DOI: https://doi.org/10.1016/j.rvsc.2024.105197
PMID: https://pubmed.ncbi.nlm.nih.gov/38395008
تاريخ النشر: 2024-02-20
الأثر الرائد للتحول الرقمي والذكاء الاصطناعي في تربية الأغنام
البحث في علوم الطب البيطري
نُشر (في الطباعة/العدد): 30/04/2024
10.1016/j.rvsc.2024.105197
نسخة الناشر بصيغة PDF، والمعروفة أيضًا باسم النسخة المسجلة
CC BY
تُحتفظ حقوق الطبع والنشر والحقوق المعنوية للمخرجات من قبل مؤلف(ي) المخرجات، ما لم يُنص على خلاف ذلك في ترخيص الوثيقة.
ما لم يُذكر خلاف ذلك، يُسمح للمستخدمين بتنزيل نسخة من المخرجات للدراسة الشخصية أو البحث غير التجاري، ويُسمح لهم بتوزيع عنوان URL للمخرجات بحرية. لا يُسمح لهم بتعديل أو إعادة إنتاج أو توزيع أو استخدام المخرجات لأغراض تجارية دون الحصول على إذن من المؤلفين.
بوابة البحث هي مستودع جامعة أولستر المؤسسي الذي يوفر الوصول إلى مخرجات أبحاث أولستر. تم بذل كل جهد لضمان أن المحتوى في بوابة البحث لا ينتهك حقوق أي شخص، أو القوانين المعمول بها في المملكة المتحدة. إذا اكتشفت محتوى في بوابة البحث تعتقد أنه ينتهك حقوق الطبع والنشر أو يخالف أي قانون، يرجى الاتصال بـpure-support@ulster.ac.uk
الأثر الرائد للتحول الرقمي والذكاء الاصطناعي في تربية الأغنام
معلومات المقال
الكلمات المفتاحية:
تربية الأغنام
الرقمنة
الزراعة الحيوانية الدقيقة (PLF)
الملخص
لقد أدت دمج الرقمنة والذكاء الاصطناعي إلى بدء عصر جديد من تربية الأغنام الفعالة في جوانب متعددة تتراوح من الرفاهية العامة للأغنام إلى تطبيقات الإدارة المتقدمة عبر الإنترنت. لقد بدأت التحسينات الناتجة في صحة الأغنام وبالتالي زيادة الإنتاج الزراعي في جني الفوائد لكل من المزارعين والأطباء البيطريين. لقد ساعدت النماذج التحليلية التنبؤية المدمجة مع التعلم الآلي (الذي يمنح الآلات القدرة على الفهم) في تحسين اتخاذ القرارات وتمكين المزارعين من الاستفادة القصوى من مزارعهم. يتضح ذلك في قدرة المزارعين على مراقبة صحة الماشية عن بُعد من خلال الأجهزة القابلة للارتداء التي تتعقب العلامات الحيوية وسلوك الحيوانات. بالإضافة إلى ذلك، يستخدم الأطباء البيطريون الآن تشخيصات متقدمة تعتمد على الذكاء الاصطناعي للكشف عن الطفيليات والسيطرة عليها بشكل فعال. بشكل عام، لقد حولت الرقمنة والذكاء الاصطناعي ممارسات الزراعة التقليدية في الحيوانات الماشية بشكل كامل. ومع ذلك، هناك حاجة ملحة لتحسين تربية الأغنام الرقمية، مما يسمح لمربي الأغنام بتقدير واعتماد هذه الأنظمة المبتكرة. لسد هذه الفجوة، تهدف هذه المراجعة إلى تقديم الأنظمة الرقمية والأنظمة المعتمدة على الذكاء الاصطناعي المتاحة المصممة لدعم الزراعة الدقيقة للأغنام، مما يوفر فهماً محدثاً حول هذا الموضوع. يتم حالياً استخدام تقنيات معاصرة متنوعة، مثل رعاية الأغنام من السماء، والأسوار الافتراضية، والكشف المتقدم عن الطفيليات، والعد التلقائي وتتبع السلوك، واكتشاف الشذوذ، والتغذية الدقيقة، ودعم التربية، والعديد من تطبيقات الإدارة المعتمدة على الهواتف المحمولة في مزارع الأغنام وتبدو واعدة. على الرغم من أن الذكاء الاصطناعي والتعلم الآلي قد يمثلان ميزات رئيسية في التنمية المستدامة لتربية الأغنام، إلا أنهما يقدمان العديد من التحديات في التطبيق.
1. المقدمة
عززت كفاءة الزراعة الحيوانية الدقيقة (نولاك فوت وآخرون، 2020). تم وصف مفهوم استخدام الذكاء في الحواسيب لأول مرة بواسطة آلان تورينج في عام 1950 (تورينج، 1950). تم صياغة مصطلح “الذكاء الاصطناعي” لأول مرة بواسطة جون مكارثي (أب الذكاء الاصطناعي) في عام 1956 خلال مؤتمر أكاديمي (أندرسن، 2002). إنه تكرار للذكاء البشري في الآلات مما يجعلها قادرة على أداء إجراءات معقدة وحتى التنبؤ بنتيجة (تريباتي، 2021). بالإضافة إلى ذلك، تقوم الحواسيب بأداء عمليات معرفية مثل البشر، والتي تشمل التفكير، والإدراك، والتعلم، والتفاعل (إرجن، 2019). لقد حول الذكاء الاصطناعي جميع الصناعات بشكل كامل. أصبحت أنظمة الذكاء الاصطناعي الآن قادرة على أداء التعلم الذاتي (المعروف أيضًا بتعلم الآلة) (كاول وآخرون، 2020). وقد قدمت مؤخرًا حلولًا للتحديات التحليلية التي تواجه الزراعة الحيوانية وعلوم الطب البيطري (جيهان وآخرون،
تربية الأغنام المتقدمة باستخدام الرقمنة والذكاء الاصطناعي




والتحليل والتحليل




تحديد الذكاء الاصطناعي كحل مستدام لتلبية الاحتياجات المتطورة للصناعة. في هذا السياق، فإن البحث السريع في الذكاء الاصطناعي من أجل رفاهية الأغنام ليس استثناءً. لقد أظهر البحث العالمي إمكانية دمج الذكاء الاصطناعي لتعزيز الكفاءة عبر جوانب متعددة من تربية الأغنام، بما في ذلك رفاهية الأغنام، إدارة الأمراض، مراقبة السلوك، تحسين عمليات التغذية، والإشراف البيئي (الشكل 1).
2. أنظمة رقمية ومعتمدة على الذكاء الاصطناعي مصممة لمساعدة الزراعة الدقيقة للأغنام
2.1. رعي الأغنام من منظور جوي (رعي السماء)
2.2. السياج الافتراضي (VF)
الأغنام داخل حظيرة افتراضية مدعومة أيضًا بدراسات أخرى (Kleanthous et al., 2022; Campbell et al., 2021). دراسة حديثة أجريت على الأغنام في أستراليا استخدمت نفس إشارات الصوت من جهاز طوق الرقبة. هنا تم تعديل نظام eShepherd للأبقار.
2.3. اكتشاف الأمراض وإدارة الصحة
المضادات الحيوية (كوكنبورن، 2020).
2.4. التقدم في اكتشاف الطفيليات للأطباء البيطريين
2.5. أنظمة المراقبة الآلية (التعرف والعد)
2.6. تتبع السلوك والتحليل
2.7. كشف الشذوذ
تم بناء نظام يرسل تنبيهات للمزارعين بناءً على بيانات مدخلة من الحيوانات والبيئة ويمكن أن يساعد في اكتشاف أي انحراف عن ما هو طبيعي. يمكن للمزارعين تنفيذ استراتيجيات إدارة تصحيحية بسهولة بفضل المعلومات الشاملة التي تقدمها الذكاء الاصطناعي حول حالة حيواناتهم. تجعل التطورات التكنولوجية المستمرة من الممكن إنشاء أدوات تشخيصية قادرة على تحديد الشذوذ دون التسبب في ضغط على الحيوان. وهذا يمكنهم من اكتشاف تفشي الأمراض قبل أيام من أن يصبح المزارعون على علم به (كينغ، 2017؛ غريفيث وآخرون، 2013). في المستقبل القريب، من المحتمل أن تطير الطائرات بدون طيار (UAVs) كل صباح فوق مزارع الحيوانات لتحديد الشذوذ المحتمل. تُعرف ببساطة باسم “الطائرات المسيرة”، توفر UAVs تغطية واسعة ويمكنها جمع البيانات في الوقت الحقيقي. طور جين وآخرون (2022ب، 2022أ) نموذج ذكاء اصطناعي يستخدم مقاطع الفيديو التي تلتقطها الطائرات المسيرة. تم تدريب النموذج لاكتشاف الشذوذ المحتمل. على الرغم من أنه لم يتم اختباره على مزارع الأغنام، فإن أنظمة مثل هذه لديها القدرة على أن تُستخدم في تربية الأغنام على نطاق واسع. من عيوب هذا النظام هو الاحتمالات العديدة للشذوذ المختلفة، مما يجعل من الصعب تدريب النظام على اكتشاف كل شذوذ محتمل.
