https://doi.org/10.3389/ fnbeh.2022.877323
Klein, D. C., Fencil-Morse, E., & Seligman, M. E. (1976). Learned helplessness, depression, and the attribution of failure. Journal of personality and social psychology, 33(5), 508. https://doi.org/ 10.1037/0022-3514.33.5.508
Komada, M., Takao, K., & Miyakawa, T. (2008). Elevated Plus Maze for Mice. JoVE (Journal of Visualized Experiments), 22, e1088. https://doi.org/10.3791/1088
Kondrakiewicz, K., Kostecki, M., Szadzińska, W., & Knapska, E. (2019). Ecological validity of social interaction tests in rats and mice. Genes, Brain and Behavior, 18(1), e12525. https://doi.org/ 10.1111/gbb. 12525
Kulkarni, S. K., Singh, K., & Bishnoi, M. (2007). Elevated zero maze: a paradigm to evaluate antianxiety effects of drugs. Methods and Findings in Experimental and Clinical Pharmacology, 29(5), 343-348. https://doi.org/10.1358/mf.2007.29.5.1117557
Kumar, V., Bhat, Z. A., & Kumar, D. (2013). Animal models of anxiety: A comprehensive review. Journal of Pharmacological and Toxicological Methods, 68(2), 175-183. https://doi.org/10. 1016/j.vascn.2013.05.003
Kyriakou, E. I., Nguyen, H. P., Homberg, J. R., & Van der Harst, J. E. (2018). Home-cage anxiety levels in a transgenic rat model for Spinocerebellar ataxia type 17 measured by an approachavoidance task: The light spot test. Journal of Neuroscience Methods, 300, 48-58. https://doi.org/10.1016/j.jneumeth.2017. 08.012
Lamers, F., Van Oppen, P., Comijs, H. C., Smit, J. H., Spinhoven, P., Van Balkom, A. J. L. M., Nolen, W. A., Zitman, F. G., Beekman, A. T. F., & Penninx, B. W. J. H. (2011). Comorbidity patterns of anxiety and depressive disorders in a large cohort study: the Netherlands Study of Depression and Anxiety (NESDA). The Journal of Clinical Psychiatry, 72(3), 3397. https://doi.org/10. 4088/jcp.10m06176blu
Landauer, M. R., & Balster, R. L. (1982). A new test for social investigation in mice: Effects of d-amphetamine. Psychopharmacology, 78(4), 322-325. https://doi.org/10.1007/bf00433734
Lange, B., & Pauli, P. (2019). Social anxiety changes the way we move-A social approach-avoidance task in a virtual reality CAVE system. PLOS ONE, 14(12), e0226805. https://doi.org/ 10.1371/journal.pone. 0226805
La-Vu, M., Tobias, B. C., Schuette, P. J., & Adhikari, A. (2020). To approach or avoid: An introductory overview of the study of anxiety using rodent assays. Frontiers in Behavioral Neuroscience, 14, 566016. https://doi.org/10.3389/fnbeh.2020.00145
Lawson, C., MacLeod, C., & Hammond, G. (2002). Interpretation revealed in the blink of an eye: Depressive bias in the resolution of ambiguity. Journal of Abnormal Psychology, 111(2), 321-328. https://doi.org/10.1037/0021-843x.111.2.321
LeMoult, J., & Gotlib, I. H. (2019). Depression: A cognitive perspective. Clinical Psychology Review, 69, 51-66. https://doi.org/10. 1016/j.cpr.2018.06.008
Leppänen, J. M. (2006). Emotional information processing in mood disorders: A review of behavioral and neuroimaging findings. Current Opinion in Psychiatry, 19(1), 34-39. https://doi.org/10. 1097/01.yco.0000191500.46411.00
Liu, M. Y., Yin, C. Y., Zhu, L. J., Zhu, X. H., Xu, C., Luo, C. X., Chen, H., Zhu, D. Y., & Zhou, Q. G. (2018). Sucrose preference test for measurement of stress-induced anhedonia in mice. Nature Protocols, 13(7), 1686-1698. https://doi.org/10.1038/ s41596-018-0011-z
Looney, T. A., & Cohen, P. S. (1972). Retardation of jump-up escape responding in rats pretreated with different frequencies of noncontingent electric shock. Journal of Comparative and Physiological Psychology, 78(2), 317-322. https://doi.org/10.1037/ h0032300
Luc, O. T., & Kangas, B. D. (2023). Validation of a touchscreen probabilistic reward task for mice: A reverse-translated assay with cross-species continuity. Cognitive, Affective and Behavioral Neuroscience, 1-8. https://doi.org/10.3758/ s13415-023-01128-x
Lynn, S. K., & Barrett, L. F. (2014). “Utilizing” Signal Detection Theory. Psychological Science, 25(9), 1663-1673. ://doi.org/https:// doi.org/10.1177/0956797614541991
