DOI: https://doi.org/10.1111/caim.12580
تاريخ النشر: 2024-01-09
مقالة بحثية
الإبداع والذكاء الاصطناعي: منظور متعدد المستويات
المراسلة
معلومات التمويل
الملخص
من المحتمل أن يحدث الذكاء الاصطناعي ثورة في جوانب متعددة من الإبداع التنظيمي. من خلال عدسة نظرية متعددة المستويات، تستعرض هذه الورقة الجسم المعرفي القائم حول الإبداع على المستويات الفردية، والفريق، والتنظيم، وتستخلص مجموعة من الاقتراحات حول كيفية تأثير تنفيذ الذكاء الاصطناعي على كل مستوى. تغطي اقتراحاتنا المجالات المعرفية والسلوكية والنفسية، وتهدف إلى توجيه جهود البحث المستقبلية نحو مجالات الإبداع المهمة التي من المحتمل أن تتأثر بالذكاء الاصطناعي، بما في ذلك التوازن بين التفكير التوافقي والتفكير التبايني، وتوزيع المهارات داخل المجموعات، والقدرة الاستيعابية للمنظمات.
الكلمات المفتاحية
1 | المقدمة
2 | الأسس متعددة المستويات للإبداع التنظيمي
2.1 | المستوى الفردي
تم إظهار أن المحفزات الخارجية التآزرية تعزز الإبداع (أمالي، 1993؛ فيشر وآخرون، 2019). بدلاً من توليد دافع خارجي نحو الإنجازات الإبداعية، تؤكد المحفزات الخارجية التآزرية الدافع الشخصي للفرد، من خلال تقديم الدعم والتأكيد. ومن الأمثلة على ذلك العروض العامة للتقدير أو المكافآت الرمزية. من خلال تعزيز إحساس الفرد بتحديد الذات بدلاً من تقويضه، تكون المحفزات الخارجية التآزرية مفيدة بشكل خاص عندما يكون الدافع الداخلي مرتفعًا بالفعل. بالإضافة إلى الدافع، تم اقتراح أن إدراك الفرد لمعنى عمله الخاص (روسو وآخرون، 2010)، والعاطفة (أمالي وآخرون، 2005؛ بينويز وورنلاين، 2011) وكفاءة الذات (باندورا، 1997) تعزز الإبداع بشكل تآزري وديناميكي بينما يحرز الفرد تقدمًا نحو الإنجازات الإبداعية أو يفشل بشكل بناء (أمالي وبرات، 2016).
2.2 | مستوى المجموعة
يمتلك القائد، وقد يؤثر أسلوب القيادة على ابتكار المجموعة، حيث أن القيادة التحويلية والمشاركة تكون أكثر ملاءمة لتوليد الأفكار (Mumford et al., 2002). علاوة على ذلك، فإن روابط قائد المجموعة مع أفراد ومجموعات أخرى داخل وخارج المنظمة تعزز من احتمالية نجاح مخرجات المجموعة (Elkins & Keller, 2003)، مما قد يحفز بدوره إبداع المجموعة (Mainemelis et al., 2015). بغض النظر عن الهيكل الهرمي، فإن المناخ التعاوني والمحترم بين أعضاء المجموعة يعزز السلوك الإبداعي من خلال تأثيره الإيجابي على الدافع الداخلي ومعالجة المعلومات العلائقية (Carmeli et al., 2015; Zhu et al., 2018)، بينما يرتبط المناخ التنافسي إيجابياً بالدافع الخارجي (Zhu et al., 2018). أخيراً، يجب النظر في التقنيات وأنماط التفاعل لتوليد الحلول الإبداعية على مستوى المجموعة. لقد أظهرت تقنية العصف الذهني اللفظي، وهي التقنية الأكثر شهرة، أنها تؤدي إلى نتائج مخيبة للآمال، والتي تميل إلى التدهور مع زيادة حجم المجموعة (Mullen et al., 1991). وذلك لأنها تجبر أعضاء المجموعة على إدارة توازن بين الحديث والاستماع، مما يعرضهم لخطر نسيان أفكارهم الخاصة أو اعتبارها غير ذات صلة بعد سماع الآخرين (Paulus & Kenworthy, 2019). ومع ذلك، من المثير للاهتمام أن نلاحظ أن فعالية العصف الذهني تتحسن بشكل كبير عندما يحدث إلكترونياً (DeRosa et al., 2007; Siau, 1995). بالإضافة إلى التقنية المستخدمة، فإن إطار التفاعل أيضاً ذو صلة. على سبيل المثال، قد يستند أعضاء المجموعة إلى عملية الإبداع الجماعي على مبدأ الاختيار الانتقائي للتنوع العشوائي (Simonton, 1999)، حيث يتم اقتراح الأفكار وربما الاحتفاظ بها فقط بعد التقييم، أو من خلال عملية جدلية من التركيب الإبداعي (Harvey, 2014)، مما يعني التوفيق بين الأفكار المتباينة كمسار إضافي نحو الجدة.
2.3 | المستوى التنظيمي
الكتل الأساسية ذات الصلة بالإبداع. ثانياً، يبرز الديناميات المعتمدة على المسار حيث قد تكون المنظمات المتجذرة في مخزونات المعرفة الخاصة بالمجال غير قادرة على التعرف على قيمة المعرفة من نوع مختلف، مما يؤثر على مسار تعلم موظفيها وبالتالي على نوع الإبداع الذي سيقومون به. بالإضافة إلى المعرفة، تم الاعتراف بأن الموارد الأكثر ملموسة مثل البنية التحتية والمعدات والوسائل المالية تعزز الإبداع، بشكل رئيسي من خلال تحرير القيود المادية وكشف إمكانيات جديدة للبحث وإعادة التركيب (Amabile, 1988; Ford, 1996; Woodman et al., 1993).
(Newman et al., 2017). من المحتمل أن تشجع المعايير التي تعطي الأولوية للموثوقية على حساب الجدة الجهود الإبداعية، كما تفعل ممارسة معاقبة المحاولات غير الناجحة، من خلال التأثير على معتقدات تقبل الموظفين (Ford, 1996).
3 | الآثار متعددة المستويات للذكاء الاصطناعي
النشاط الريادي في المستقبل القريب (أوبشونكا وأودريتش، 2020؛ تاونسيند وهنت، 2019)، بسبب قوته التوليدية وآثاره الواسعة في مجالات أساسية مثل الاقتصاد (أسيموغلو وريستريبو، 2019)، والابتكار (أغيون وآخرون، 2018)، وعلم النفس (كوسينسكي وآخرون، 2016).
3.1 | المستوى الفردي
المعلومات الجيدة، فضلاً عن سرعة الحصول عليها، تعتبر إلى حد كبير بديلاً للبحث البشري الذي كان لا غنى عنه سابقًا والمستند إلى تراكم المعرفة على مدى الحياة. في هذا السياق، بعد “كار”…
الاقتراح 1. في مجال الإبداع الفردي، ستزيد الذكاء الاصطناعي من أهمية التفكير المتباين مقارنة بالتفكير المتقارب في عملية الإبداع.
3.2 | مستوى المجموعة
على المنصات، قد يُعتبر الذكاء الاصطناعي عضوًا إضافيًا في المجموعة، مع مجموعة من الخصائص التي تغير قواعد اللعبة.
وجود مستوى عالٍ من التفكير المتباين، من المحتمل أن يزيد ذلك من إمكانية حدوث صراع ويجعل التركيب الإبداعي أكثر صعوبة، مما يؤدي في النهاية إلى إبطاء العملية الإبداعية. نتوقع أن يكون هذا العيب أكثر وضوحًا كلما كانت العملية الإبداعية أقل تنظيمًا: إن وجود عملية إبداعية سلسة مع مراحل واضحة ومعايير متفق عليها للتفاعل مع الذكاء الاصطناعي ورفض/تقديم الأفكار قد يقلل من نطاق الصراع ويسهل تركيب الأفكار المتباينة. ذات صلة، من المحتمل أن يصبح المناخ الإيجابي والآليات الفعالة للتواصل أكثر أهمية (كارميلي وآخرون، 2015؛ زو وآخرون، 2018). وبالتالي، نقترح:
الاقتراح 2أ. ستستفيد التكاملية بين الذكاء الاصطناعي والإبداع البشري في سياق المجموعة من مستوى معين من التنوع في خبرة الذكاء الاصطناعي لأعضاء المجموعة.