2.8. التغذية الدقيقة
تقدير احتياجات المراعي لعدد محدد من الأغنام لكل هكتار (شينغ وآخرون، 2020). استخدمت دراسة مثيرة نموذج ذكاء اصطناعي للتنبؤ بمدخول الطاقة القابلة للاستخدام (MEI) باستخدام جهاز استشعار قابل للارتداء. قام الجهاز بالكشف عن وقت الرعي، والسرعة، ودرجة الحرارة، ومؤشرات أخرى. إن تقدير MEI بدقة مهم لتغذية الماشية بدقة (سوبارويتو وآخرون، 2021).
2.9. طرق تربية أفضل ودعم اتخاذ القرار
التربية أكثر عرضة لانخفاض التنوع الجيني. أدوات دعم التربية مكلفة واستخدامها معقد بالنسبة للمزارع العادي.
2.10. تطبيقات الهواتف المحمولة المصممة لتحسين تربية الأغنام
3. التحديات والفرص
تطبيقات الهواتف المحمولة المصممة لتحسين إدارة القطيع، وتسجيل البيانات، وتحسين التغذية، ودعم قرارات التزاوج.
اسم تطبيق الهاتف المحمول | مطور | وصف | رابط | ||
تطبيق الأغنام | برنامج والبر | تتيح هذه التطبيق تتبع الحيوانات الفردية ومعلومات التطعيم والتزاوج والتربية والمالية المصممة لمساعدة الزراعة على أن تكون آمنة ومربحة وأكثر إنتاجية. | https://play.google.com/store/apps/details?id=com.tech.sheepapp&hl=ar&gl=US&pli
|
||
تطبيق إدارة الأغنام | بيفاتيك المحدودة | تطبيق لإدارة المزارع لإدارة الصحة والنمو وخطة التربية مصمم لزراعة أكثر استدامة وكفاءة. | https://play.google.com/store/apps/details?id=com.bivatec.sheep_manager&hl=ar&gl=US | ||
أوفينو برو | أوفيين برو |
|
https://play.google.com/store/apps/details?id=br.com.ovinopro.ovino_pro&hl=en&gl=US | ||
فلوك ووتش بواسطة هيرد ووتش | هيردواتش | تتيح هذه التطبيق الوصول السريع إلى سجلات التزاوج، والولادة، والأدوية، والوزن، والمزيد. كما يمكن أن يساعد في مراقبة أداء النعاج مما يساعد في اتخاذ القرار بشأن تزاوجها في الموسم المقبل. | https://play.google.co
|
||
فارم ووركس من شيرويل داتا | شيرويل داتا المحدودة | يمكن لبرنامج FarmWorks تسجيل تحركات الحيوانات وإضافتها واستبدالها في المزرعة. كما يسجل العلاج الطبي لكل حيوان. | https://play.google.com/store/apps/details?
|
||
إيزي فيت | تكنولوجيا أبسكو | على الرغم من أن هذا التطبيق مخصص للأطباء البيطريين للوصول إلى قاعدة بيانات الأدوية، إلا أنه يمكن أيضًا استخدامه من قبل المزارعين للحصول على معلومات حول الأدوية الموصوفة من قبل الأطباء البيطريين. | https://play.google.com/store/apps/details?id=com.aitrich.Easyvet | ||
رئيس القطيع | تطوير في يوم واحد | هذا التطبيق مخصص لمربي الأغنام لتسجيل تفاصيل متنوعة عن قطيعهم. | https://play.google.com/store/search?q=herdboss&c=apps | ||
حاسبة خلط الأعلاف | تطبيقات H3 | يمكن للمزارعين معرفة التركيبة المثلى للعلف لـ |
|
اسم تطبيق الهاتف المحمول | مطور | وصف | رابط |
وفقًا للاحتياجات الغذائية اليومية لحيواناتهم. | |||
جيستيماتور | إيبينا أغرو المحدودة | مصمم للمزارعين لتقدير حساب مدة حمل الحيوانات. | https://play.google.co
|
سلالات الأغنام البريطانية | تيم هانا | إنه تطبيق مرجعي يحتوي على معلومات عن جميع سلالات الأغنام البريطانية ووصف مفصل لكل سلالة. | https://play.google.com/store/apps/details?id=com.british.sheep.breeds |
كتاب الأغنام | تقنيات إيدجي | تتيح هذه التطبيق للمزارعين تتبع بيانات الولادة، ومعلومات التزاوج للأمهات، وتوليد التقارير. يمكن مراقبة وتسجيل إنتاجية كل أم. يمكن إدارة مخزون السائل المنوي من خلال وظيفة خزان السائل المنوي. | https://play.google.co
|
دليل الطب البيطري | لايفكورب (شركة تصدير الماشية الأسترالية) | مصدر شامل للمزارعين والأطباء البيطريين والطلاب للحصول على معلومات مفصلة حول صحة الحيوانات الزراعية والأمراض والرفاهية. | https://play.google.com/store/apps/details?id=au.com.livecorp.vethandbook.app |
تُعتبر المناطق لأنها تم تدريبها على إنتاج نتائج في بيئة معينة. يمكن أخذ مثال من أنظمة مراقبة الصحة المعتمدة على الذكاء الاصطناعي. تعتمد هذه الأنظمة على جمع أنواع مختلفة من البيانات مثل سلوكيات التغذية، مستوى النشاط، درجة الحرارة، معدل ضربات القلب، والأهم من ذلك، الظروف البيئية. يمكن أن تؤثر الظروف البيئية المختلفة على قابلية التنبؤ لهذه الأنظمة. تشمل هذه الظروف درجة الحرارة، مستويات الرطوبة، أنماط الهطول، التغيرات الموسمية، الموقع الجغرافي، الارتفاع، وخصائص التضاريس. لذلك، فإن التكيف الواسع النطاق يمثل تحديًا. تستخدم العديد من نماذج الذكاء الاصطناعي نظام تحديد المواقع العالمي (GPS) وأجهزة استشعار أخرى، مما يتطلب اتصالاً سريعًا بالإنترنت مثل 5G. يمكن أن تؤثر العوامل البيئية مثل الطقس أو التضاريس أيضًا على هذه الأنظمة.
4. الخاتمة
بيان لجنة المراجعة المؤسسية
بيان الموافقة المستنيرة
بيان مساهمة مؤلفي CRediT
إعلان عن تضارب المصالح
شكر وتقدير
References
Alini, M., Diwan, A.D., Erwin, W.M., Little, C.B., Melrose, J., 2023. An update on animal models of intervertebral disc degeneration and low back pain: exploring the potential of artificial intelligence to improve research analysis and development of prospective therapeutics. JOR Spine. 6, e1230 https://doi.org/10.1002/jsp2.1230.
Andresen, S.L., 2002. John McCarthy: father of Al. IEEE Intell. Syst. 17, 84-85. https:// doi.org/10.1109/MIS.2002.1039837.
Antonik, I., Nedosyekov, V., Pushkar, T., 2022. Artificial Intelligence for Animal Welfare. науково-практичної конференції науково-педагогічних працівників та, p. 213 https:// doi.org/619:614:253:17.023.35004:636.003.13.
Aubron, C., Cochet, H., Brunschwig, G., Moulin, C.-H., 2009. Labor and its productivity in Andean dairy farming systems: a comparative approach. Hum. Ecol. 37, 407-419. https://doi.org/10.1007/s10745-009-9267-9.
Bao, J., Xie, Q., 2022. Artificial intelligence in animal farming: a systematic literature review. J. Clean. Prod. 331, 129956 https://doi.org/10.1016/j. jclepro.2021.129956.
Bard, A.M., Main, D., Roe, E., Haase, A., Whay, H.R., Reyher, K.K., 2019. To change or not to change? Veterinarian and farmer perceptions of relational factors influencing the enactment of veterinary advice on dairy farms in the United Kingdom. J. Dairy Sci. 102, 10379-10394. https://doi.org/10.3168/jds.2019-16364.