MacLellan, A., Nazal, B., Young, L., & Mason, G. (2022). Waking inactivity as a welfare indicator in laboratory mice: investigating postures, facial expressions and depression-like states. Royal Society Open Science, 9(11), 221083. https://doi.org/10.1098/ rsos. 221083
MacLeod, C., & Cohen, I. L. (1993). Anxiety and the Interpretation of Ambiguity: A Text Comprehension Study. Journal of Abnormal Psychology, 102(2), 238-247. https://doi.org/10.1037/0021843x.102.2.238
Maier, S. F. (1984). Learned helplessness and animal models of depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 8(3), 435-446. ://doi.org/https://doi.org/10.1016/ s0278-5846(84)80032-9
Maier, S. F., & Seligman, M. E. (1976). Learned helplessness: Theory and evidence. Journal of Experimental Psychology: General, 105(1), 3-46. https://doi.org/10.1037/0096-3445.105.1.3
Maier, S. F., & Watkins, L. R. (1998). Stressor controllability, anxiety, and serotonin. Cognitive Therapy and Research, 22(6), 595-613. https://doi.org/10.1023/a:1018794104325
Malkesman, O. (2011). The Female Urine Sniffing Test (FUST) of Reward-Seeking Behavior. In T. Gould (Eds.), Mood and Anxiety Related Phenotypes in Mice. Neuromethods, vol 63. Humana Press. https://doi.org/10.1007/978-1-61779-313-4_20
Malkesman, O., Scattoni, M. L., Paredes, D., Tragon, T., Pearson, B., Shaltiel, G., Chen, G., Crawley, J. N., & Manji, H. K. (2010). The female urine sniffing test: a novel approach for assessing reward-seeking behavior in rodents. Biological Psychiatry, 67(9), 864-871. https://doi.org/10.1016/j.biopsych.2009.10.018
Mao, Y., Xu, Y., & Yuan, X. (2022). Validity of chronic restraint stress for modeling anhedonic-like behavior in rodents: a systematic review and meta-analysis. Journal of International Medical Research, 50(2). https://doi.org/10.1177/03000605221075816
Markou, A., Chiamulera, C., Geyer, M. A., Tricklebank, M., & Steckler, T. (2009). Removing obstacles in neuroscience drug discovery: the future path for animal models. Neuropsychopharmacology, 34(1), 74-89. https://doi.org/10.1038/npp.2008.173
Martínez-García, F., Martínez-Ricós, J., Agustín-Pavón, C., MartínezHernández, J., Novejarque, A., & Lanuza, E. (2009). Refining the
dual olfactory hypothesis: Pheromone reward and odour experience. Behavioural Brain Research, 200(2), 277-286. https://doi. org/10.1016/j.bbr.2008.10.002
McGinnis, M. Y., & Vakulenko, M. (2003). Characterization of
McNaughton, N., & Corr, P. J. (2004). A two-dimensional neuropsychology of defense: fear/anxiety and defensive distance. Neuroscience & Biobehavioral Reviews, 28(3), 285-305. https://doi. org/10.1016/j.neubiorev.2004.03.005
Mendl, M., Kurosu, G., Cuthill, I. C., Norton, V., Woodgate, J., Margetts, A., … & Paul, E. S. (2006). Studies of emotion-cognition links in humans as a basis for developing new measures of animal emotion. In Proceedings of the 40th International Congress of the ISAE, Bristol, UK (pp. 46-46).
Metha, J. A., Brian, M. L., Oberrauch, S., Barnes, S. A., Featherby, T. J., Bossaerts, P., Murawski, C., Hoyer, D., & Jacobson, L. H. (2020). separating probability and reversal learning in a novel probabilistic reversal learning task for mice. Frontiers in Behavioral Neuroscience, 13, 488522. https://doi.org/10.3389/fnbeh. 2019.00270
Miller, W. R., & Seligman, M. E. (1973). Depression and the perception of reinforcement. Journal of Abnormal Psychology, 82(1), 62-73. https://doi.org/10.1037/h0034954
Miller, W. R., & Seligman, M. E. (1975). Depression and learned helplessness in man. Journal of Abnormal Psychology, 84(3), 228-238. https://doi.org/10.1037/H0076720
Mingrone, A., Kaffman, A., & Kaffman, A. (2020). The promise of automated home-cage monitoring in improving translational utility of psychiatric research in rodents. Frontiers in Neuroscience, 14, 618593. https://doi.org/10.3389/fnins.2020.618593
Mitchell, D. (1976). Experiments on neophobia in wild and laboratory rats: A reevaluation. Journal of Comparative and Physiological Psychology, 90(2), 190-197. https://doi.org/10.1037/h0077196