الاقتراح 2ب. مع الذكاء الاصطناعي، ستزداد القيمة النسبية للتفكير المتباين البشري للإبداع الجماعي في كل من العمليات الإبداعية الخطية وغير المنتظمة. ومع ذلك، فإن العمليات الإبداعية الخطية لها فائدة إضافية تتمثل في تبسيط التفاعل (المعقد المحتمل) بين الإنسان والآلة وتقليل نطاق الصراع.
3.3 | المستوى التنظيمي
بيانات خام، مما يتطلب وجود موظفين متخصصين في الذكاء الاصطناعي للعمل كمترجمين لتحويل هذه البيانات إلى معلومات يمكن نشرها لبقية المنظمة.
عملية الإبداع بين الإنسان والذكاء الاصطناعي، بدلاً من المكونات العامة للكفاءة التشغيلية أو التخصيص الشامل. في الوقت نفسه، فإن الروابط الضعيفة بين ‘النواة الذكية’ وبقية الموظفين تتيح تدفقًا سريعًا للمعلومات المحدثة (مثل اتجاهات المستهلكين)، مما يحفز الإبداع في جميع أنحاء المنظمة.
الاقتراح 3أ. يمكن أن يعمل الذكاء الاصطناعي كـ ‘مستقبل’ قوي وغريب للمنظمة، مع قدرة عالية على الاستيعاب الخارجي. إلى جانب مستقبلات الذكاء الاصطناعي، هناك حاجة إلى موظفين متخصصين في الذكاء الاصطناعي يعملون كـ ‘مترجمين’ للحفاظ على القدرة الاستيعابية الداخلية.
4 | جدول أعمال البحث المستقبلي
وبناءً عليه، هناك حاجة إلى بحث حول دور وهيمنة التوجيهات من الأعلى إلى الأسفل مقابل التغذية الراجعة من الأسفل إلى الأعلى في هذه العملية الثنائية الاتجاه، بالإضافة إلى ديناميات التفاعل بين الفرد والمجموعة والمستويات التنظيمية في التأثير على تدريب الذكاء الاصطناعي.
المواصفات القابلة للتفسير من قبل الذكاء الاصطناعي والعكس صحيح. لهذا الغرض، كما هو الحال في اللغات التعبيرية، من المحتمل أن تعود فوائد زيادة عدد ‘المترجمين’ داخل المجموعة بعوائد هامشية متناقصة، إلى الحد الذي يكفي فيه فرد واحد غالبًا. وبالتالي، نقترح أن يكون وجود خبير واحد (أو عدد قليل جدًا) قوي في التعلم الآلي لكل مجموعة كافيًا ليكون حلقة وصل بين الذكاء الاصطناعي وبقية المجموعة. ومع ذلك، قد يكون من المفيد أن يمتلك كل عضو في المجموعة مستوى أساسي من الخبرة في الذكاء الاصطناعي، لسببين مترابطين. أولاً، الوصول إلى حد أدنى من الخبرة يسهل الفهم والتواصل بين أعضاء المجموعة، خاصة مع خبير الذكاء الاصطناعي. إن وجود منطقة معينة من القواسم المشتركة في قاعدة المعرفة أمر ضروري لضمان انتقال المعرفة بسلاسة (سزولانسكي، 1996). ثانيًا، قد يقلل التمكن من نفس مجال المعرفة من المسافة المعرفية ويعزز التأثير الإيجابي، أيضًا بسبب مبدأ الجاذبية المشابهة (تسوي وأوريلي، 1989؛ ويليامز وأوريلي، 1998). ومن ثم، بينما يتمتع وجود ‘مترجم’ واحد أو عدد قليل بفائدة الكفاءة (أي تعظيم تباين المعرفة مع فقدان ضئيل في جودة الترجمة)، قد تعزز توزيعًا أكثر تساويًا لخبرة الذكاء الاصطناعي المحركات المعرفية والعاطفية للمساعي الإبداعية (مثل انتقال المعرفة، المسافة المعرفية والتأثير الإيجابي). بينما جادلنا سابقًا بأن التطرفين ربما يكونان غير مثاليين (أي أن درجة معينة من التباين في خبرة الذكاء الاصطناعي من المحتمل أن تكون مفيدة)، هناك حاجة إلى تحقيقات تجريبية مخصصة لفهم المزيد بدقة حول مقدار التباين المطلوب وكيف ينبغي توزيع خبرة الذكاء الاصطناعي داخل المجموعات.
هل هو فعال، أم أنه (جزئيًا أو كليًا) زائد عن الحاجة (إن لم يكن مضادًا للإنتاجية، نظرًا لردود الفعل السلبية على التنوع)؟ ما هي أنواع أنماط القيادة الأكثر فاعلية في جعل الترتيبات المختلفة المذكورة لقدرة الامتصاص المدفوعة بالذكاء الاصطناعي فعالة؟ هذه بعض من الأسئلة التي يمكن أن تتناولها الأعمال النظرية والتجريبية المستقبلية.
5 | ملاحظات ختامية
المنظمات، سواء بشكل فردي أو جماعي. ومع ذلك، لم تقم المجتمع الأكاديمي بعد بتحليل الآثار الناتجة، والأجندة البحثية التي نقدمها هنا تهدف إلى تكملة الأجندات الأخرى التي تم اقتراحها مؤخرًا حول موضوع الذكاء الاصطناعي والابتكار (مثل بوشيري وآخرون، 2023؛ مارياني وآخرون، 2023). على وجه الخصوص، من خلال الورقة الحالية، نقدم مجموعة من الاقتراحات حول تأثير الذكاء الاصطناعي على الإبداع على المستويات الفردية والجماعية والتنظيمية. مستندين إلى الأبحاث متعددة المستويات الموجودة حول الإبداع التنظيمي، قمنا بتحليل خصائص الذكاء الاصطناعي فيما يتعلق بالدوافع المعرفية والنفسية والسلوكية للإبداع، بالإضافة إلى المفاهيم التنظيمية الرئيسية المتعلقة بالإبداع مثل القدرة الاستيعابية. بينما لا يُقصد من الاقتراحات الناتجة أن تكون شاملة، إلا أنها تشكل خريطة طريق أولية مفيدة لتوجيه جهود البحث المستقبلية. من الواضح أن جميعها تتطلب اختبارًا تجريبيًا واسعًا، مع مزيج من منهجيات البحث الكمية والنوعية. من خلال هذا العمل، نأمل أن نكون قد قدمنا لهم دوافع واتجاهات للاستفسار.
شكر وتقدير
بيان توافر البيانات
أوركيد
ماتيا بيدوتا (د)https://orcid.org/0000-0002-3749-5313
الملاحظات الختامية
REFERENCES
Acemoglu, D., & Restrepo, P. (2019). Automation and new tasks: How technology displaces and reinstates labor. Journal of Economic Perspectives, 33(2), 3-30. https://doi.org/10.1257/jep.33.2.3
Aghion, P., Jones, B. F., & Jones, C. I. (2018). Artificial intelligence and economic growth. In The economics of artificial intelligence: An agenda (pp. 237-282). University of Chicago Press.