Barkema, H.W., Orsel, K., Nielsen, S.S., Koets, A.P., Rutten, M.G., V.P, Bannantine, J.P., Keefe, G.P., Kelton, D.F., Ritter, C., Roche, S., Corbett, C.S., Wolf, R., Griebel, P.J., Kastelic, J.P., De Buck, J., W Barkema, C.H., 2018. Knowledge Gaps that Hamper Prevention and Control of Mycobacterium avium Subspecies Paratuberculosis
Barwick, J., Lamb, D.W., Dobos, R., Welch, M., Trotter, M., 2018. Categorising sheep activity using a tri-axial accelerometer. Comput. Electron. Agric. 145, 289-297. https://doi.org/10.1016/j.compag.2018.01.007.
Basciftci, F., Gunduz, K.A., 2019. Identification of acidosis disease in cattle using IoT, in: 2019. In: 4th International Conference on Computer Science and Engineering (UBMK). IEEE, pp. 58-62. https://doi.org/10.1109/UBMK.2019.8907035.
Beausoleil, N.J., Blache, D., Stafford, K.J., Mellor, D.J., Noble, A.D.L., 2012. Selection for temperament in sheep: domain-general and context-specific traits. Appl. Anim. Behav. Sci. 139, 74-85. https://doi.org/10.1016/j.applanim.2012.02.020.
Béné, C., Barange, M., Subasinghe, R., Pinstrup-Andersen, P., Merino, G., Hemre, G.I., Williams, M., 2015. Feeding 9 billion by 2050 – putting fish back on the menu. Food Secur. 7, 261-274. https://doi.org/10.1007/S12571-015-0427-Z.
Berckmans, D., 2017. General introduction to precision livestock farming. Anim. Front. 7, 6-11. https://doi.org/10.2527/AF.2017.0102.
Bondi, E., Oh, H., Xu, H., Fang, F., Dilkina, B., Tambe, M., 2019. Using Game Theory in Real Time in the Real World: A Conservation Case Study. AAMAS, pp. 2336-2338.
Bosco, S., Volpi, I., Cappucci, A., Mantino, A., Ragaglini, G., Bonari, E., Mele, M., 2021. Innovating feeding strategies in dairy sheep farming can reduce environmental impact of ewe milk. Ital. J. Anim. Sci. 20, 2147-2164. https://doi.org/10.1080/ 1828051X.2021.2003726.
Brunberg, E.I., Bergslid, I.K., Bøe, K.E., Sørheim, K.M., 2017. The ability of ewes with lambs to learn a virtual fencing system. Animal. 11, 2045-2050. https://doi.org/ 10.1017/S1751731117000891.
Burrai, G.P., Gabrieli, A., Polinas, M., Murgia, C., Becchere, M.P., Demontis, P., Antuofermo, E., 2023. Canine mammary tumor histopathological image classification via computer-aided pathology: an available dataset for imaging analysis. Animals. 13, 1563. https://doi.org/10.3390/ani13091563.
Cabezas, J., Yubero, R., Visitación, B., Navarro-García, J., Algar, M.J., Cano, E.L., Ortega, F., 2022. Analysis of accelerometer and GPS data for cattle behaviour identification and anomalous events detection. Entropy. 24, 336. https://doi.org/ 10.3390/e24030336.
Campbell, D.L.M., Marini, D., Lea, J.M., Keshavarzi, H., Dyall, T.R., Lee, C., 2021. The application of virtual fencing technology effectively herds cattle and sheep. Anim. Prod. Sci. 61, 1393-1402. https://doi.org/10.1071/AN20525.
Caputo, E., de Alteriis, G., Conte, C., Nocerino, M., Pepe, P., Elia, S., Bosco, A., Cringoli, G., Rinaldi, L., Rufino, G., Accardo, D., 2022. Development of an Embedded System-Based Dropper Payload for Drones. In: 2022 IEEE 9th International Workshop on Metrology for AeroSpace (MetroAeroSpace). IEEE, pp. 639-643. https://doi.org/10.1109/MetroAeroSpace54187.2022.9856205.
Cheng, M., Yuan, H., Wang, Q., Cai, Z., Liu, Y., Zhang, Y., 2022. Application of deep learning in sheep behaviors recognition and influence analysis of training data characteristics on the recognition effect. Comput. Electron. Agric. 198, 107010 https://doi.org/10.1016/j.compag.2022.107010.
Cihan, P., Gokce, E., Atakisi, O., Kirmizigul, A.H., Erdogan, H.M., 2021. Yapay Zeka Yöntemleri İle Kuzularda İmmünoglobulin G Tahmini. Univ. Vet. Fak. Derg, Kafkas. https://doi.org/10.9775/kvfd.2020.24642.
Cockburn, M., 2020. Review: application and prospective discussion of machine learning for the Management of Dairy Farms. Animals. 10, 1690. https://doi.org/10.3390/ ani10091690.
Cowton, J., Kyriazakis, I., Plötz, T., Bacardit, J., 2018. A combined deep learning GRUautoencoder for the early detection of respiratory disease in pigs using multiple environmental sensors. Sensors. 18, 2521. https://doi.org/10.3390/s18082521.
Curchoe, C.L., 2023. Proceedings of the first world conference on AI in fertility. J. Assist. Reprod. Genet. 40, 215-222. https://doi.org/10.1007/S10815-022-02704-9.
Deng, X., Zhang, S., Shao, Y., Yan, X., 2022. A real-time sheep counting detection system based on machine learning. INMATEH Agricult. Eng. 67, 85-94. https://doi.org/ 10.35633/inmateh-67-08.
EFSA Panel on Animal Health and Welfare (AHAW), 2014. Scientific opinion on the welfare risks related to the farming of sheep for wool, meat and milk production. EFSA J. 12, 3933. https://doi.org/10.2903/j.efsa.2014.3933.
Ergen, M., 2019. What is artificial intelligence? Technical considerations and future perception. Anatol. J. Cardiol. 22, 5-7. https://doi.org/10.14744/ AnatolJCardiol.2019.79091.
Food and Agriculture Organisation of the United Nations, 2009. How to Feed the World in 2050: High-Level Expert Forum. FAO Rome, Italy.
Fragoso-Garcia, M., Wilm, F., Bertram, C.A., Merz, S., Schmidt, A., Donovan, T., FuchsBaumgartinger, A., Bartel, A., Marzahl, C., Diehl, L., Puget, C., Maier, A., Aubreville, M., Breininger, K., Klopfleisch, R., 2023. Automated diagnosis of 7
canine skin tumors using machine learning on H&E-stained whole slide images. Vet. Pathol. 60, 865-875. https://doi.org/10.1177/03009858231189205.
Fuentes, S., Gonzalez Viejo, C., Tongson, E., Dunshea, F.R., 2022. The livestock farming digital transformation: implementation of new and emerging technologies using artificial intelligence. Anim. Health Res. Rev. 23, 59-71. https://doi.org/10.1017/ S1466252321000177.
Ganai, N.A., 2022. Proceeding of the Indian ecological society international conference 2022. Indian J. Ecol. 53 https://doi.org/10.55362/IJE/IESIC/2022/PROC.
González-García, E., Alhamada, M., Pradel, J., Douls, S., Parisot, S., Bocquier, F., Menassol, J.B., Llach, I., González, L.A., 2018. A mobile and automated walk-overweighing system for a close and remote monitoring of liveweight in sheep. Comput. Electron. Agric. 153, 226-238. https://doi.org/10.1016/j.compag.2018.08.022.
Göröcs, Z., Baum, D., Song, F., de Haan, K., Ceylan Koydemir, H., Qiu, Y., Cai, Z., Skandakumar, T., Peterman, S., Tamamitsu, M., Ozcan, A., 2020. Label-free detection of Giardia lamblia cysts using a deep learning-enabled portable imaging flow cytometer. Lab Chip 20, 4404-4412. https://doi.org/10.1039/D0LC00708K.
Griffith, C., Heydon, G., Lamb, D., Lefort, L., Taylor, K., Trotter, M., Wark, T., 2013. Smart farming: leveraging the impact of broadband and the digital economy. Eng. Technol. https://doi.org/10.4225/08/584d9555b377c.
Hamadani, A., Ganai, N.A., 2022. Development of a multi-use decision support system for scientific management and breeding of sheep. Sci. Rep. 12, 19360. https://doi. org/10.1038/s41598-022-24091-y.
Hamadani, A., Ganai, N.A., Andrabi, S.M., Shanaz, S., Alam, S., Hussainsher-EKashmir, I., 2022. Evaluation of artificial intelligence algorithms for the prediction of genetic merit. Res. Rev. https://doi.org/10.21203/rs.3.rs-1488946/v1.