Molendijk, M. L., & de Kloet, E. R. (2015). Immobility in the forced swim test is adaptive and does not reflect depression. Psychoneuroendocrinology, 62, 389-391. https://doi.org/10.1016/j.psyne uen.2015.08.028
Molendijk, M. L., & de Kloet, E. R. (2019). Coping with the forced swim stressor: Current state-of-the-art. Behavioural Brain Research, 364, 1-10. https://doi.org/10.1016/j.bbr.2019.02.005
Molewijk, H. E., van der Poel, A. M., & Olivier, B. (1995). The ambivalent behaviour “stretched approach posture” in the rat as a paradigm to characterize anxiolytic drugs. Psychopharmacology, 121(1), 81-90. https://doi.org/10.1007/bf02245594
Montgomery, K. C. (1955). The relation between fear induced by novel stimulation and exploratory drive. Journal of Comparative and Physiological Psychology, 48(4), 254-260. https://doi.org/10. 1037/h0043788
Montgomery, K. C., & Monkman, J. A. (1955). The relation between fear and exploratory behavior. Journal of Comparative and Physiological Psychology, 48(2), 132-136. https://doi.org/10. 1037/h0048596
Moy, S. S., Nadler, J. J., Perez, A., Barbaro, R. P., Johns, J. M., Magnuson, T. R., Piven, J., & Crawley, J. N. (2004). Sociability and preference for social novelty in five inbred strains: an approach
to assess autistic-like behavior in mice. Genes, Brain and Behavior, 3(5), 287-302. https://doi.org/10.1111/j.1601-1848.2004. 00076.x
Nadler, J. J., Moy, S. S., Dold, G., Trang, D., Simmons, N., Perez, A., Young, N. B., Barbaro, R. P., Piven, J., Magnuson, T. R., & Crawley, J. N. (2004). Automated apparatus for quantitation of social approach behaviors in mice. Genes, Brain and Behavior, 3(5), 303-314. https://doi.org/10.1111/j.1601-183x.2004. 00071.x
Neckameyer, W. S., & Nieto-Romero, A. R. (2015). Response to stress in Drosophila is mediated by gender, age and stress paradigm. Stress, 18(2), 254-266. https://doi.org/10.3109/10253890.2015. 1017465
Nestler, E. J., Gould, E., & Manji, H. (2002). Preclinical models: status of basic research in depression. Biological Psychiatry, 52(6), 503-528. https://doi.org/10.1016/s0006-3223(02)01405-1
Nestler, E. J., & Hyman, S. E. (2010). Animal models of neuropsychiatric disorders. Nature Neuroscience, 13(10), 1161-1169. https:// doi.org/10.1038/nn. 2647
Neville, V., Nakagawa, S., Zidar, J., Paul, E. S., Lagisz, M., Bateson, M., Løvlie, H., & Mendl, M. (2020). Pharmacological manipulations of judgement bias: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 108, 269-286. https:// doi.org/10.1016/j.neubiorev.2019.11.008
Neville, V., Dayan, P., Gilchrist, I. D., Paul, E. S., & Mendl, M. (2021). Using primary reinforcement to enhance translatability of a human affect and decision-making judgment bias task. Journal of Cognitive Neuroscience, 33(12), 2523-2535. https://doi.org/ 10.1162/jocn_a_01776
Nishimura, H., Tsuda, A., Oguchi, M., Ida, Y., & Tanaka, M. (1988). Is immobility of rats in the forced swim test “behavioral despair?” Physiology & Behavior, 42(1), 93-95. https://doi.org/10.1016/ 0031-9384(88)90266-1
Norbury, R., Mackay, C. E., Cowen, P. J., Goodwin, G. M., & Harmer, C. J. (2007). Short-term antidepressant treatment and facial processing: Functional magnetic resonance imaging study. The British Journal of Psychiatry, 190(6), 531-532. https://doi.org/10. 1192/bjp.bp.106.031393
Olivier, B., Molewijk, H. E., Van Der Heyden, J. A. M., Van Oorschot, R., Ronken, E., Mos, J., & Miczek, K. A. (1998). Ultrasonic vocalizations in rat pups: effects of serotonergic ligands. Neuroscience & Biobehavioral Reviews, 23(2), 215-227. https://doi. org/10.1016/S0149-7634(98)00022-0
World Health Organization. (1992). The ICD-10 classification of mental and behavioural disorders: Clinical descriptions and diagnostic guidelines. World Health Organization.
Overmier, J. B., & Seligman, M. E. (1967). Effects of inescapable shock upon subsequent escape and avoidance responding.