Alekseeva, L., Azar, J., Gine, M., Samila, S., & Taska, B. (2021). The demand for Al skills in the labor market. Labour Economics, 71(8), 102002. https://doi.org/10.1016/j.labeco.2021.102002
Amabile, T. M. (1983). The social psychology of creativity: A componential conceptualization. Journal of Personality and Social Psychology, 45(2), 357-376. https://doi.org/10.1037/0022-3514.45.2.357
Amabile, T. M. (1988). A model of creativity and innovation in organizations. Research in Organizational Behavior, 10(1), 123-167.
Amabile, T. M. (1993). Motivational synergy: Toward new conceptualizations of intrinsic and extrinsic motivation in the workplace. Human Resource Management Review, 3(3), 185-201. https://doi.org/10. 1016/1053-4822(93)90012-S
Amabile, T. M. (2020). Creativity, artificial intelligence, and a world of surprises. Academy of Management Discoveries, 6(3), 351-354.
Amabile, T. M., Barsade, S. G., Mueller, J. S., & Staw, B. M. (2005). Affect and creativity at work. Administrative Science Quarterly, 50(3), 367403. https://doi.org/10.2189/asqu.2005.50.3.367
Amabile, T. M., Schatzel, E. A., Moneta, G. B., & Kramer, S. J. (2004). Leader behaviors and the work environment for creativity: Perceived leader support. The Leadership Quarterly, 15(1), 5-32. https://doi.org/ 10.1016/j.leaqua.2003.12.003
Anderson, N., Potočnik, K., & Zhou, J. (2014). Innovation and creativity in organizations: A state-of-the-science review, prospective commentary, and guiding framework. Journal of Management, 40(5), 1297-1333. https://doi.org/10.1177/0149206314527128
Bandura, A. (1997). Self-efficacy: The exercise of control. Freeman Lawrence.
Barron, F., & Harrington, D. M. (1981). Creativity, intelligence, and personality. Annual Review of Psychology, 32(1), 439-476. https://doi.org/10. 1146/annurev.ps.32.020181.002255
Becker, G. S., & Murphy, K. M. (1992). The division of labor, coordination costs, and knowledge. The Quarterly Journal of Economics, 107(4), 1137-1160. https://doi.org/10.2307/2118383
Binnewies, C., & Wörnlein, S. C. (2011). What makes a creative day? A diary study on the interplay between affect, job stressors, and job control. Journal of Organizational Behavior, 32(4), 589-607. https://doi. org/10.1002/job. 731
Bonnardel, N., & Marmèche, E. (2004). Evocation processes by novice and expert designers: Towards stimulating analogical thinking. Creativity and Innovation Management, 13(3), 176-186. https://doi.org/10.1111/ j.0963-1690.2004.00307.x
Brennan, A., & Dooley, L. (2005). Networked creativity: A structured management framework for stimulating innovation. Technovation, 25(12), 1388-1399. https://doi.org/10.1016/j.technovation.2004.08.001
Bronkhorst, J., Schaveling, J., & Janssen, M. (2019). Commoditization and IT product innovation strategies from an IT firm perspective. Information Systems Management, 36(2), 126-140. https://doi.org/10.1080/ 10580530.2019.1587575
Carmeli, A., Dutton, J. E., & Hardin, A. E. (2015). Respect as an engine for new ideas: Linking respectful engagement, relational information processing and creativity among employees and teams. Human Relations, 68(6), 1021-1047. https://doi.org/10.1177/0018726714550256
Carr, N. G. (2003). IT doesn’t matter. Harvard Business Review, 81(5), 41-49.
Carr, N. G. (2004). Does IT matter? Harvard Business School Publishing.
Chamakiotis, P., Dekoninck, E. A., & Panteli, N. (2013). Factors influencing creativity in virtual design teams: An interplay between technology, teams and individuals. Creativity and Innovation Management, 22(3), 265-279. https://doi.org/10.1111/caim. 12039
Chambers, J. A. (1964). Relating personality and biographical factors to scientific creativity. Psychological Monographs: General and Applied, 78(7), 1-20. https://doi.org/10.1037/h0093862
Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, 35(1), 128-152. https://doi.org/10.2307/2393553
Collins, C., Dennehy, D., Conboy, K., & Mikalef, P. (2021). Artificial intelligence in information systems research: A systematic literature review and research agenda. International Journal of Information Management, 60, 102383. https://doi.org/10.1016/j.ijinfomgt.2021.102383
Corrado, G. (2015). Computer, respond to this email. Google AI Blog. 3/11/2015
Cropley, A. (2006). In praise of convergent thinking. Creativity Research Journal, 18(3), 391-404. https://doi.org/10.1207/s15326934crj1803_13
Dahl, D. W., & Moreau, P. (2002). The influence and value of analogical thinking during new product ideation. Journal of Marketing Research, 39(1), 47-60. https://doi.org/10.1509/jmkr.39.1.47.18930
DeRosa, D. M., Smith, C. L., & Hantula, D. A. (2007). The medium matters: Mining the long-promised merit of group interaction in creative idea generation tasks in a meta-analysis of the electronic group brainstorming literature. Computers in Human Behavior, 23(3), 1549-1581. https://doi.org/10.1016/j.chb.2005.07.003
Dewett, T. (2003). Understanding the relationship between information technology and creativity in organizations. Creativity Research Journal, 15(2-3), 167-182. https://doi.org/10.1207/S15326934CRJ152&3_08
Dornis, T. W. (2020). Artificial creativity: Emergent works and the void in current copyright doctrine. Yale Journal of Law & Technology, XXII, 1.
Edmondson, A. (1999). Psychological safety and learning behavior in work teams. Administrative Science Quarterly, 44(2), 350-383. https://doi. org/10.2307/2666999
Edmondson, A. C. (2018). The fearless organization: Creating psychological safety in the workplace for learning, innovation, and growth. John Wiley & Sons.
Eisenberger, R., & Aselage, J. (2009). Incremental effects of reward on experienced performance pressure: Positive outcomes for intrinsic interest and creativity. Journal of Organizational Behavior: the International Journal of Industrial, Occupational and Organizational Psychology and Behavior, 30(1), 95-117. https://doi.org/10.1002/job. 543
Elkins, T., & Keller, R. T. (2003). Leadership in research and development organizations: A literature review and conceptual framework. The Leadership Quarterly, 14(4-5), 587-606. https://doi.org/10.1016/ S1048-9843(03)00053-5
Fairbank, J. F., & Williams, S. D. (2001). Motivating creativity and enhancing innovation through employee suggestion system technology. Creativity and Innovation Management, 10(2), 68-74. https://doi.org/10. 1111/1467-8691.00204
Ferràs-Hernández, X. (2018). The future of management in a world of electronic brains. Journal of Management Inquiry, 27(2), 260-263. https:// doi.org/10.1177/1056492617724973
Fischer, C., Malycha, C. P., & Schafmann, E. (2019). The influence of intrinsic motivation and synergistic extrinsic motivators on creativity and innovation. Frontiers in Psychology, 10, 137. https://doi.org/10.3389/ fpsyg.2019.00137
Ford, C. M. (1996). A theory of individual creative action in multiple social domains. Academy of Management Review, 21(4), 1112-1142. https:// doi.org/10.2307/259166
Fu, Z., Niu, X., & Maher, M. L. (2023). Deep learning models for serendipity recommendations: A survey and new perspectives. ACM Computing Surveys, 56(1), 19. (august 2023), 26 pages
Gavetti, G., & Levinthal, D. (2000). Looking forward and looking backward: Cognitive and experiential search. Administrative Science Quarterly, 45(1), 113-137. https://doi.org/10.2307/2666981
Glăveanu, V. P. (2020). A sociocultural theory of creativity: Bridging the social, the material, and the psychological. Review of General Psychology, 24(4), 335-354. https://doi.org/10.1177/1089268020961763
Goodfellow, I., Bengio, Y., & Courville, A. (2018). Deep learning book. MIT Press.
Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology, 78(6), 1360-1380. https://doi.org/10.1086/225469
Guilford, J. P. (1984). Varieties of divergent production. The Journal of Creative Behavior, 18(1), 1-10. https://doi.org/10.1002/j.2162-6057. 1984.tb00984.x
Kanter, R. M. (1983). The change masters: Innovation for productivity in the American corporation. Simon and Schuster.
Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15-25. https://doi.org/ 10.1016/j.bushor.2018.08.004
Kennedy, I. G., Whitehead, D., & Ferdinand-James, D. (2022). Serendipity: A way of stimulating researchers’ creativity. Journal of Creativity, 32(1), 100014. https://doi.org/10.1016/j.yjoc.2021.100014
Köbis, N., & Mossink, L. D. (2021). Artificial intelligence versus Maya Angelou: Experimental evidence that people cannot differentiate AIgenerated from human-written poetry. Computers in Human Behavior, 114, 106553. https://doi.org/10.1016/j.chb.2020.106553
Kosinski, M., Wang, Y., Lakkaraju, H., & Leskovec, J. (2016). Mining big data to extract patterns and predict real-life outcomes. Psychological Methods, 21(4), 493-506. https://doi.org/10.1037/met0000105
Lee, Y. N., Walsh, J. P., & Wang, J. (2015). Creativity in scientific teams: Unpacking novelty and impact. Research Policy, 44(3), 684-697. https://doi.org/10.1016/j.respol.2014.10.007
Lenat, D. B. (1982). The nature of heuristics. Artificial Intelligence, 19(2), 189-249. https://doi.org/10.1016/0004-3702(82)90036-4
Litchfield, R. C. (2008). Brainstorming reconsidered: A goal-based view. Academy of Management Review, 33(3), 649-668. https://doi.org/10. 5465/amr.2008.32465708
Mainemelis, C., Kark, R., & Epitropaki, O. (2015). Creative leadership: A multi-context conceptualization. Academy of Management Annals, 9(1), 393-482. https://doi.org/10.5465/19416520.2015.1024502
Mariani, M. M., Machado, I., Magrelli, V., & Dwivedi, Y. K. (2023). Artificial intelligence in innovation research: A systematic review, conceptual framework, and future research directions. Technovation, 122(4), 102623. https://doi.org/10.1016/j.technovation.2022.102623
McLean, L. D. (2005). Organizational culture’s influence on creativity and innovation: A review of the literature and implications for human resource development. Advances in Developing Human Resources, 7(2), 226-246. https://doi.org/10.1177/1523422305274528
Mikalef, P., & Gupta, M. (2021). Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Information & Management, 58(3), 103434. https://doi.org/10.1016/j.im.2021.103434
Mullen, B., Johnson, C., & Salas, E. (1991). Productivity loss in brainstorming groups: A meta-analytic integration. Basic and Applied Social Psychology, 12(1), 3-23. https://doi.org/10.1207/s15324834basp1201_1
Mumford, M. D., Connelly, S., & Gaddis, B. (2003). How creative leaders think: Experimental findings and cases. The Leadership Quarterly, 14(45), 411-432. https://doi.org/10.1016/S1048-9843(03)00045-6
Neirotti, P., & Paolucci, E. (2007). Assessing the strategic value of information technology: An analysis on the insurance sector. Information & Management, 44(6), 568-582. https://doi.org/10.1016/j.im.2007. 05.005
Ng, A. (2017). Artificial intelligence is the new electricity. In Presentation at the Stanford MSx Future Forum.
Obschonka, M., & Audretsch, D. B. (2020). Artificial intelligence and big data in entrepreneurship: A new era has begun. Small Business Economics, 55(3), 529-539. https://doi.org/10.1007/s11187-019-00202-4
Oldham, G. R., & Cummings, A. (1996). Employee creativity: Personal and contextual factors at work. Academy of Management Journal, 39(3), 607-634. https://doi.org/10.2307/256657
Paesano, A. (2021). Artificial intelligence and creative activities inside organizational behavior. International Journal of Organizational Analysis, 31(5), 1694-1723.
Paulus, P., & Kenworthy, J. (2019). Effective brainstorming. In P. Paulus & B. A. Nijstad (Eds.), Handbook of group creativity: Innovation through collaboration (pp. 287-306). Oxford University Press.
Pedota, M., & Piscitello, L. (2022). A new perspective on technology-driven creativity enhancement in the fourth industrial revolution. Creativity and Innovation Management, 31(1), 109-122. https://doi.org/10.1111/ caim. 12468
Pietronudo, M. C., Croidieu, G., & Schiavone, F. (2022). A solution looking for problems? A systematic literature review of the rationalizing influence of artificial intelligence on decision-making in innovation management. Technological Forecasting and Social Change, 182, 121828. https://doi.org/10.1016/j.techfore.2022.121828
Rai, A., Constantinides, P., & Sarker, S. (2019). Next generation digital platforms: Toward human-AI hybrids. MIS Quarterly, 43(1), iii-ix.
Rosso, B. D., Dekas, K. H., & Wrzesniewski, A. (2010). On the meaning of work: A theoretical integration and review. Research in Organizational Behavior, 30, 91-127. https://doi.org/10.1016/j.riob.2010.09.001
Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24(1), 92-96. https://doi.org/10.1080/ 10400419.2012.650092
Sherry, Y., & Thompson, N. C. (2021). How fast do algorithms improve? [point of view]. Proceedings of the IEEE, 109(11), 1768-1777.
Shin, S. J., Kim, T. Y., Lee, J. Y., & Bian, L. (2012). Cognitive team diversity and individual team member creativity: A cross-level interaction. Academy of Management Journal, 55(1), 197-212. https://doi.org/10.5465/ amj.2010.0270
Shneiderman, B. (2002). Creativity support tools. Communications of the ACM, 45(10), 116-120. https://doi.org/10.1145/570907.570945
Shneiderman, B. (2007). Creativity support tools: Accelerating discovery and innovation. Communications of the ACM, 50(12), 20-32. https:// doi.org/10.1145/1323688.1323689
Simon, H. A. (1991). Bounded rationality and organizational learning. Organization Science, 2(1), 125-134. https://doi.org/10.1287/orsc.2.1.125
Simonton, D. K. (1999). Origins of genius: Darwinian perspectives on creativity. Oxford University Press.
Singh, B. (1986). Role of personality versus biographical factors in creativity. Psychological Studies, 31, 90-92.
Sturm, T., Gerlach, J. P., Pumplun, L., Mesbah, N., Peters, F., Tauchert, C., Nan, N., & Buxmann, P. (2021). Coordinating human and machine learning for effective organizational learning. MIS Quarterly, 45(3), 1581-1602. https://doi.org/10.25300/MISQ/2021/16543
Szulanski, G. (1996). Exploring internal stickiness: Impediments to the transfer of best practice within the firm. Strategic Management Journal, 17(S2), 27-43. https://doi.org/10.1002/smj. 4250171105
Tan, S. Y., & Tatsumura, Y. (2015). Alexander Fleming (1881-1955): Discoverer of penicillin. Singapore Medical Journal, 56(7), 366-367. https://doi.org/10.11622/smedj. 2015105
Tanggaard, L., Laursen, D. N., & Szulevicz, T. (2016). The grip on the handball – A qualitative analysis of the influence of materiality on creativity in sport. Qualitative Research in Sport, Exercise and Health, 8(1), 79-94. https://doi.org/10.1080/2159676X.2015.1012546
Taylor, A., & Greve, H. R. (2006). Superman or the fantastic four? Knowledge combination and experience in innovative teams. Academy of Management Journal, 49(4), 723-740. https://doi.org/10.5465/amj. 2006.22083029
Tesluk, P. E., Farr, J. L., & Klein, S. R. (1997). Influences of organizational culture and climate on individual creativity. The Journal of Creative Behavior, 31(1), 27-41. https://doi.org/10.1002/j.2162-6057.1997. tb00779.x
Todorova, G., & Durisin, B. (2007). Absorptive capacity: Valuing a reconceptualization. Academy of Management Review, 32(3), 774-786. https://doi.org/10.5465/amr.2007.25275513
Townsend, D. M., & Hunt, R. A. (2019). Entrepreneurial action, creativity, & judgment in the age of artificial intelligence. Journal of Business Venturing Insights, 11, e00126. https://doi.org/10.1016/j.jbvi.2019.e00126
Truong, Y., & Papagiannidis, S. (2022). Artificial intelligence as an enabler for innovation: A review and future research agenda. Technological Forecasting and Social Change, 183, 121852. https://doi.org/10.1016/ j.techfore.2022.121852
Tubadji, A., Huang, H., & Webber, D. J. (2021). Cultural proximity bias in Al-acceptability: The importance of being human. Technological Forecasting and Social Change, 173, 121100. https://doi.org/10.1016/j. techfore.2021.121100
Van Knippenberg, D., & Schippers, M. C. (2007). Work group diversity. Annual Review of Psychology, 58, 515-541. https://doi.org/10.1146/ annurev.psych.58.110405.085546
Vessey, W. B., & Mumford, M. D. (2012). Heuristics as a basis for assessing creative potential: Measures, methods, and contingencies. Creativity Research Journal, 24(1), 41-54. https://doi.org/10.1080/10400419. 2012.652928
Williams, K., & O’Reilly, C. (1998). Demography and diversity in organizations: A review of forty years of research. In R. I. Sutton & B. M. Staw (Eds.), Research in organizational behavior (pp. 77-140). JAI Press.