He, C., Qiao, Y., Mao, R., Li, M., Wang, M., 2023. Enhanced LiteHRNet based sheep weight estimation using RGB-D images. Comput. Electron. Agric. 206, 107667 https://doi.org/10.1016/j.compag.2023.107667.
Hu, T., Yan, R., Jiang, C., Chand, N.V., Bai, T., Guo, L., Qi, J., 2023. Grazing sheep behaviour recognition based on improved YOLOV5. Sensors. 23, 4752. https://doi. org/10.3390/s23104752.
Jachowski, D.S., Slotow, R., Millspaugh, J.J., 2014. Good virtual fences make good neighbors: opportunities for conservation. Anim. Conserv. 17, 187-196. https://doi. org/10.1111/acv.12082.
Jiménez, D., Delerce, S., Dorado, H., Cock, J., Muñoz, L.A., Agamez, A., Jarvis, A., 2019. A scalable scheme to implement data-driven agriculture for small-scale farmers. Glob. Food Sec. 23, 256-266. https://doi.org/10.1016/j.gfs.2019.08.004.
Jin, P., Mou, L., Xia, G.S., Zhu, X.X., 2022b. Anomaly detection in aerial videos with transformers. IEEE Trans. Geosci. Remote Sens. 60, 1-13.
Jin, Z., Guo, L., Shu, H., Qi, J., Li, Y., Xu, B., Zhang, W., Wang, K., Wang, W., 2022a. Behavior classification and analysis of grazing sheep on pasture with different sward Surface Heights using machine learning. Animals. 12, 1744. https://doi.org/ 10.3390/ani12141744.
Kaul, V., Enslin, S., Gross, S.A., 2020. History of artificial intelligence in medicine. Gastrointest. Endosc. 92, 807-812. https://doi.org/10.1016/j.gie.2020.06.040.
Keceli, A.S., Catal, C., Kaya, A., Tekinerdogan, B., 2020. Development of a recurrent neural networks-based calving prediction model using activity and behavioral data. Comput. Electron. Agric. 170, 105285 https://doi.org/10.1016/j. compag.2020.105285.
Keshavarzi, H., Sadeghi-Sefidmazgi, A., Mirzaei, A., Ravanifard, R., 2020. Machine learning algorithms, bull genetic information, and imbalanced datasets used in abortion incidence prediction models for Iranian Holstein dairy cattle. Prev. Vet. Med. 175, 104869 https://doi.org/10.1016/j.prevetmed.2019.104869.
King, A., 2017. Technology: the future of agriculture. Nature. 544, S21-S23.
Kleanthous, N., Hussain, A., Sneddon, J., Khan, W., Khan, B., Aung, Z., Liatsis, P., 2022. Towards a virtual fencing system: training domestic sheep using audio stimuli. Animals. 12, 2920. https://doi.org/10.3390/ani12212920.
Koydemir, H.C., Gorocs, Z., Tseng, D., Cortazar, B., Feng, S., Chan, R.Y.L., Burbano, J., McLeod, E., Ozcan, A., 2015. Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning. Lab Chip 15, 1284-1293.
Kozitsin, V., Katser, I., Lakontsev, D., 2021. Online forecasting and anomaly detection based on the ARIMA model. Appl. Sci. 11, 3194. https://doi.org/10.3390/ app11073194.
Kwon, L., Long, K.D., Wan, Y., Yu, H., Cunningham, B.T., 2016. Medical diagnostics with mobile devices: comparison of intrinsic and extrinsic sensing. Biotechnol. Adv. 34, 291-304. https://doi.org/10.1016/j.biotechadv.2016.02.010.
Lewis Baida, B.E., Swinbourne, A.M., Barwick, J., Leu, S.T., van Wettere, W.H.E.J., 2021. Technologies for the automated collection of heat stress data in sheep. Animal Biotelemetry. 9, 4. https://doi.org/10.1186/s40317-020-00225-9.
Lipschitz, F., 2019. Expanding the field: virtual fencing as responsive landscape technology. Plan J. 4 https://doi.org/10.15274/tpj.2019.04.01.12.
Marini, D., Meuleman, M., Belson, S., Rodenburg, T., Llewellyn, R., Lee, C., 2018. Developing an ethically acceptable virtual fencing system for sheep. Animals. 8, 33. https://doi.org/10.3390/ani8030033.
Mate, S., Somani, V., Dahiwale, P., 2022. Design and development of IoT-based intelligent solutions with blockchain for indian farmers on livestock management. In: Proceedings of the International Conference on Intelligent Technologies in
Mathison, B.A., Kohan, J.L., Walker, J.F., Smith, R.B., Ardon, O., Couturier, M.R., 2020. Detection of intestinal Protozoa in trichrome-stained stool specimens by use of a deep convolutional neural network. J. Clin. Microbiol. 58, 10-1128. https://doi.org/ 10.1128/JCM.02053-19.
Mishra, S., Sharma, S.K., 2023. Advanced contribution of IoT in agricultural production for the development of smart livestock environments. Internet Things. 22, 100724 https://doi.org/10.1016/j.iot.2023.100724.
Morris, S.T., 2017. Overview of sheep production systems. Adv. Sheep Welfare. 19-35 https://doi.org/10.1016/B978-0-08-100718-1.00002-9.
Morrone, S., Dimauro, C., Gambella, F., Cappai, M.G., 2022. Industry 4.0 and precision livestock farming (PLF): an up to date overview across animal productions. Sensors. 22, 4319. https://doi.org/10.3390/s22124319.
Murray, P.R., 2015. The clinician and the microbiology laboratory. In: Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. Elsevier, pp. 191-223. https://doi.org/10.1016/B978-1-4557-4801-3.00016-3.
Nagamori, Y., Hall Sedlak, R., DeRosa, A., Pullins, A., Cree, T., Loenser, M., Larson, B.S., Smith, R.B., Goldstein, R., 2020. Evaluation of the VETSCAN IMAGYST: an in-clinic canine and feline fecal parasite detection system integrated with a deep learning algorithm. Parasit. Vectors 13, 346. https://doi.org/10.1186/s13071-020-04215-x.
Neethirajan, S., 2023. The significance and ethics of digital livestock farming. AgriEngineering. 5, 488-505. https://doi.org/10.3390/agriengineering5010032.
Nolack Fote, F., Mahmoudi, S., Roukh, A., Ahmed Mahmoudi, S., 2020. Big Data Storage and Analysis for Smart Farming. In: Proceedings of 2020 5th iInternational Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications. CloudTech, p. 2020. https://doi.org/10.1109/ CLOUDTECH49835.2020.9365869.
Odintsov Vaintrub, M., Levit, H., Chincarini, M., Fusaro, I., Giammarco, M., Vignola, G., 2021. Review: precision livestock farming, automats and new technologies: possible applications in extensive dairy sheep farming. Animal. 15, 100143 https://doi.org/ 10.1016/j.animal.2020.100143.
Phythian, C.J., Michalopoulou, E., Jones, P.H., Winter, A.C., Clarkson, M.J., Stubbings, L. A., Grove-White, D., Cripps, P.J., Duncan, J.S., 2011. Validating indicators of sheep welfare through a consensus of expert opinion. Animal. 5, 943-952. https://doi.org/ 10.1017/S1751731110002594.
Sheng, H., Zhang, S., Zuo, L., Duan, G., Zhang, H., Okinda, C., Norton, T., 2020. Construction of sheep forage intake estimation models based on sound analysis. Biosyst. Eng. 192, 144-158. https://doi.org/10.1016/j.biosystemseng.2020.01.024.
Smith, K.P., Wang, H., Durant, T.J.S., Mathison, B.A., Sharp, S.E., Kirby, J.E., Long, S.W., Rhoads, D.D., 2020. Applications of artificial intelligence in clinical microbiology diagnostic testing. Clin. Microbiol. Newsl. 42, 61-70. https://doi.org/10.1016/j. clinmicnews.2020.03.006.
Song, S., Liu, T., Wang, H., Hasi, B., Yuan, C., Gao, F., Shi, H., 2022. Using pruning-based YOLOv3 deep learning algorithm for accurate detection of sheep face. Animals. 12, 1465. https://doi.org/10.3390/ani12111465.
de Souza, L.F., Costa, M.H., Riet-Correa, B., 2023. Mobile app for targeted selective treatment of haemonchosis in sheep. Vet. Parasitol. 316, 109902 https://doi.org/ 10.1016/j.vetpar.2023.109902.
Suparwito, H., Thomas, D.T., Wong, K.W., Xie, H., Rai, S., 2021. The use of animal sensor data for predicting sheep metabolisable energy intake using machine learning. Inf. Proc. Agric. 8 (4), 494-504. https://doi.org/10.1016/j.inpa.2020.12.004.