Padilla, A. M., Padilla, C., Ketterer, T., & Giacalone, D. (1970). Inescapable shocks and subsequent escape/avoidance conditioning in goldfish. Carassius auratus. Psychonomic Science, 20(5), 295-296. https://doi.org/10.3758/bf03329075
Paul, E. S., Harding, E. J., & Mendl, M. (2005). Measuring emotional processes in animals: the utility of a cognitive approach. Neuroscience & Biobehavioral Reviews, 29(3), 469-491. https://doi. org/10.1016/j.neubiorev.2005.01.002
Peleh, T., Bai, X., Kas, M. J. H., & Hengerer, B. (2019). RFID-supported video tracking for automated analysis of social behaviour in groups of mice. Journal of Neuroscience Methods, 325, 108323. https://doi.org/10.1016/j.jneumeth.2019.108323
Pellow, S., & File, S. E. (1986). Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: A novel test of anxiety in the rat. Pharmacology Biochemistry and Behavior, 24(3), 525-529. https://doi.org/10.1016/0091-3057(86)90552-6
Perkins, A. M., Inchley-Mort, S. L., Pickering, A. D., Corr, P. J., & Burgess, A. P. (2012). A facial expression for anxiety. Journal of Personality and Social Psychology, 102(5), 910-924. https:// doi.org/10.1037/a0026825
Perusini, J. N., & Fanselow, M. S. (2015). Neurobehavioral perspectives on the distinction between fear and anxiety. Learning & Memory, 22(9), 417-425. https://doi.org/10.1101/lm.039180. 115
Petit-Demouliere, B., Chenu, F., & Bourin, M. (2005). Forced swimming test in mice: A review of antidepressant activity. Psychopharmacology, 177(3), 245-255. https://doi.org/10.1007/ S00213-004-2048-7
Phillips, B. U., Dewan, S., Nilsson, S. R. O., Robbins, T. W., Heath, C. J., Saksida, L. M., Bussey, T. J., & Alsiö, J. (2018). Selective effects of 5-HT2C receptor modulation on performance of a novel valence-probe visual discrimination task and probabilistic reversal learning in mice. Psychopharmacology, 235(7), 21012111. https://doi.org/10.1007/s00213-018-4907-7
Pizzagalli, D. A., Iosifescu, D., Hallett, L. A., Ratner, K. G., & Fava, M. (2008b). Reduced hedonic capacity in major depressive disorder: Evidence from a probabilistic reward task. Journal of Psychiatric Research, 43(1), 76-87. https://doi.org/10.1016/j.jpsyc hires.2008.03.001
Pizzagalli, D. A., Jahn, A. L., & O’Shea, J. P. (2005). Toward an objective characterization of an anhedonic phenotype: A signal-detection approach. Biological Psychiatry, 57(4), 319-327. https://doi. org/10.1016/j.biopsych.2004.11.026
Planchez, B., Surget, A., & Belzung, C. (2019). Animal models of major depression: drawbacks and challenges. Journal of Neural Transmission, 126(11), 1383-1408. https://doi.org/10.1007/ s00702-019-02084-y
Poirier, C., Bateson, M., Gualtieri, F., Armstrong, E. A., Laws, G. C., Boswell, T., & Smulders, T. V. (2019). Validation of hippocampal biomarkers of cumulative affective experience. Neuroscience & Biobehavioral Reviews, 101, 113-121. https://doi.org/ 10.1016/j.neubiorev.2019.03.024
Porsolt, R. D., Bertin, A., & Jalfre, M. (1977a). Behavioral despair in mice: a primary screening test for antidepressants. Archives internationales de pharmacodynamie et de therapie, 229(2), 327-336.
Porsolt, R. D., Le Pichon, M., & Jalfre, M. (1977b). Depression: a new animal model sensitive to antidepressant treatments. Nature, 266(5604), 730-732. https://doi.org/10.1038/266730a0
Porter, J., Craven B., Khan, R. M., Chang, S., Kang, I., Judkewitz, B., . . . , Sobel N. (2007). Mechanisms of scent-tracking in humans. Nature Neuroscience, 10(1), 27-29. https://www.nature.com/ articles/nn1819
Portfors, C. V. (2007). Types and functions of ultrasonic vocalizations in laboratory rats and mice. Journal of the American Association for Laboratory Animal Science, 46(1), 28-34.