Zhang, X., & Bartol, K. M. (2010). Linking empowering leadership and employee creativity: The influence of psychological empowerment, intrinsic motivation, and creative process engagement. Academy of Management Journal, 53(1), 107-128. https://doi.org/10.5465/amj. 2010.48037118
Zhu, Y. Q., Gardner, D. G., & Chen, H. G. (2018). Relationships between work team climate, individual motivation, and creativity. Journal of Management, 44(5), 2094-2115. https://doi.org/10.1177/ 0149206316638161
Zylinska, J. (2023). Art in the age of artificial intelligence. Science, 381(6654), 139-140. https://doi.org/10.1126/science.adh0575
السير الذاتية للمؤلفين
اقتصاديات ريادة الأعمال المبتكرة واقتصاديات الشبكات والصناعات الرقمية. في هذه المواضيع، شارك في العديد من المشاريع العلمية (التي روجت لها مؤسسات خاصة وعامة)، ونشر مقالات في عدة مجلات علمية دولية وعمل كمحرر لقضايا خاصة من المجلات وكتاب.
الإبداع والذكاء الاصطناعي: منظور متعدد المستويات.
إدارة الإبداع والابتكار، 1-14.https://doi.org/
10.1111/caim. 12580
- هذه مقالة مفتوحة الوصول بموجب شروط ترخيص المشاع الإبداعي، الذي يسمح بالاستخدام والتوزيع وإعادة الإنتاج في أي وسيلة، شريطة أن يتم الاستشهاد بالعمل الأصلي بشكل صحيح.
© 2024 المؤلفون. إدارة الإبداع والابتكار نشرت بواسطة جون وايلي وأولاده المحدودة.
DOI: https://doi.org/10.1111/caim.12580
Publication Date: 2024-01-09
RESEARCHARTICLE
Creativity and artificial intelligence: A multilevel perspective
Correspondence
Funding information
Abstract
Artificial intelligence is likely to revolutionize multiple aspects of organizational creativity. Through a multilevel theoretical lens, the present paper reviews the extant body of knowledge on creativity at individual, team and organizational levels, and draws a series of propositions on how the implementation of artificial intelligence may affect each level. Spanning cognitive, behavioural and psychological domains, our propositions aim at directing future research efforts on important creativityrelated areas likely to be affected by artificial intelligence, including the trade-off between convergent and divergent thinking, the distribution of skills within groups, and the absorptive capacity of organizations.
KEYWORDS
1 | INTRODUCTION
2 | THE MULTILEVEL FOUNDATIONS OF ORGANIZATIONAL CREATIVITY
2.1 | The individual level
shown, to augment creativity (Amabile, 1993; Fischer et al., 2019). Rather than generating an exogenous drive toward creative accomplishments, synergistic external motivators corroborate the personal drive of the individual, by providing support and confirmation. Examples are public displays of appreciation or symbolic rewards. By consolidating one’s sense of self-determination rather than undermining it, synergistic external motivators are particularly beneficial when intrinsic motivation is already high. In addition to motivation, individual perception of meaningfulness of one’s own work (Rosso et al., 2010), affect (Amabile et al., 2005; Binnewies & Wörnlein, 2011) and self-efficacy (Bandura, 1997) have been suggested to enhance creativity synergically and dynamically as the individual makes progress toward creative accomplishments or fails constructively (Amabile & Pratt, 2016).
2.2 | The group level
has a leader, the leadership style may affect the group’s innovativeness, with transformational and participative leadership being more conducive to idea generation (Mumford et al., 2002). Moreover, the group leader’s ties with other individuals and groups within and outside the organization improves the likelihood of success of the group’s output (Elkins & Keller, 2003), which may in turn stimulate the creativity of the group (Mainemelis et al., 2015). Independently of the hierarchical structure, a collaborative and respectful climate among group members enhances creative behaviour through its positive effect on intrinsic motivation and relational information processing (Carmeli et al., 2015; Zhu et al., 2018), while a competitive climate relates positively to extrinsic motivation (Zhu et al., 2018). Finally, one should consider techniques and modes of interaction for group-level generation of creative solutions. Verbal brainstorming, the most iconic technique, has been shown to yield disappointing results, which tend to worsen as group size increases (Mullen et al., 1991). This is because it forces group members to manage a trade-off between talking and listening, incurring the risk of forgetting their own ideas or deeming them irrelevant after hearing others (Paulus & Kenworthy, 2019). It is however interesting to note that the effectiveness of brainstorming improves significantly when it happens electronically (DeRosa et al., 2007; Siau, 1995). Besides the technique used, the framing of the interaction is also relevant. For example, group members may ground the collective creative process on a random variation-selective retention principle (Simonton, 1999), whereby ideas are proposed and possibly retained only after evaluation, or through a dialectic process of creative synthesis (Harvey, 2014), implying the reconciliation of diverging ideas as a further route to novelty.
2.3 | The organizational level
relevant building blocks for creativity. Second, it highlights pathdependent dynamics whereby organizations rooted in domain-specific stocks of knowledge may be unable to recognize the value of knowledge of a different kind, with implications on the learning pathway of their employees and consequently on the type of creativity they will enact. Besides knowledge, more tangible resources like infrastructure, equipment and financial means have been acknowledged to foster creativity, mainly by releasing material constraints and revealing new search and recombination possibilities (Amabile, 1988; Ford, 1996; Woodman et al., 1993).
(Newman et al., 2017). Norms prioritizing reliability over novelty are likely to discourage creative efforts, as does the practice of penalizing unsuccessful attempts, by acting on employees’ receptivity beliefs (Ford, 1996).
3 | THE MULTILEVEL IMPLICATIONS OF AI
of entrepreneurial activity in the near future (Obschonka & Audretsch, 2020; Townsend & Hunt, 2019), due to its generative power and far-reaching implications in foundational fields like economics (Acemoglu & Restrepo, 2019), innovation (Aghion et al., 2018), and psychology (Kosinski et al., 2016).
3.1 | The individual level
quality information, as well as the speed of obtaining it, is largely a substitute for the previously indispensable human research informed by a lifetime of knowledge accumulation. In this vein, following Carr’s
Proposition 1. In the realm of individual creativity, Al will increase the relevance of divergent thinking relative to convergent thinking in the creative process.