Tedeschi, L.O., Greenwood, P.L., Halachmi, I., 2021. Advancements in sensor technology and decision support intelligent tools to assist smart livestock farming. J. Anim. Sci. 99, 1-11. https://doi.org/10.1093/jas/skab038.
Terlouw, E.M.C., Arnould, C., Auperin, B., Berri, C., Le Bihan-Duval, E., Deiss, V., Lefèvre, F., Lensink, B.J., Mounier, L., 2008. Pre-slaughter conditions, animal stress and welfare: current status and possible future research. Animal. 2, 1501-1517. https://doi.org/10.1017/S1751731108002723.
Tripathi, S., 2021. Artificial Intelligence: A Brief Review. Analyzing future applications of AI, sensors, and robotics in society. https://doi.org/10.4018/978-1-7998-3499-1. CH001.
Turing, A.M., 1950. I.-computing machinery and intelligence. Mind LIX, 433-460. https://doi.org/10.1093/MIND/LIX.236.433.
Umstatter, C., 2011. The evolution of virtual fences: a review. Comput. Electron. Agric. 75, 10-22. https://doi.org/10.1016/j.compag.2010.10.005.
Van Wyk, J.A., Bath, G.F., 2002. The FAMACHA system for managing haemonchosis in sheep and goats by clinically identifying individual animals for treatment. Vet. Res. 33, 509-529. https://doi.org/10.1051/vetres:2002036.
Velde, F. Vande, Charlier, J., Claerebout, E., 2018. Farmer behavior and gastrointestinal nematodes in ruminant livestock-uptake of sustainable control approaches. Front. Vet. Sci. 5 https://doi.org/10.3389/FVETS.2018.00255/FULL.
Wang, K., Xuan, C., Wu, P., Liu, F., Fan, X., 2022. Feeding intake estimation in sheep based on ingestive chewing sounds. Comput. Electron. Agric. 194, 106698 https:// doi.org/10.1016/j.compag.2022.106698.
Wang, L., Zhang, M., Li, Y., Xia, J., Ma, R., 2021. Wearable multi-sensor enabled decision support system for environmental comfort evaluation of mutton sheep farming. Comput. Electron. Agric. 187, 106302 https://doi.org/10.1016/j. compag.2021.106302.
Xu, J., Wu, Q., Zhang, J., Tait, A., 2021. Automatic sheep behaviour analysis using mask R-CNN. In: 2021 Digital Image Computing: Techniques and Applications (DICTA), p. IEEE, pp. 01-06. https://doi.org/10.1109/DICTA52665.2021.9647101.
Zhang, X., Xuan, C., Xue, J., Chen, B., Ma, Y., 2023. LSR-YOLO: a high-precision, lightweight model for sheep face recognition on the Mobile end. Animals. 13, 1824. https://doi.org/10.3390/ani13111824.
Zhang, Y., Yu, C., Liu, H., Chen, X., Lei, Y., Pang, T., Zhang, J., 2022. An integrated goat head detection and automatic counting method based on deep learning. Animals. 12, 1810. https://doi.org/10.3390/ani12141810.
- Corresponding author.
E-mail address: varcasia@uniss.it (A. Varcasia).
DOI: https://doi.org/10.1016/j.rvsc.2024.105197
PMID: https://pubmed.ncbi.nlm.nih.gov/38395008
Publication Date: 2024-02-20
The groundbreaking impact of digitalization and artificial intelligence in sheep farming
Research in Veterinary Science
Published (in print/issue): 30/04/2024
10.1016/j.rvsc.2024.105197
Publisher’s PDF, also known as Version of record
CC BY
The copyright and moral rights to the output are retained by the output author(s), unless otherwise stated by the document licence.
Unless otherwise stated, users are permitted to download a copy of the output for personal study or non-commercial research and are permitted to freely distribute the URL of the output. They are not permitted to alter, reproduce, distribute or make any commercial use of the output without obtaining the permission of the author(s).
The Research Portal is Ulster University’s institutional repository that provides access to Ulster’s research outputs. Every effort has been made to ensure that content in the Research Portal does not infringe any person’s rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact pure-support@ulster.ac.uk
The groundbreaking impact of digitalization and artificial intelligence in sheep farming
ARTICLE INFO
Keywords:
Sheep farming
Digitalization
Precision livestock farming (PLF)
Abstract
The integration of digitalization and Artificial Intelligence (AI) has marked the onset of a new era of efficient sheep farming in multiple aspects ranging from the general well-being of sheep to advanced web-based management applications. The resultant improvement in sheep health and consequently better farming yield has already started to benefit both farmers and veterinarians. The predictive analytical models embedded with machine learning (giving sense to machines) has helped better decision-making and has enabled farmers to derive most out of their farms. This is evident in the ability of farmers to remotely monitor livestock health by wearable devices that keep track of animal vital signs and behaviour. Additionally, veterinarians now employ advanced AI-based diagnostics for efficient parasite detection and control. Overall, digitalization and AI have completely transformed traditional farming practices in livestock animals. However, there is a pressing need to optimize digital sheep farming, allowing sheep farmers to appreciate and adopt these innovative systems. To fill this gap, this review aims to provide available digital and AI-based systems designed to aid precision farming of sheep, offering an up-to-date understanding on the subject. Various contemporary techniques, such as sky shepherding, virtual fencing, advanced parasite detection, automated counting and behaviour tracking, anomaly detection, precision nutrition, breeding support, and several mobile-based management applications are currently being utilized in sheep farms and appear to be promising. Although artificial intelligence and machine learning may represent key features in the sustainable development of sheep farming, they present numerous challenges in application.
1. Introduction
strengthened the efficiency of precision livestock farming (Nolack Fote et al., 2020). The concept of using intelligence in computers was first described by Alan Turing in 1950 (Turing, 1950). The term “Artificial intelligence” was first coined by John McCarthy (father of AI) in 1956 during an academic conference (Andresen, 2002). It is the replication of human intelligence in machines making them able to perform complex actions and even predict an output (Tripathi, 2021). Additionally, the computer performs cognitive processes like humans do which includes reasoning, perceiving, learning, and interaction (Ergen, 2019). AI has completely transformed all industries. AI systems are now capable of performing self-learning (also known as machine learning) (Kaul et al., 2020). It has recently provided solutions to the analytical challenges encountered in animal farming and veterinary sciences (Cihan et al.,
Advanced sheep farming using digitalization and AI




and analysis and analysis




positioning AI as a sustainable solution to address the evolving needs of the industry. In this context, fast-paced research into AI for sheep welfare is not an exception. Global research has brought to light the potential integration of AI to enhance efficiency across multiple facets of sheep farming, encompassing sheep welfare, disease management, behavioural monitoring, optimization of feeding processes, and environmental supervision (Fig. 1).
2. Digital and AI-based systems designed to aid precision farming of sheep
2.1. Sheep herding from an aerial perspective (sky shepherding)
2.2. Virtual fencing (VF)
sheep within a virtual enclosure is also supported by other studies (Kleanthous et al., 2022; Campbell et al., 2021). A recent study conducted on sheep in Australia utilized same sound signals from a neck collar device. Here modified cattle eShepherd
2.3. Disease detection and health management
antimicrobials (Cockburn, 2020).
2.4. Advances in parasite detection for veterinarians
2.5. Automated monitoring systems (Recognition and counting)
2.6. Behaviour tracking and analysis
2.7. Anomaly detection
built that send alerts to farmers based on data inputs from animals and the environment and can assist in detecting any deviation from what is normal. Farmers can readily implement corrective management strategies because of the comprehensive information provided by AI regarding the condition of their animals. Continuous technological advancements make it possible to create diagnostic tools capable of identifying anomalies without causing stress to the animal. This enables them to detect a disease outbreak days before farmers would even become aware of it (King, 2017; Griffith et al., 2013). In the foreseeable future, it is plausible that unmanned aerial vehicles (UAVs) will take flight every morning over animal farms to identify potential anomalies. Referred to simply as “drones”, UAVs offer large-coverage and can acquire data in real-time. Jin et al. (2022b, 2022a) developed an AI model utilizing videos captured by drones. The model was trained to detect potential anomalies. Although, not tested on sheep farm, systems like this have the potential to be used in extensive sheep farming. One disadvantage of such system is the countless possibilities of different anomalies, making it challenging to train the system to detect every potential irregularity.
2.8. Precision nutrition
estimation of forage requirements of a set number of sheep per hectare (Sheng et al., 2020). An interesting study utilized an AI model to predict metabolizable energy intake (MEI) using a wearable sensor. The sensor detected grazing time, speed, temperature, and other indicators. The estimation of accurate MEI is important for precision livestock feeding (Suparwito et al., 2021).