Poschel, B. P. H. (1971). A simple and specific screen for benzodiaze-pine-like drugs. Psychopharmacologia, 19(2), 193-198. https:// doi.org/10.1007/bf00402642
Premoli, M., Baggi, D., Bianchetti, M., Gnutti, A., Bondaschi, M., Mastinu, A., Migliorati, P., Signoroni, A., Leonardi, R., Memo, M., & Bonini, S. A. (2021). Automatic classification of mice vocalizations using Machine Learning techniques and Convolutional Neural Networks. PLOS ONE, 16(1), e0244636. https:// doi.org/10.1371/journal.pone. 0244636
Prendergast, B. J., Onishi, K. G., & Zucker, I. (2014). Female mice liberated for inclusion in neuroscience and biomedical research. Neuroscience & Biobehavioral Reviews, 40, 1-5. https://doi.org/ 10.1016/j.neubiorev.2014.01.001
Prut, L., & Belzung, C. (2003). The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. European Journal of Pharmacology, 463(1-3), 3-33. https://doi.org/ 10.1016/s0014-2999(03)01272-x
Pryce, C. R., Rüedi-Bettschen, D., Dettling, A. C., Weston, A., Russig, H., Ferger, B., & Feldon, J. (2005). Long-term effects of early-life environmental manipulations in rodents and primates: Potential animal models in depression research. Neuroscience & Biobehavioral Reviews, 29(4-5), 649-674. https://doi.org/10. 1016/j.neubiorev.2005.03.011
Regier, D. A., Narrow, W. E., Kuhl, E. A., & Kupfer, D. J. (2009). The conceptual development of DSM-V. American Journal of Psychiatry, 166(6), 645-650. https://doi.org/10.1176/appi.ajp. 2009.09020279
Riebe, C. J., Wotjak, C. T. (2012). A practical guide to evaluating anxiety-related behavior in rodents. In: A. Szallasi, T. Biro (eds), TRP channels in drug discovery. Methods in pharmacology and toxicology. Humana Press, Totowa, NJ. ://doi.org/https://doi.org/ 10.1007/978-1-62703-095-3_10
Robinson, E., Roiser, J. (2016). Affective Biases in Humans and Animals. In: T.W. Robbins, B.J. Sahakian. (Eds.), Translational Neuropsychopharmacology. Current Topics in Behavioral Neurosciences, vol 28. Springer, Cham. https://doi.org/10.1007/ 7854_2015_5011
Robinson, E. S. J. (2018). Translational new approaches for investigating mood disorders in rodents and what they may reveal about the underlying neurobiology of major depressive disorder. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 373(1742), 20170036. https://doi.org/10. 1098/rstb. 2017.0036
Robinson, O. J., Pike, A. C., Cornwell, B., & Grillon, C. (2019). The translational neural circuitry of anxiety. Journal of Neurology, Neurosurgery & Psychiatry, 90(12), 1353-1360. https://doi.org/ 10.1136/jnnp-2019-321400
Rodgers, R. J., & Dalvi, A. (1997). Anxiety, defence and the elevated plus-maze. Neuroscience & Biobehavioral Reviews, 21(6), 801810. https://doi.org/10.1016/s0149-7634(96)00058-9
Roiser, J. P., Elliott, R., & Sahakian, B. J. (2012). Cognitive Mechanisms of Treatment in Depression. Neuropsychopharmacology 2011 37:1, 37(1), 117-136. https://doi.org/10.1038/npp.2011.183
Roiser, J. P., & Sahakian, B. J. (2013). Hot and cold cognition in depression. CNS spectrums, 18(3), 139-149. https://doi.org/10. 1017/s1092852913000072
Rosen, J. B., & Schulkin, J. (1998). From normal fear to pathological anxiety. Psychological Review, 105(2), 325-350. https://doi.org/ 10.1037/0033-295X.105.2.325
Sabiniewicz, A., Hoffmann, L., Haehner, A., & Hummel, T. (2022). Symptoms of depression change with olfactory function. Scientific Reports, 12(1), 1-8. https://doi.org/10.1038/ s41598-022-09650-7
Salamone, J. D., Steinpreis, R. E., Mccullough, L. D., Smith, P., Grebel, D., & Mahan, K. (1991). Haloperidol and nucleus accumbens dopamine depletion suppress lever pressing for food but increase free food consumption in a novel food choice procedure. Psychopharmacology, 104, 515-521.
Samuels, B.A., Hen, R. (2011). Novelty-Suppressed Feeding in the Mouse. In: T. Gould (Eds.), Mood and Anxiety Related Phenotypes in Mice. Neuromethods, vol 63. Humana Press. https://doi. org/10.1007/978-1-61779-313-4_7
Sanislow, C. A., Pine, D. S., Quinn, K. J., Kozak, M. J., Garvey, M. A., Heinssen, R. K., Wang, P.S.-E., & Cuthbert, B. N. (2010). Developing constructs for psychopathology research: Research domain criteria. Journal of Abnormal Psychology, 119(4), 631639. https://doi.org/10.1037/a0020909
Schick, A., Wessa, M., Vollmayr, B., Kuehner, C., & Kanske, P. (2013). Indirect assessment of an interpretation bias in humans:
Schrijver, N. C. A., Bahr, N. I., Weiss, I. C., & Würbel, H. (2002). Dissociable effects of isolation rearing and environmental enrichment on exploration, spatial learning and HPA activity in adult rats. Pharmacology Biochemistry and Behavior, 73(1), 209-224. https://doi.org/10.1016/s0091-3057(02)00790-6
Schulz, M., Zieglowski, L., Kopaczka, M., & Tolba, R. H. (2023). The Open Field Test as a Tool for Behaviour Analysis in Pigs: Recommendations for Set-Up Standardization – A Systematic Review. European Surgical Research, 64(1), 7-26. https://doi. org/10.1159/000525680
Schwarting, R. K. W., & Borta, A. (2005). Analysis of behavioral asymmetries in the elevated plus-maze and in the T-maze. Journal of Neuroscience Methods, 141(2), 251-260. https://doi.org/ 10.1016/j.jneumeth.2004.06.013
Seligman, M. E. (1972). Learned helplessness. Annual Review of Medicine, 23, 407-412. https://doi.org/10.1146/annurev.me.23. 020172.002203
Seligman, M. E., & Maier, S. F. (1967). Failure to escape traumatic shock. Journal of Experimental Psychology, 74(1), 1-9. https:// doi.org/10.1037/h0024514
Shepherd, J. K., Grewal, S. S., Fletcher, A., Bill, D. J., & Dourish, C. T. (1994). Behavioural and pharmacological characterisation of the elevated “zero-maze” as an animal model of anxiety. Psychopharmacology, 116(1), 56-64. https://doi.org/10.1007/bf022 44871
Silveira, K.M., Joca, S. (2023). Learned Helplessness in Rodents. In: J. Harro (Ed.), Psychiatric Vulnerability, Mood, and Anxiety Disorders. Neuromethods, vol 190. Humana, New York, NY. https:// doi.org/10.1007/978-1-0716-2748-8_9
Simola N, Brudzynski SM. (2018) Repertoire and biological function of ultrasonic vocalizations in adolescent and adult rats. In S.M. Brudzynski (Ed.), Handbook of Ultrasonic Vocalization (Vol. 25, pp. 177-186). A window into the emotional brain. Elsevier. https://doi.org/10.1016/b978-0-12-809600-0.00017-2
Simola, N., & Granon, S. (2019). Ultrasonic vocalizations as a tool in studying emotional states in rodent models of social behavior and brain disease. Neuropharmacology, 159, 107420. https://doi.org/ 10.1016/j.neuropharm.2018.11.008
Sotocinal, S. G., Sorge, R. E., Zaloum, A., Tuttle, A. H., Martin, L. J., Wieskopf, J. S., Mapplebeck, J. C. S., Wei, P., Zhan, S., Zhang, S., McDougall, J. J., King, O. D., & Mogil, J. S. (2011). The Rat Grimace Scale: A partially automated method for quantifying pain in the laboratory rat via facial expressions. Molecular Pain, 7. https://doi.org/10.1186/1744-8069-7-55
Steimer, T. (2002). The biology of fear- and anxiety-related behaviors. Dialogues in Clinical Neuroscience, 4(3), 231-249. https://doi. org/10.31887/dcns.2002.4.3/tsteimer
Steru, L., Chermat, R., Thierry, B., & Simon, P. (1985). The tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology, 85(3), 367-370. https://doi.org/10. 1007/bf00428203
Storbeck, J., & Clore, G. L. (2007). On the interdependence of cognition and emotion. Cognition And Emotion, 21(6), 1212-1237. https://doi.org/10.1080/02699930701438020
Strekalova, T. (2023). How the sucrose preference succeeds or fails as a measurement of anhedonia. In J. Harro (edn), Psychiatric vulnerability, mood, and anxiety disorders. Neuromethods, vol 190. Humana, New York. https://doi.org/10.1007/ 978-1-0716-2748-8_6
Stuart, S. A., Butler, P., Munafò, M. R., Nutt, D. J., & Robinson, E. S. J. (2013). A translational rodent assay of affective biases in depression and antidepressant therapy. Neuropsychopharmacology, 38(9), 1625-1635. https://doi.org/10.1038/npp. 2013.69
Stuart, S. A., Butler, P., Munafò, M. R., Nutt, D. J., & Robinson, E. S. J. (2015). Distinct neuropsychological mechanisms may explain delayed- versus rapid-onset antidepressant efficacy. Neuropsychopharmacology, 40(9), 2165-2174. https://doi. org/10.1038/npp.2015.59
Stuart, S. A., Hinchcliffe, J. K., & Robinson, E. S. J. (2019). Evidence that neuropsychological deficits following early life adversity may underlie vulnerability to depression. Neuropsychopharmacology, 44(9), 1623-1630. https://doi.org/10.1038/ s41386-019-0388-6
Markov, D. D. (2022). Sucrose preference test as a measure of anhedonic behavior in a chronic unpredictable mild stress model of depression: outstanding issues. Brain Sciences, 12(10), 1287. https://doi.org/10.3390/brainsci12101287
Takahashi, L. K., Nakashima, B. R., Hong, H., & Watanabe, K. (2005). The smell of danger: A behavioral and neural analysis of predator odor-induced fear. Neuroscience & Biobehavioral Reviews, 29(8), 1157-1167. https://doi.org/10.1016/j.neubi orev.2005.04.008