3.2 | The group level
platforms, AI may well be regarded as an added group member, with a series of game-changing characteristics.
presence of a high level of divergent thinking, this is likely to augment the potential for conflict and make creative synthesis more difficult, ultimately slowing down the creative process. We expect this drawback to be more prominent the less structured the creative process is: having a streamlined creative process with clear-cut phases and agreed upon criteria for interacting with the AI and rejecting/ advancing ideas may reduce the scope for conflict and facilitate the synthesis of diverging ideas. Relatedly, a positive climate and effective mechanisms for communication are likely to become even more important (Carmeli et al., 2015; Zhu et al., 2018). Thus, we posit:
Proposition 2a. The complementarity between Al and human creativity in a group context will benefit from a certain level of heterogeneity in the AI expertise of the group members.
Proposition 2b. With Al , the relative value of human divergent thinking for group creativity will increase in both linear and erratic creative processes. However, linear creative processes have the added benefit of streamlining the (potentially complex) human-machine interaction and reducing the scope for conflict.
3.3 | The organizational level
raw data, necessitating Al -specialized personnel to act as translators turning such data into information to be diffused to the rest of the organization.
human-AI creative process, rather than generic ingredients for operational efficiency or mass customization. Concurrently, weak ties between the ‘AI core’ and the other employees enable a quick flow of up-to-date information (e.g. on consumer trends), stimulating creativity in the whole organization.
Proposition 3a. Al can function as a powerful and peculiar ‘receptor’ of the organization, with a high potential for outward-looking absorptive capacity. Alongside AI receptors, AI-specialized employees acting as ‘translators’ are needed to preserve inward-looking absorptive capacity.
4 | AGENDA FOR FUTURE RESEARCH
accordingly. Research is needed on the role and predominance of topdown directives versus bottom-up feedbacks in this bidirectional process, as well as on the dynamics of interaction between the individual, the group and the organizational levels in affecting AI training.
specifications interpretable by the Al and vice versa. To this end, as in the case of expressive languages, the benefits of increasing the number of ‘translators’ within the group are likely to incur diminishing marginal returns, to the point that one individual is often enough. Thus, we suggest that one (or very few) strong expert(s) in machine learning per group could be sufficient to act as a joining link between the Al and the rest of the group. However, a basic level of Al expertise may be beneficial on the part of every group member, for two interrelated reasons. First, reaching a minimum threshold of expertise facilitates comprehension and communication among group members, especially with the AI expert(s). A certain area of commonality in the knowledge base is essential to ensure smooth knowledge transfer (Szulanski, 1996). Second, being well-versed in the same knowledge domain may reduce cognitive distance and promote positive affect, also due to the similarity-attraction principle (Tsui & O’Reilly, 1989; Williams & O’Reilly, 1998). Hence, while having one or few ‘translator’ has the benefit of efficiency (i.e. maximizing knowledge heterogeneity with only a minimal loss in the quality of the translation), a more equal distribution of Al expertise may enhance the cognitive and emotional drivers of creative endeavours (e.g. knowledge transfer, cognitive distance and positive effect). While we have previously argued that the extremes are probably suboptimal (i.e. a certain degree of heterogeneity in Al expertise is likely to be beneficial), dedicated empirical inquiries are needed to understand more precisely how much heterogeneity is needed and how AI expertise should be distributed within groups.
effective, is it (partially or completely) superfluous (if not counterproductive, given its backlash on heterogeneity)? What types of leadership styles are most instrumental in making the aforementioned different arrangements of AI-driven absorptive capacity effective? These are only some of the questions that future theoretical and empirical works could address.
5 | CONCLUDING REMARKS
organizations, both individually and collectively. However, the scholarly community has yet to unpack the resulting effects, and the research agenda we provide here is meant to complement the others that have been recently proposed on the topic of AI and innovation (e.g. Bouschery et al., 2023; Mariani et al., 2023). In particular, with the present paper, we provide a set of propositions on the impact of AI on creativity at individual, group and organizational levels. Informed by extant multilevel research on organizational creativity, we have analysed the characteristics of AI in relation to the cognitive, psychological and behavioural drivers of creativity, as well as key creativityrelated organizational constructs like absorptive capacity. While the resulting propositions are not meant to be exhaustive, they constitute a useful initial roadmap to channel future research efforts. Clearly, all of them require extensive empirical testing, with a mixture of quantitative and qualitative research methodologies. With the present work, we hope to have given them motivations and directions of inquiry.
ACKNOWLEDGEMENTS
DATA AVAILABILITY STATEMENT
ORCID
Mattia Pedota (D) https://orcid.org/0000-0002-3749-5313
ENDNOTES
REFERENCES
Acemoglu, D., & Restrepo, P. (2019). Automation and new tasks: How technology displaces and reinstates labor. Journal of Economic Perspectives, 33(2), 3-30. https://doi.org/10.1257/jep.33.2.3
Aghion, P., Jones, B. F., & Jones, C. I. (2018). Artificial intelligence and economic growth. In The economics of artificial intelligence: An agenda (pp. 237-282). University of Chicago Press.
Alekseeva, L., Azar, J., Gine, M., Samila, S., & Taska, B. (2021). The demand for Al skills in the labor market. Labour Economics, 71(8), 102002. https://doi.org/10.1016/j.labeco.2021.102002
Amabile, T. M. (1983). The social psychology of creativity: A componential conceptualization. Journal of Personality and Social Psychology, 45(2), 357-376. https://doi.org/10.1037/0022-3514.45.2.357
Amabile, T. M. (1988). A model of creativity and innovation in organizations. Research in Organizational Behavior, 10(1), 123-167.
Amabile, T. M. (1993). Motivational synergy: Toward new conceptualizations of intrinsic and extrinsic motivation in the workplace. Human Resource Management Review, 3(3), 185-201. https://doi.org/10. 1016/1053-4822(93)90012-S
Amabile, T. M. (2020). Creativity, artificial intelligence, and a world of surprises. Academy of Management Discoveries, 6(3), 351-354.
Amabile, T. M., Barsade, S. G., Mueller, J. S., & Staw, B. M. (2005). Affect and creativity at work. Administrative Science Quarterly, 50(3), 367403. https://doi.org/10.2189/asqu.2005.50.3.367
Amabile, T. M., Schatzel, E. A., Moneta, G. B., & Kramer, S. J. (2004). Leader behaviors and the work environment for creativity: Perceived leader support. The Leadership Quarterly, 15(1), 5-32. https://doi.org/ 10.1016/j.leaqua.2003.12.003
Anderson, N., Potočnik, K., & Zhou, J. (2014). Innovation and creativity in organizations: A state-of-the-science review, prospective commentary, and guiding framework. Journal of Management, 40(5), 1297-1333. https://doi.org/10.1177/0149206314527128
Bandura, A. (1997). Self-efficacy: The exercise of control. Freeman Lawrence.
Barron, F., & Harrington, D. M. (1981). Creativity, intelligence, and personality. Annual Review of Psychology, 32(1), 439-476. https://doi.org/10. 1146/annurev.ps.32.020181.002255
Becker, G. S., & Murphy, K. M. (1992). The division of labor, coordination costs, and knowledge. The Quarterly Journal of Economics, 107(4), 1137-1160. https://doi.org/10.2307/2118383
Binnewies, C., & Wörnlein, S. C. (2011). What makes a creative day? A diary study on the interplay between affect, job stressors, and job control. Journal of Organizational Behavior, 32(4), 589-607. https://doi. org/10.1002/job. 731
Bonnardel, N., & Marmèche, E. (2004). Evocation processes by novice and expert designers: Towards stimulating analogical thinking. Creativity and Innovation Management, 13(3), 176-186. https://doi.org/10.1111/ j.0963-1690.2004.00307.x
Brennan, A., & Dooley, L. (2005). Networked creativity: A structured management framework for stimulating innovation. Technovation, 25(12), 1388-1399. https://doi.org/10.1016/j.technovation.2004.08.001
Bronkhorst, J., Schaveling, J., & Janssen, M. (2019). Commoditization and IT product innovation strategies from an IT firm perspective. Information Systems Management, 36(2), 126-140. https://doi.org/10.1080/ 10580530.2019.1587575
Carmeli, A., Dutton, J. E., & Hardin, A. E. (2015). Respect as an engine for new ideas: Linking respectful engagement, relational information processing and creativity among employees and teams. Human Relations, 68(6), 1021-1047. https://doi.org/10.1177/0018726714550256
Carr, N. G. (2003). IT doesn’t matter. Harvard Business Review, 81(5), 41-49.