2.9. Better breeding methods and decision support
breeding is more prone to reduced genetic diversity. Tools for breeding support are expensive and their use is complicated for a common farmer.
2.10. Mobile phone applications designed for better sheep farming
3. Challenges and opportunities
Mobile phone applications designed for better herd management, record keeping, feed optimization, and breeding decision support.
Name of mobile application | Developer | Description | Link | ||
Sheep app | Walbro software | This app allows keeping track of individual animal and their vaccination, mating, breeding, and financial information designed to help farming safe, profitable, and more productive. | https://play.google.co m/store/apps/details? id=com.tech.sheepapp &hl=en&gl=US&pli
|
||
My sheep manager Farming app | Bivatec Ltd. | A farm management app to manage the health, growth and breeding plan designed for more sustainable and efficient farming. | https://play.google. com/store/apps/deta ils?id=com.bivatec. sheep_manager&hl=e n&gl=US | ||
OvinoPro | OvinePro |
|
https://play.google. com/store/apps/detai ls?id=br.com.ovinop ro.ovino_pro&hl=en &gl=US | ||
Flockwatch by Herdwatch | Herdwatch | This app enables rapid access to breeding, lambing, medicine, weighing records and more. It can also help in monitoring the performance of ewes which then helps with the decision for their breeding in the next season. | https://play.google.co
|
||
FarmWorks by Shearwell Data | Shearwell data Ltd. | FarmWorks can record the movements, addition, and replacement of animals in the farm. It also records the medical treatment of each animal. | https://play.google.co m/store/apps/details?
|
||
Easyvet | Appscock technologies | Although this application is for veterinarians to access database for medicines. But it can also be used by farmers to gain knowledge about the medication prescribed by the veterinarians. | https://play.google. com/store/apps/det ails?id=com.aitrich. Easyvet | ||
Herdboss | In A Day Development | This application is for sheep breeders for recording various details about their flock. | https://play.google. com/store/search?q=h erdboss&c=apps | ||
Feed Mix Calculator | H3 Apps | Farmers can find out the optimal feed combination for |
|
Name of mobile application | Developer | Description | Link |
according to the daily nutrient requirements of their animals. | |||
Gestimator | Ebena Agro Ltd. | Built for farmers for the estimation of animal pregnancy term calculation. | https://play.google.co
|
British Sheep Breeds | Tim Hannah | It is a reference app containing the information of all British sheep breeds and a detailed description of each breed. | https://play.google. com/store/apps/detail s?id=com.british.shee p.breeds |
Sheep Book | EDJE Technologies | This app allow farmers to track the lambing data, breeding information of the ewes, and generate reports. Individual ewe productivity can be monitored and recorded. The semen inventory can be managed with the function of Semen Tank. | https://play.google.co
|
Veterinary handbook | LiveCorp (Australian Livestock Export Corporation) | A comprehensive resource for farmers, veterinarians, and students for detailed information on farm animal health, diseases, and welfare. | https://play.google.co m/store/apps/details? id=au.com.livecorp. vethandbook.app |
regions because it has been trained to reproduce results in a specific environment. An example can be taken from AI-based health monitoring systems. These systems rely on collecting various types of data such as feeding behaviours, activity level, temperature, heart rate, and most importantly, environmental conditions. Different environmental conditions can affect the predictability of these systems. These include temperature, humidity levels, precipitation patterns, seasonal changes, geographical location, elevation, and terrain characteristics. Therefore, widespread adaptability is a challenge. Several AI models utilize GPS and other sensors, necessitating high speed internet connectivity such as 5G. Environmental factors like weather or terrain can also affect such systems.
4. Conclusion
Institutional review board statement
Informed consent statement
CRediT authorship contribution statement
Declaration of competing interest
Acknowledgements
References
Alini, M., Diwan, A.D., Erwin, W.M., Little, C.B., Melrose, J., 2023. An update on animal models of intervertebral disc degeneration and low back pain: exploring the potential of artificial intelligence to improve research analysis and development of prospective therapeutics. JOR Spine. 6, e1230 https://doi.org/10.1002/jsp2.1230.
Andresen, S.L., 2002. John McCarthy: father of Al. IEEE Intell. Syst. 17, 84-85. https:// doi.org/10.1109/MIS.2002.1039837.
Antonik, I., Nedosyekov, V., Pushkar, T., 2022. Artificial Intelligence for Animal Welfare. науково-практичної конференції науково-педагогічних працівників та, p. 213 https:// doi.org/619:614:253:17.023.35004:636.003.13.
Aubron, C., Cochet, H., Brunschwig, G., Moulin, C.-H., 2009. Labor and its productivity in Andean dairy farming systems: a comparative approach. Hum. Ecol. 37, 407-419. https://doi.org/10.1007/s10745-009-9267-9.
Bao, J., Xie, Q., 2022. Artificial intelligence in animal farming: a systematic literature review. J. Clean. Prod. 331, 129956 https://doi.org/10.1016/j. jclepro.2021.129956.
Bard, A.M., Main, D., Roe, E., Haase, A., Whay, H.R., Reyher, K.K., 2019. To change or not to change? Veterinarian and farmer perceptions of relational factors influencing the enactment of veterinary advice on dairy farms in the United Kingdom. J. Dairy Sci. 102, 10379-10394. https://doi.org/10.3168/jds.2019-16364.
Barkema, H.W., Orsel, K., Nielsen, S.S., Koets, A.P., Rutten, M.G., V.P, Bannantine, J.P., Keefe, G.P., Kelton, D.F., Ritter, C., Roche, S., Corbett, C.S., Wolf, R., Griebel, P.J., Kastelic, J.P., De Buck, J., W Barkema, C.H., 2018. Knowledge Gaps that Hamper Prevention and Control of Mycobacterium avium Subspecies Paratuberculosis
Barwick, J., Lamb, D.W., Dobos, R., Welch, M., Trotter, M., 2018. Categorising sheep activity using a tri-axial accelerometer. Comput. Electron. Agric. 145, 289-297. https://doi.org/10.1016/j.compag.2018.01.007.
Basciftci, F., Gunduz, K.A., 2019. Identification of acidosis disease in cattle using IoT, in: 2019. In: 4th International Conference on Computer Science and Engineering (UBMK). IEEE, pp. 58-62. https://doi.org/10.1109/UBMK.2019.8907035.
Beausoleil, N.J., Blache, D., Stafford, K.J., Mellor, D.J., Noble, A.D.L., 2012. Selection for temperament in sheep: domain-general and context-specific traits. Appl. Anim. Behav. Sci. 139, 74-85. https://doi.org/10.1016/j.applanim.2012.02.020.
Béné, C., Barange, M., Subasinghe, R., Pinstrup-Andersen, P., Merino, G., Hemre, G.I., Williams, M., 2015. Feeding 9 billion by 2050 – putting fish back on the menu. Food Secur. 7, 261-274. https://doi.org/10.1007/S12571-015-0427-Z.
Berckmans, D., 2017. General introduction to precision livestock farming. Anim. Front. 7, 6-11. https://doi.org/10.2527/AF.2017.0102.
Bondi, E., Oh, H., Xu, H., Fang, F., Dilkina, B., Tambe, M., 2019. Using Game Theory in Real Time in the Real World: A Conservation Case Study. AAMAS, pp. 2336-2338.
Bosco, S., Volpi, I., Cappucci, A., Mantino, A., Ragaglini, G., Bonari, E., Mele, M., 2021. Innovating feeding strategies in dairy sheep farming can reduce environmental impact of ewe milk. Ital. J. Anim. Sci. 20, 2147-2164. https://doi.org/10.1080/ 1828051X.2021.2003726.
Brunberg, E.I., Bergslid, I.K., Bøe, K.E., Sørheim, K.M., 2017. The ability of ewes with lambs to learn a virtual fencing system. Animal. 11, 2045-2050. https://doi.org/ 10.1017/S1751731117000891.
Burrai, G.P., Gabrieli, A., Polinas, M., Murgia, C., Becchere, M.P., Demontis, P., Antuofermo, E., 2023. Canine mammary tumor histopathological image classification via computer-aided pathology: an available dataset for imaging analysis. Animals. 13, 1563. https://doi.org/10.3390/ani13091563.
Cabezas, J., Yubero, R., Visitación, B., Navarro-García, J., Algar, M.J., Cano, E.L., Ortega, F., 2022. Analysis of accelerometer and GPS data for cattle behaviour identification and anomalous events detection. Entropy. 24, 336. https://doi.org/ 10.3390/e24030336.
Campbell, D.L.M., Marini, D., Lea, J.M., Keshavarzi, H., Dyall, T.R., Lee, C., 2021. The application of virtual fencing technology effectively herds cattle and sheep. Anim. Prod. Sci. 61, 1393-1402. https://doi.org/10.1071/AN20525.
Caputo, E., de Alteriis, G., Conte, C., Nocerino, M., Pepe, P., Elia, S., Bosco, A., Cringoli, G., Rinaldi, L., Rufino, G., Accardo, D., 2022. Development of an Embedded System-Based Dropper Payload for Drones. In: 2022 IEEE 9th International Workshop on Metrology for AeroSpace (MetroAeroSpace). IEEE, pp. 639-643. https://doi.org/10.1109/MetroAeroSpace54187.2022.9856205.
Cheng, M., Yuan, H., Wang, Q., Cai, Z., Liu, Y., Zhang, Y., 2022. Application of deep learning in sheep behaviors recognition and influence analysis of training data characteristics on the recognition effect. Comput. Electron. Agric. 198, 107010 https://doi.org/10.1016/j.compag.2022.107010.
Cihan, P., Gokce, E., Atakisi, O., Kirmizigul, A.H., Erdogan, H.M., 2021. Yapay Zeka Yöntemleri İle Kuzularda İmmünoglobulin G Tahmini. Univ. Vet. Fak. Derg, Kafkas. https://doi.org/10.9775/kvfd.2020.24642.
Cockburn, M., 2020. Review: application and prospective discussion of machine learning for the Management of Dairy Farms. Animals. 10, 1690. https://doi.org/10.3390/ ani10091690.
Cowton, J., Kyriazakis, I., Plötz, T., Bacardit, J., 2018. A combined deep learning GRUautoencoder for the early detection of respiratory disease in pigs using multiple environmental sensors. Sensors. 18, 2521. https://doi.org/10.3390/s18082521.
Curchoe, C.L., 2023. Proceedings of the first world conference on AI in fertility. J. Assist. Reprod. Genet. 40, 215-222. https://doi.org/10.1007/S10815-022-02704-9.
Deng, X., Zhang, S., Shao, Y., Yan, X., 2022. A real-time sheep counting detection system based on machine learning. INMATEH Agricult. Eng. 67, 85-94. https://doi.org/ 10.35633/inmateh-67-08.
EFSA Panel on Animal Health and Welfare (AHAW), 2014. Scientific opinion on the welfare risks related to the farming of sheep for wool, meat and milk production. EFSA J. 12, 3933. https://doi.org/10.2903/j.efsa.2014.3933.
Ergen, M., 2019. What is artificial intelligence? Technical considerations and future perception. Anatol. J. Cardiol. 22, 5-7. https://doi.org/10.14744/ AnatolJCardiol.2019.79091.
Food and Agriculture Organisation of the United Nations, 2009. How to Feed the World in 2050: High-Level Expert Forum. FAO Rome, Italy.
Fragoso-Garcia, M., Wilm, F., Bertram, C.A., Merz, S., Schmidt, A., Donovan, T., FuchsBaumgartinger, A., Bartel, A., Marzahl, C., Diehl, L., Puget, C., Maier, A., Aubreville, M., Breininger, K., Klopfleisch, R., 2023. Automated diagnosis of 7
canine skin tumors using machine learning on H&E-stained whole slide images. Vet. Pathol. 60, 865-875. https://doi.org/10.1177/03009858231189205.
Fuentes, S., Gonzalez Viejo, C., Tongson, E., Dunshea, F.R., 2022. The livestock farming digital transformation: implementation of new and emerging technologies using artificial intelligence. Anim. Health Res. Rev. 23, 59-71. https://doi.org/10.1017/ S1466252321000177.
Ganai, N.A., 2022. Proceeding of the Indian ecological society international conference 2022. Indian J. Ecol. 53 https://doi.org/10.55362/IJE/IESIC/2022/PROC.
González-García, E., Alhamada, M., Pradel, J., Douls, S., Parisot, S., Bocquier, F., Menassol, J.B., Llach, I., González, L.A., 2018. A mobile and automated walk-overweighing system for a close and remote monitoring of liveweight in sheep. Comput. Electron. Agric. 153, 226-238. https://doi.org/10.1016/j.compag.2018.08.022.
Göröcs, Z., Baum, D., Song, F., de Haan, K., Ceylan Koydemir, H., Qiu, Y., Cai, Z., Skandakumar, T., Peterman, S., Tamamitsu, M., Ozcan, A., 2020. Label-free detection of Giardia lamblia cysts using a deep learning-enabled portable imaging flow cytometer. Lab Chip 20, 4404-4412. https://doi.org/10.1039/D0LC00708K.
Griffith, C., Heydon, G., Lamb, D., Lefort, L., Taylor, K., Trotter, M., Wark, T., 2013. Smart farming: leveraging the impact of broadband and the digital economy. Eng. Technol. https://doi.org/10.4225/08/584d9555b377c.
Hamadani, A., Ganai, N.A., 2022. Development of a multi-use decision support system for scientific management and breeding of sheep. Sci. Rep. 12, 19360. https://doi. org/10.1038/s41598-022-24091-y.
Hamadani, A., Ganai, N.A., Andrabi, S.M., Shanaz, S., Alam, S., Hussainsher-EKashmir, I., 2022. Evaluation of artificial intelligence algorithms for the prediction of genetic merit. Res. Rev. https://doi.org/10.21203/rs.3.rs-1488946/v1.
He, C., Qiao, Y., Mao, R., Li, M., Wang, M., 2023. Enhanced LiteHRNet based sheep weight estimation using RGB-D images. Comput. Electron. Agric. 206, 107667 https://doi.org/10.1016/j.compag.2023.107667.
Hu, T., Yan, R., Jiang, C., Chand, N.V., Bai, T., Guo, L., Qi, J., 2023. Grazing sheep behaviour recognition based on improved YOLOV5. Sensors. 23, 4752. https://doi. org/10.3390/s23104752.
Jachowski, D.S., Slotow, R., Millspaugh, J.J., 2014. Good virtual fences make good neighbors: opportunities for conservation. Anim. Conserv. 17, 187-196. https://doi. org/10.1111/acv.12082.
Jiménez, D., Delerce, S., Dorado, H., Cock, J., Muñoz, L.A., Agamez, A., Jarvis, A., 2019. A scalable scheme to implement data-driven agriculture for small-scale farmers. Glob. Food Sec. 23, 256-266. https://doi.org/10.1016/j.gfs.2019.08.004.
Jin, P., Mou, L., Xia, G.S., Zhu, X.X., 2022b. Anomaly detection in aerial videos with transformers. IEEE Trans. Geosci. Remote Sens. 60, 1-13.
Jin, Z., Guo, L., Shu, H., Qi, J., Li, Y., Xu, B., Zhang, W., Wang, K., Wang, W., 2022a. Behavior classification and analysis of grazing sheep on pasture with different sward Surface Heights using machine learning. Animals. 12, 1744. https://doi.org/ 10.3390/ani12141744.
Kaul, V., Enslin, S., Gross, S.A., 2020. History of artificial intelligence in medicine. Gastrointest. Endosc. 92, 807-812. https://doi.org/10.1016/j.gie.2020.06.040.
Keceli, A.S., Catal, C., Kaya, A., Tekinerdogan, B., 2020. Development of a recurrent neural networks-based calving prediction model using activity and behavioral data. Comput. Electron. Agric. 170, 105285 https://doi.org/10.1016/j. compag.2020.105285.
Keshavarzi, H., Sadeghi-Sefidmazgi, A., Mirzaei, A., Ravanifard, R., 2020. Machine learning algorithms, bull genetic information, and imbalanced datasets used in abortion incidence prediction models for Iranian Holstein dairy cattle. Prev. Vet. Med. 175, 104869 https://doi.org/10.1016/j.prevetmed.2019.104869.
King, A., 2017. Technology: the future of agriculture. Nature. 544, S21-S23.
Kleanthous, N., Hussain, A., Sneddon, J., Khan, W., Khan, B., Aung, Z., Liatsis, P., 2022. Towards a virtual fencing system: training domestic sheep using audio stimuli. Animals. 12, 2920. https://doi.org/10.3390/ani12212920.
Koydemir, H.C., Gorocs, Z., Tseng, D., Cortazar, B., Feng, S., Chan, R.Y.L., Burbano, J., McLeod, E., Ozcan, A., 2015. Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning. Lab Chip 15, 1284-1293.
Kozitsin, V., Katser, I., Lakontsev, D., 2021. Online forecasting and anomaly detection based on the ARIMA model. Appl. Sci. 11, 3194. https://doi.org/10.3390/ app11073194.
Kwon, L., Long, K.D., Wan, Y., Yu, H., Cunningham, B.T., 2016. Medical diagnostics with mobile devices: comparison of intrinsic and extrinsic sensing. Biotechnol. Adv. 34, 291-304. https://doi.org/10.1016/j.biotechadv.2016.02.010.
Lewis Baida, B.E., Swinbourne, A.M., Barwick, J., Leu, S.T., van Wettere, W.H.E.J., 2021. Technologies for the automated collection of heat stress data in sheep. Animal Biotelemetry. 9, 4. https://doi.org/10.1186/s40317-020-00225-9.
Lipschitz, F., 2019. Expanding the field: virtual fencing as responsive landscape technology. Plan J. 4 https://doi.org/10.15274/tpj.2019.04.01.12.
Marini, D., Meuleman, M., Belson, S., Rodenburg, T., Llewellyn, R., Lee, C., 2018. Developing an ethically acceptable virtual fencing system for sheep. Animals. 8, 33. https://doi.org/10.3390/ani8030033.
Mate, S., Somani, V., Dahiwale, P., 2022. Design and development of IoT-based intelligent solutions with blockchain for indian farmers on livestock management. In: Proceedings of the International Conference on Intelligent Technologies in
Mathison, B.A., Kohan, J.L., Walker, J.F., Smith, R.B., Ardon, O., Couturier, M.R., 2020. Detection of intestinal Protozoa in trichrome-stained stool specimens by use of a deep convolutional neural network. J. Clin. Microbiol. 58, 10-1128. https://doi.org/ 10.1128/JCM.02053-19.
Mishra, S., Sharma, S.K., 2023. Advanced contribution of IoT in agricultural production for the development of smart livestock environments. Internet Things. 22, 100724 https://doi.org/10.1016/j.iot.2023.100724.
Morris, S.T., 2017. Overview of sheep production systems. Adv. Sheep Welfare. 19-35 https://doi.org/10.1016/B978-0-08-100718-1.00002-9.
Morrone, S., Dimauro, C., Gambella, F., Cappai, M.G., 2022. Industry 4.0 and precision livestock farming (PLF): an up to date overview across animal productions. Sensors. 22, 4319. https://doi.org/10.3390/s22124319.
Murray, P.R., 2015. The clinician and the microbiology laboratory. In: Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. Elsevier, pp. 191-223. https://doi.org/10.1016/B978-1-4557-4801-3.00016-3.
Nagamori, Y., Hall Sedlak, R., DeRosa, A., Pullins, A., Cree, T., Loenser, M., Larson, B.S., Smith, R.B., Goldstein, R., 2020. Evaluation of the VETSCAN IMAGYST: an in-clinic canine and feline fecal parasite detection system integrated with a deep learning algorithm. Parasit. Vectors 13, 346. https://doi.org/10.1186/s13071-020-04215-x.
Neethirajan, S., 2023. The significance and ethics of digital livestock farming. AgriEngineering. 5, 488-505. https://doi.org/10.3390/agriengineering5010032.
Nolack Fote, F., Mahmoudi, S., Roukh, A., Ahmed Mahmoudi, S., 2020. Big Data Storage and Analysis for Smart Farming. In: Proceedings of 2020 5th iInternational Conference on Cloud Computing and Artificial Intelligence: Technologies and Applications. CloudTech, p. 2020. https://doi.org/10.1109/ CLOUDTECH49835.2020.9365869.
Odintsov Vaintrub, M., Levit, H., Chincarini, M., Fusaro, I., Giammarco, M., Vignola, G., 2021. Review: precision livestock farming, automats and new technologies: possible applications in extensive dairy sheep farming. Animal. 15, 100143 https://doi.org/ 10.1016/j.animal.2020.100143.
Phythian, C.J., Michalopoulou, E., Jones, P.H., Winter, A.C., Clarkson, M.J., Stubbings, L. A., Grove-White, D., Cripps, P.J., Duncan, J.S., 2011. Validating indicators of sheep welfare through a consensus of expert opinion. Animal. 5, 943-952. https://doi.org/ 10.1017/S1751731110002594.
Sheng, H., Zhang, S., Zuo, L., Duan, G., Zhang, H., Okinda, C., Norton, T., 2020. Construction of sheep forage intake estimation models based on sound analysis. Biosyst. Eng. 192, 144-158. https://doi.org/10.1016/j.biosystemseng.2020.01.024.
Smith, K.P., Wang, H., Durant, T.J.S., Mathison, B.A., Sharp, S.E., Kirby, J.E., Long, S.W., Rhoads, D.D., 2020. Applications of artificial intelligence in clinical microbiology diagnostic testing. Clin. Microbiol. Newsl. 42, 61-70. https://doi.org/10.1016/j. clinmicnews.2020.03.006.
Song, S., Liu, T., Wang, H., Hasi, B., Yuan, C., Gao, F., Shi, H., 2022. Using pruning-based YOLOv3 deep learning algorithm for accurate detection of sheep face. Animals. 12, 1465. https://doi.org/10.3390/ani12111465.
de Souza, L.F., Costa, M.H., Riet-Correa, B., 2023. Mobile app for targeted selective treatment of haemonchosis in sheep. Vet. Parasitol. 316, 109902 https://doi.org/ 10.1016/j.vetpar.2023.109902.
Suparwito, H., Thomas, D.T., Wong, K.W., Xie, H., Rai, S., 2021. The use of animal sensor data for predicting sheep metabolisable energy intake using machine learning. Inf. Proc. Agric. 8 (4), 494-504. https://doi.org/10.1016/j.inpa.2020.12.004.
Tedeschi, L.O., Greenwood, P.L., Halachmi, I., 2021. Advancements in sensor technology and decision support intelligent tools to assist smart livestock farming. J. Anim. Sci. 99, 1-11. https://doi.org/10.1093/jas/skab038.
Terlouw, E.M.C., Arnould, C., Auperin, B., Berri, C., Le Bihan-Duval, E., Deiss, V., Lefèvre, F., Lensink, B.J., Mounier, L., 2008. Pre-slaughter conditions, animal stress and welfare: current status and possible future research. Animal. 2, 1501-1517. https://doi.org/10.1017/S1751731108002723.
Tripathi, S., 2021. Artificial Intelligence: A Brief Review. Analyzing future applications of AI, sensors, and robotics in society. https://doi.org/10.4018/978-1-7998-3499-1. CH001.
Turing, A.M., 1950. I.-computing machinery and intelligence. Mind LIX, 433-460. https://doi.org/10.1093/MIND/LIX.236.433.
Umstatter, C., 2011. The evolution of virtual fences: a review. Comput. Electron. Agric. 75, 10-22. https://doi.org/10.1016/j.compag.2010.10.005.
Van Wyk, J.A., Bath, G.F., 2002. The FAMACHA system for managing haemonchosis in sheep and goats by clinically identifying individual animals for treatment. Vet. Res. 33, 509-529. https://doi.org/10.1051/vetres:2002036.
Velde, F. Vande, Charlier, J., Claerebout, E., 2018. Farmer behavior and gastrointestinal nematodes in ruminant livestock-uptake of sustainable control approaches. Front. Vet. Sci. 5 https://doi.org/10.3389/FVETS.2018.00255/FULL.
Wang, K., Xuan, C., Wu, P., Liu, F., Fan, X., 2022. Feeding intake estimation in sheep based on ingestive chewing sounds. Comput. Electron. Agric. 194, 106698 https:// doi.org/10.1016/j.compag.2022.106698.
Wang, L., Zhang, M., Li, Y., Xia, J., Ma, R., 2021. Wearable multi-sensor enabled decision support system for environmental comfort evaluation of mutton sheep farming. Comput. Electron. Agric. 187, 106302 https://doi.org/10.1016/j. compag.2021.106302.
Xu, J., Wu, Q., Zhang, J., Tait, A., 2021. Automatic sheep behaviour analysis using mask R-CNN. In: 2021 Digital Image Computing: Techniques and Applications (DICTA), p. IEEE, pp. 01-06. https://doi.org/10.1109/DICTA52665.2021.9647101.
Zhang, X., Xuan, C., Xue, J., Chen, B., Ma, Y., 2023. LSR-YOLO: a high-precision, lightweight model for sheep face recognition on the Mobile end. Animals. 13, 1824. https://doi.org/10.3390/ani13111824.
Zhang, Y., Yu, C., Liu, H., Chen, X., Lei, Y., Pang, T., Zhang, J., 2022. An integrated goat head detection and automatic counting method based on deep learning. Animals. 12, 1810. https://doi.org/10.3390/ani12141810.
- Corresponding author.
E-mail address: varcasia@uniss.it (A. Varcasia).