Taylor Tavares, J. V., Clark, L., Furey, M. L., Williams, G. B., Sahakian, B. J., & Drevets, W. C. (2008). Neural basis of abnormal response to negative feedback in unmedicated mood disorders. NeuroImage, 42(3), 1118-1126. https://doi.org/10.1016/j. neuroimage.2008.05.049
Thierry, B., Stéru, L., Simon, P., & Porsolt, R. D. (1986). The tail suspension test: Ethical considerations. Psychopharmacology, 90(2), 284-285. https://doi.org/10.1007/bf00181261
Thomas, D. A., Takahashi, L. K., & Barfield, R. J. (1983). Analysis of ultrasonic vocalizations emitted by intruders during aggressive encounters among rats (Rattus norvegicus). Journal of Comparative Psychology, 97(3), 201-206. https://doi.org/10. 1037/0735-7036.97.3.201
Thornton, J. W., & Jacobs, P. D. (1971). Learned helplessness in human subjects. Journal of Experimental Psychology, 87(3), 367-372. ://doi.org/https://doi.org/10.1037/h0030529
Toth, I., & Neumann, I. D. (2013). Animal models of social avoidance and social fear. Cell and Tissue Research, 354(1), 107118. https://doi.org/10.1007/s00441-013-1636-4
reactivity: A new animal model for affective disorders. Psychoneuroendocrinology, 33(6), 839-862. https://doi.org/10.1016/j. psyneuen.2008.03.013
Tractenberg, S. G., Levandowski, M. L., de Azeredo, L. A., Orso, R., Roithmann, L. G., Hoffmann, E. S., Brenhouse, H., & Grassi-Oliveira, R. (2016). An overview of maternal separation effects on behavioural outcomes in mice: Evidence from a four-stage methodological systematic review. Neuroscience & Biobehavioral Reviews, 68, 489-503. https://doi.org/10.1016/j. neubiorev.2016.06.021
Treadway, M. T., & Zald, D. H. (2011). Reconsidering anhedonia in depression: Lessons from translational neuroscience. Neuroscience & Biobehavioral Reviews, 35(3), 537-555. https://doi.org/ 10.1016/j.neubiorev.2010.06.006
Unal, G. (2021). Social isolation as a laboratory model of depression. In A. A. Moustafa (Ed.), Mental Health Effects of COVID19 (pp. 133-151). https://doi.org/10.1016/B978-0-12-824289-6. 00005-2
Unal, G., & Canbeyli, R. (2019). Psychomotor retardation in depression: A critical measure of the forced swim test. Behavioural Brain Research, 372, 112047. https://doi.org/10.1016/j.bbr.2019. 112047
Unal, G., & Moustafa, A. A. (2020). The neural substrates of different depression symptoms: Animal and human studies. In A. A. Moustafa (ed), The Nature of Depression (pp. 59-79). Academic Press. https://doi.org/10.1016/B978-0-12-817676-4.00004-3
Ünal, G., Gizem, E., Rabia, K., & Demircan, K. (2022). The behavioral effects of social buffering in Rats. Turkish Journal of Psychology, 37(89), 116-118. https://doi.org/10.31828/tpd130044332019 1125 m 000042
Van De Weerd, H. A., Bulthuis, R. J. A., Bergman, A. F., Schlingmann, F., Tolboom, J., Van Loo, P. L. P., Remie, R., Baumans, V., & Van Zutphen, L. F. M. (2001). Validation of a new system for the automatic registration of behaviour in mice and rats. Behavioural Processes, 53(1-2), 11-20. https://doi.org/10.1016/s0376-6357(00)00135-2
Van Segbroeck, M., Knoll, A. T., Levitt, P., & Narayanan, S. (2017). MUPET-mouse ultrasonic profile extraction: a signal processing tool for rapid and unsupervised analysis of ultrasonic vocalizations. Neuron, 94(3), 465-485. https://doi.org/10.1016/j. neuron.2017.04.005
Vogel, A. P., Tsanas, A., & Scattoni, M. L. (2019). Quantifying ultrasonic mouse vocalizations using acoustic analysis in a supervised statistical machine learning framework. Scientific Reports, 9(1), 1-10. https://doi.org/10.1038/s41598-019-44221-3
Vogel, J. R., Beer, B., & Clody, D. E. (1971). A simple and reliable conflict procedure for testing anti-anxiety agents. Psychopharmacologia, 21(1), 1-7. https://doi.org/10.1007/bf00403989
Vollmayr, B., & Gass, P. (2013). Learned helplessness: Unique features and translational value of a cognitive depression model. Cell and Tissue Research, 354(1), 171-178. https://doi.org/10.1007/ s00441-013-1654-2
Vollmayr, B., & Henn, F. A. (2001). Learned helplessness in the rat: Improvements in validity and reliability. Brain Research Protocols, 8(1), 1-7. https://doi.org/10.1016/s1385-299x(01)00067-8
von Ziegler, L., Sturman, O., & Bohacek, J. (2020). Big behavior: challenges and opportunities in a new era of deep behavior profiling. Neuropsychopharmacology, 46(1), 33-44. https://doi.org/10. 1038/s41386-020-0751-7