Carr, N. G. (2004). Does IT matter? Harvard Business School Publishing.
Chamakiotis, P., Dekoninck, E. A., & Panteli, N. (2013). Factors influencing creativity in virtual design teams: An interplay between technology, teams and individuals. Creativity and Innovation Management, 22(3), 265-279. https://doi.org/10.1111/caim. 12039
Chambers, J. A. (1964). Relating personality and biographical factors to scientific creativity. Psychological Monographs: General and Applied, 78(7), 1-20. https://doi.org/10.1037/h0093862
Cohen, W. M., & Levinthal, D. A. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, 35(1), 128-152. https://doi.org/10.2307/2393553
Collins, C., Dennehy, D., Conboy, K., & Mikalef, P. (2021). Artificial intelligence in information systems research: A systematic literature review and research agenda. International Journal of Information Management, 60, 102383. https://doi.org/10.1016/j.ijinfomgt.2021.102383
Corrado, G. (2015). Computer, respond to this email. Google AI Blog. 3/11/2015
Cropley, A. (2006). In praise of convergent thinking. Creativity Research Journal, 18(3), 391-404. https://doi.org/10.1207/s15326934crj1803_13
Dahl, D. W., & Moreau, P. (2002). The influence and value of analogical thinking during new product ideation. Journal of Marketing Research, 39(1), 47-60. https://doi.org/10.1509/jmkr.39.1.47.18930
DeRosa, D. M., Smith, C. L., & Hantula, D. A. (2007). The medium matters: Mining the long-promised merit of group interaction in creative idea generation tasks in a meta-analysis of the electronic group brainstorming literature. Computers in Human Behavior, 23(3), 1549-1581. https://doi.org/10.1016/j.chb.2005.07.003
Dewett, T. (2003). Understanding the relationship between information technology and creativity in organizations. Creativity Research Journal, 15(2-3), 167-182. https://doi.org/10.1207/S15326934CRJ152&3_08
Dornis, T. W. (2020). Artificial creativity: Emergent works and the void in current copyright doctrine. Yale Journal of Law & Technology, XXII, 1.
Edmondson, A. (1999). Psychological safety and learning behavior in work teams. Administrative Science Quarterly, 44(2), 350-383. https://doi. org/10.2307/2666999
Edmondson, A. C. (2018). The fearless organization: Creating psychological safety in the workplace for learning, innovation, and growth. John Wiley & Sons.
Eisenberger, R., & Aselage, J. (2009). Incremental effects of reward on experienced performance pressure: Positive outcomes for intrinsic interest and creativity. Journal of Organizational Behavior: the International Journal of Industrial, Occupational and Organizational Psychology and Behavior, 30(1), 95-117. https://doi.org/10.1002/job. 543
Elkins, T., & Keller, R. T. (2003). Leadership in research and development organizations: A literature review and conceptual framework. The Leadership Quarterly, 14(4-5), 587-606. https://doi.org/10.1016/ S1048-9843(03)00053-5
Fairbank, J. F., & Williams, S. D. (2001). Motivating creativity and enhancing innovation through employee suggestion system technology. Creativity and Innovation Management, 10(2), 68-74. https://doi.org/10. 1111/1467-8691.00204
Ferràs-Hernández, X. (2018). The future of management in a world of electronic brains. Journal of Management Inquiry, 27(2), 260-263. https:// doi.org/10.1177/1056492617724973
Fischer, C., Malycha, C. P., & Schafmann, E. (2019). The influence of intrinsic motivation and synergistic extrinsic motivators on creativity and innovation. Frontiers in Psychology, 10, 137. https://doi.org/10.3389/ fpsyg.2019.00137
Ford, C. M. (1996). A theory of individual creative action in multiple social domains. Academy of Management Review, 21(4), 1112-1142. https:// doi.org/10.2307/259166
Fu, Z., Niu, X., & Maher, M. L. (2023). Deep learning models for serendipity recommendations: A survey and new perspectives. ACM Computing Surveys, 56(1), 19. (august 2023), 26 pages
Gavetti, G., & Levinthal, D. (2000). Looking forward and looking backward: Cognitive and experiential search. Administrative Science Quarterly, 45(1), 113-137. https://doi.org/10.2307/2666981
Glăveanu, V. P. (2020). A sociocultural theory of creativity: Bridging the social, the material, and the psychological. Review of General Psychology, 24(4), 335-354. https://doi.org/10.1177/1089268020961763
Goodfellow, I., Bengio, Y., & Courville, A. (2018). Deep learning book. MIT Press.
Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology, 78(6), 1360-1380. https://doi.org/10.1086/225469
Guilford, J. P. (1984). Varieties of divergent production. The Journal of Creative Behavior, 18(1), 1-10. https://doi.org/10.1002/j.2162-6057. 1984.tb00984.x
Kanter, R. M. (1983). The change masters: Innovation for productivity in the American corporation. Simon and Schuster.
Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15-25. https://doi.org/ 10.1016/j.bushor.2018.08.004
Kennedy, I. G., Whitehead, D., & Ferdinand-James, D. (2022). Serendipity: A way of stimulating researchers’ creativity. Journal of Creativity, 32(1), 100014. https://doi.org/10.1016/j.yjoc.2021.100014
Köbis, N., & Mossink, L. D. (2021). Artificial intelligence versus Maya Angelou: Experimental evidence that people cannot differentiate AIgenerated from human-written poetry. Computers in Human Behavior, 114, 106553. https://doi.org/10.1016/j.chb.2020.106553
Kosinski, M., Wang, Y., Lakkaraju, H., & Leskovec, J. (2016). Mining big data to extract patterns and predict real-life outcomes. Psychological Methods, 21(4), 493-506. https://doi.org/10.1037/met0000105
Lee, Y. N., Walsh, J. P., & Wang, J. (2015). Creativity in scientific teams: Unpacking novelty and impact. Research Policy, 44(3), 684-697. https://doi.org/10.1016/j.respol.2014.10.007
Lenat, D. B. (1982). The nature of heuristics. Artificial Intelligence, 19(2), 189-249. https://doi.org/10.1016/0004-3702(82)90036-4
Litchfield, R. C. (2008). Brainstorming reconsidered: A goal-based view. Academy of Management Review, 33(3), 649-668. https://doi.org/10. 5465/amr.2008.32465708
Mainemelis, C., Kark, R., & Epitropaki, O. (2015). Creative leadership: A multi-context conceptualization. Academy of Management Annals, 9(1), 393-482. https://doi.org/10.5465/19416520.2015.1024502
Mariani, M. M., Machado, I., Magrelli, V., & Dwivedi, Y. K. (2023). Artificial intelligence in innovation research: A systematic review, conceptual framework, and future research directions. Technovation, 122(4), 102623. https://doi.org/10.1016/j.technovation.2022.102623
McLean, L. D. (2005). Organizational culture’s influence on creativity and innovation: A review of the literature and implications for human resource development. Advances in Developing Human Resources, 7(2), 226-246. https://doi.org/10.1177/1523422305274528
Mikalef, P., & Gupta, M. (2021). Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Information & Management, 58(3), 103434. https://doi.org/10.1016/j.im.2021.103434
Mullen, B., Johnson, C., & Salas, E. (1991). Productivity loss in brainstorming groups: A meta-analytic integration. Basic and Applied Social Psychology, 12(1), 3-23. https://doi.org/10.1207/s15324834basp1201_1
Mumford, M. D., Connelly, S., & Gaddis, B. (2003). How creative leaders think: Experimental findings and cases. The Leadership Quarterly, 14(45), 411-432. https://doi.org/10.1016/S1048-9843(03)00045-6
Neirotti, P., & Paolucci, E. (2007). Assessing the strategic value of information technology: An analysis on the insurance sector. Information & Management, 44(6), 568-582. https://doi.org/10.1016/j.im.2007. 05.005
Ng, A. (2017). Artificial intelligence is the new electricity. In Presentation at the Stanford MSx Future Forum.
Obschonka, M., & Audretsch, D. B. (2020). Artificial intelligence and big data in entrepreneurship: A new era has begun. Small Business Economics, 55(3), 529-539. https://doi.org/10.1007/s11187-019-00202-4
Oldham, G. R., & Cummings, A. (1996). Employee creativity: Personal and contextual factors at work. Academy of Management Journal, 39(3), 607-634. https://doi.org/10.2307/256657
Paesano, A. (2021). Artificial intelligence and creative activities inside organizational behavior. International Journal of Organizational Analysis, 31(5), 1694-1723.
Paulus, P., & Kenworthy, J. (2019). Effective brainstorming. In P. Paulus & B. A. Nijstad (Eds.), Handbook of group creativity: Innovation through collaboration (pp. 287-306). Oxford University Press.
Pedota, M., & Piscitello, L. (2022). A new perspective on technology-driven creativity enhancement in the fourth industrial revolution. Creativity and Innovation Management, 31(1), 109-122. https://doi.org/10.1111/ caim. 12468
Pietronudo, M. C., Croidieu, G., & Schiavone, F. (2022). A solution looking for problems? A systematic literature review of the rationalizing influence of artificial intelligence on decision-making in innovation management. Technological Forecasting and Social Change, 182, 121828. https://doi.org/10.1016/j.techfore.2022.121828
Rai, A., Constantinides, P., & Sarker, S. (2019). Next generation digital platforms: Toward human-AI hybrids. MIS Quarterly, 43(1), iii-ix.
Rosso, B. D., Dekas, K. H., & Wrzesniewski, A. (2010). On the meaning of work: A theoretical integration and review. Research in Organizational Behavior, 30, 91-127. https://doi.org/10.1016/j.riob.2010.09.001
Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24(1), 92-96. https://doi.org/10.1080/ 10400419.2012.650092
Sherry, Y., & Thompson, N. C. (2021). How fast do algorithms improve? [point of view]. Proceedings of the IEEE, 109(11), 1768-1777.
Shin, S. J., Kim, T. Y., Lee, J. Y., & Bian, L. (2012). Cognitive team diversity and individual team member creativity: A cross-level interaction. Academy of Management Journal, 55(1), 197-212. https://doi.org/10.5465/ amj.2010.0270
Shneiderman, B. (2002). Creativity support tools. Communications of the ACM, 45(10), 116-120. https://doi.org/10.1145/570907.570945
Shneiderman, B. (2007). Creativity support tools: Accelerating discovery and innovation. Communications of the ACM, 50(12), 20-32. https:// doi.org/10.1145/1323688.1323689
Simon, H. A. (1991). Bounded rationality and organizational learning. Organization Science, 2(1), 125-134. https://doi.org/10.1287/orsc.2.1.125
Simonton, D. K. (1999). Origins of genius: Darwinian perspectives on creativity. Oxford University Press.
Singh, B. (1986). Role of personality versus biographical factors in creativity. Psychological Studies, 31, 90-92.
Sturm, T., Gerlach, J. P., Pumplun, L., Mesbah, N., Peters, F., Tauchert, C., Nan, N., & Buxmann, P. (2021). Coordinating human and machine learning for effective organizational learning. MIS Quarterly, 45(3), 1581-1602. https://doi.org/10.25300/MISQ/2021/16543
Szulanski, G. (1996). Exploring internal stickiness: Impediments to the transfer of best practice within the firm. Strategic Management Journal, 17(S2), 27-43. https://doi.org/10.1002/smj. 4250171105
Tan, S. Y., & Tatsumura, Y. (2015). Alexander Fleming (1881-1955): Discoverer of penicillin. Singapore Medical Journal, 56(7), 366-367. https://doi.org/10.11622/smedj. 2015105
Tanggaard, L., Laursen, D. N., & Szulevicz, T. (2016). The grip on the handball – A qualitative analysis of the influence of materiality on creativity in sport. Qualitative Research in Sport, Exercise and Health, 8(1), 79-94. https://doi.org/10.1080/2159676X.2015.1012546
Taylor, A., & Greve, H. R. (2006). Superman or the fantastic four? Knowledge combination and experience in innovative teams. Academy of Management Journal, 49(4), 723-740. https://doi.org/10.5465/amj. 2006.22083029
Tesluk, P. E., Farr, J. L., & Klein, S. R. (1997). Influences of organizational culture and climate on individual creativity. The Journal of Creative Behavior, 31(1), 27-41. https://doi.org/10.1002/j.2162-6057.1997. tb00779.x
Todorova, G., & Durisin, B. (2007). Absorptive capacity: Valuing a reconceptualization. Academy of Management Review, 32(3), 774-786. https://doi.org/10.5465/amr.2007.25275513
Townsend, D. M., & Hunt, R. A. (2019). Entrepreneurial action, creativity, & judgment in the age of artificial intelligence. Journal of Business Venturing Insights, 11, e00126. https://doi.org/10.1016/j.jbvi.2019.e00126
Truong, Y., & Papagiannidis, S. (2022). Artificial intelligence as an enabler for innovation: A review and future research agenda. Technological Forecasting and Social Change, 183, 121852. https://doi.org/10.1016/ j.techfore.2022.121852
Tubadji, A., Huang, H., & Webber, D. J. (2021). Cultural proximity bias in Al-acceptability: The importance of being human. Technological Forecasting and Social Change, 173, 121100. https://doi.org/10.1016/j. techfore.2021.121100
Van Knippenberg, D., & Schippers, M. C. (2007). Work group diversity. Annual Review of Psychology, 58, 515-541. https://doi.org/10.1146/ annurev.psych.58.110405.085546
Vessey, W. B., & Mumford, M. D. (2012). Heuristics as a basis for assessing creative potential: Measures, methods, and contingencies. Creativity Research Journal, 24(1), 41-54. https://doi.org/10.1080/10400419. 2012.652928
Williams, K., & O’Reilly, C. (1998). Demography and diversity in organizations: A review of forty years of research. In R. I. Sutton & B. M. Staw (Eds.), Research in organizational behavior (pp. 77-140). JAI Press.
Zhang, X., & Bartol, K. M. (2010). Linking empowering leadership and employee creativity: The influence of psychological empowerment, intrinsic motivation, and creative process engagement. Academy of Management Journal, 53(1), 107-128. https://doi.org/10.5465/amj. 2010.48037118
Zhu, Y. Q., Gardner, D. G., & Chen, H. G. (2018). Relationships between work team climate, individual motivation, and creativity. Journal of Management, 44(5), 2094-2115. https://doi.org/10.1177/ 0149206316638161
Zylinska, J. (2023). Art in the age of artificial intelligence. Science, 381(6654), 139-140. https://doi.org/10.1126/science.adh0575
AUTHOR BIOGRAPHIES
around the economics of innovative entrepreneurship and the economics of network and digital industries. On these subjects, he has participated in numerous scientific projects (promoted by private and public institutions), published articles in several international scientific journals and acted as an editor for journal special issues and a book.
Creativity and artificial intelligence: A multilevel perspective.
Creativity and Innovation Management, 1-14. https://doi.org/
10.1111/caim. 12580
- This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
© 2024 The Authors. Creativity and Innovation Management published by John Wiley & Sons Ltd.