Waller, B. M., & Micheletta, J. (2013). Facial Expression in Nonhuman Animals. Emotion Review, 5(1), 54-59. https://doi.org/10.1177/ 1754073912451503
Walsh, R. N., & Cummins, R. A. (1976). The open-field test: A critical review. Psychological Bulletin, 83(3), 482-504. https://doi.org/ 10.1037/0033-2909.83.3.482
Wee, B. E. F., Francis, T. J., Lee, C. Y., Lee, J. M., & Dohanich, G. P. (1995). Mate preference and avoidance in female rats following treatment with scopolamine. Physiology & Behavior, 58(1), 97-100. https://doi.org/10.1016/0031-9384(95)00029-I
West, A. P. (1990). Neurobehavioral studies of forced swimming: The role of learning and memory in the forced swim test. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 14(6), 863-877. https://doi.org/10.1016/0278-5846(90) 90073-p
Wiborg, O. (2013). Chronic mild stress for modeling anhedonia. Cell and Tissue Research, 354(1), 155-169. https://doi.org/10.1007/ s00441-013-1664-0
Wieser, M. J., Pauli, P., Grosseibl, M., Molzow, I., & Mühlberger, A. (2010). Virtual social interactions in social anxiety-the impact of sex, gaze, and interpersonal distance. Cyberpsychology, Behavior, and Social Networking, 13(5), 547-554. https://doi. org/10.1089/cyber.2009. 0432
Wilkinson, M. P., Grogan, J. P., Mellor, J. R., & Robinson, E. S. (2020). Comparison of conventional and rapid-acting antidepressants in a rodent probabilistic reversal learning task. Brain and Neuroscience Advances, 4. https://doi.org/10.1177/2398212820907177
Willner, P. (1986). Validation criteria for animal models of human mental disorders: Learned helplessness as a paradigm case. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 10(6), 677-690. https://doi.org/10.1016/0278-5846(86)90051-5
Willner, P. (1990). Animal models of depression: An overview. Pharmacology & Therapeutics, 45(3), 425-455. https://doi.org/10. 1016/0163-7258(90)90076-E
Willner, P. (1997). Validity, reliability and utility of the chronic mild stress model of depression: A 10-year review and evaluation. Psychopharmacology, 134(4), 319-329. https://doi.org/10.1007/ S002130050456
Willner, P. (2017). The chronic mild stress (CMS) model of depression: History, evaluation and usage. Neurobiology of Stress, 6, 78. https://doi.org/10.1016/j.ynstr.2016.08.002
Willner, P., Towell, A., Sampson, D., Sophokleous, S., & Muscat, R. (1987). Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology, 93, 358-364.
Wilson, C. A., & Koenig, J. I. (2014). Social interaction and social withdrawal in rodents as readouts for investigating the negative symptoms of schizophrenia. European Neuropsychopharmacology, 24(5), 759-773. https://doi.org/10.1016/j.euroneuro.2013. 11.008
Wiltschko, A. B., Tsukahara, T., Zeine, A., Anyoha, R., Gillis, W. F., Markowitz, J. E., Peterson, R. E., Katon, J., Johnson, M. J., & Datta, S. R. (2020). Revealing the structure of pharmacobehavioral space through motion sequencing. Nature Neuroscience, 23(11), 1433-1443. https://doi.org/10.1038/s41593-020-00706-3
William, R. M., Martin, E. S., & Harold, M. K. (1975). Learned helplessness, depression, and anxiety. The Journal of Nervous and Mental Disease, 161(5), 347-357.
Wöhr, M., & Scattoni, M. L. (2013). Behavioural methods used in rodent models of autism spectrum disorders: Current standards and new developments. Behavioural Brain Research, 251, 5-17. https://doi.org/10.1016/j.bbr.2013.05.047
Wöhr, M., & Schwarting, R. K. W. (2007). Ultrasonic communication in rats: can playback of
Wöhr, M., & Schwarting, R. K. W. (2008). Maternal care, isolationinduced infant ultrasonic calling, and their relations to adult
anxiety-related behavior in the rat. Behavioral Neuroscience, 122(2), 310-330. https://doi.org/10.1037/0735-7044.122.2.310
Wöhr, M., & Schwarting, R. K. W. (2013). Affective communication in rodents: ultrasonic vocalizations as a tool for research on emotion and motivation. Cell and Tissue Research, 354(1), 81-97. https:// doi.org/10.1007/S00441-013-1607-9
Yankelevitch-Yahav, R., Franko, M., Huly, A., & Doron, R. (2015). The Forced Swim test as a model of depressive-like behavior. JoVE (Journal of Visualized Experiments), 2015(97), e52587. https:// doi.org/10.3791/52587
Zilkha, N., Sofer, Y., Beny, Y., & Kimchi, T. (2016). From classic ethology to modern neuroethology: overcoming the three biases in social behavior research. Current Opinion in Neurobiology, 38, 96-108. https://doi.org/10.1016/j.conb.2016.04.014
Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey