DOI: https://doi.org/10.22436/jmcs.033.04.06
تاريخ النشر: 2024-01-28
تحليل الوجود، والتميز، والثبات للمعادلات التكاملية التفاضلية المحايدة من نوع فولتيرا-فريدولم ذات الكسرية
الملخص
تستكشف هذه الورقة البحثية التحقيق في معادلة فولتيرا-فريدولم التكاملية-التفاضلية التي تتضمن مشتقات كابوتو الكسرية وتلتزم بشروط ترتيب محددة. تؤسس الدراسة بشكل صارم كل من الوجود والتفرد للحلول التحليلية من خلال تطبيق مبدأ باناش. بالإضافة إلى ذلك، تقدم نتيجة فريدة تتعلق بوجود حل واحد على الأقل، مدعومة بشروط دقيقة مستمدة من نظرية نقطة الثابت لكراسنوسيلسكي. علاوة على ذلك، تشمل الورقة معادلات فولتيرا-فريدولم التكاملية-التفاضلية المحايدة، مما يوسع من قابلية تطبيق النتائج. بالإضافة إلى ذلك، تستكشف الورقة مفهوم ثبات أولام للحلول التي تم الحصول عليها، مما يوفر رؤى قيمة حول سلوكها على المدى الطويل. لتأكيد الأهمية العملية وموثوقية النتائج، تم تضمين مثال توضيحي، مما يوضح بشكل فعال قابلية تطبيق الاكتشافات النظرية.
©2024 جميع الحقوق محفوظة.
1. المقدمة
2. المقدمات
التعريف 2.2 ([47]). مشتق RL من الرتبة
-
هو خريطة انكماش؛ -
مضغوط ومستمر؛ - لجميع
، و في بحيث أن يبقى ضمن .
3. معادلة فولتيرا-فريدولم التكاملية-التفاضلية
3.1. نتائج الوجود والتفرد
(A1) اعتبر الدوال المستمرة
برهان. يمكن إثبات ذلك بسهولة من خلال استخدام المشغل التكامل (2.1) على كلا جانبي المعادلة (3.1)، مما يؤدي إلى المعادلة التكاملية (3.3).
الخطوة 2. هدفنا هو إثبات أن
(A4)
هذا يعني أن هناك على الأقل حلاً واحداً للمشكلة الموصوفة في (3.1)-(3.2) على الفترة
برهان. اختر ثابتًا
3.2. نتائج استقرار أولام
برهان. اعتبر
4. معادلة فولتر-فريدولم المتكاملة التفاضلية المحايدة
4.1. نتائج الوجود والتفرد
(ب1) اعتبر الدوال المستمرة
اللمّا 4.1. إذا
(ب4)
4.2. نتائج استقرار أولام
برهان. اعتبر
5. الخاتمة
شكر وتقدير
References
[2] B. Ahmad, S. Sivasundaram, Some existence results for fractional integro-differential equations with nonlinear conditions, Commun. Appl. Anal., 12 (2008), 107-112. 1
[3] M. Ahmad, A. Zada, J. Alzabut, Hyers-Ulam stability of a coupled system of fractional differential equations of HilferHadamard type, Demonstr. Math., 52 (2019), 283-295. 1
[4] R. P. Agarwal, C. Zhang, T. Li, Some remarks on oscillation of second order neutral differential equations, Appl. Math. Comput., 274 (2016), 178-181. 1
[5] J. Alzabut, S. R. Grace, J. M. Jonnalagadda, S. S. Santra, B. Abdalla, Higher-order Nabla Difference Equations of Arbitrary Order with Forcing, Positive and Negative Terms: Non-oscillatory Solutions, Axioms, 12 (2023), 1-14. 1
[6] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Mathematics, 20 (2016), 1-8.
[7] S. Begum, A. Zada, S. Saifullah, I.-L. Popa, Dynamical behavior of random fractional integro-differential equation via hilfer fractional derivative, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 84 (2022), 137-148. 1
[8] M. Bohner, T. Li, Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coefficient, Appl. Math. Lett., 37 (2014), 72-76. 1
[9] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85.
[10] A. Columbu, S. Frassu, G. Viglialoro, Properties of given and detected unbounded solutions to a class of chemotaxis models, Stud. Appl. Math., 151 (2023), 1349-1379. 1
[11] Z. Dahmani, A. Taeb, New existence and uniqueness results for high dimensional fractional differential systems, Facta Univ. Ser. Math. Inform., 30 (2015), 281-293. 1
[12] L. S. Dong, N. V. Hoa, H. Vu, Existence and Ulam stability for random fractional integro-differential equation, Afr. Mat., 31 (2020), 1283-1294. 1
[13] M. Fečkan, J. Wang, M. Pospíšil, Fractional-order equations and inclusions, De Gruyter, Berlin, (2017). 1
[14] A. Ganesh, S. Deepa, D. Baleanu, S. S. Santra, O. Moaaz, V. Govindan, R. Ali, Hyers-Ulam-Mittag-Leffler stability of fractional differential equations with two Caputo derivative using fractional Fourier transform, AIMS Math., 7 (2022), 1791-1810. 2
[15] H. HamaRashid, H. M. Srivastava, M. Hama, P. O. Mohammed, M. Y. Almusawa, D. Baleanu, Novel algorithms to approximate the solution of nonlinear integro-differential equations of Volterra-Fredholm integro type, AIMS Math., 8 (2023), 14572-14591. 1
[16] H. HamaRashid, H. M. Srivastava, M. Hama, P. O. Mohammed, E. Al-Sarairah, M. Y. Almusawa, New Numerical Results on Existence of Volterra-Fredholm Integral Equation of Nonlinear Boundary Integro-Differential Type, Symmetry, 15 (2023), 1-20. 1, 2, 2.6, 2.7
[17] A. Hamoud, Existence and uniqueness of solutions for fractional neutral volterra-fredholm integro differential equations, Adv. Theory Nonlinear Anal. Appl., 4 (2020), 321-331.
[18] A. A. Hamoud, K. P. Ghadle, Some new uniqueness results of solutions for fractional Volterra-Fredholm integrodifferential equations, Iran. J. Math. Sci. Inform., 17 (2022), 135-144. 1, 2
[19] A. Hamoud, N. Mohammed, K. Ghadle, Existence and uniqueness results for Volterra-Fredholm integro differential equations, Adv. Theory Nonlinear Anal. Appl., 4 (2020), 361-372.
[20] K. Hattaf, A new generalized definition of fractional derivative with non-singular kernel, Computation, 8 (2020), 1-9.
[21] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam, (2006). 1, 2, 2.1, 2.4, 2.5
[22] T. Li, S. Frassu, G. Viglialoro, Combining effects ensuring boundedness in an attraction a repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., 74 (2023), 21 pages. 1
[23] T. Li, N. Pintus, G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 70 (2019), 18 pages. 1
[24] T. Li, Y. V. Rogovchenko, Oscillation of second-order neutral differential equations, Math. Nachr., 288 (2015), 1150-1162. 1
[25] T. Li, Y. V. Rogovchenko, Oscillation criteria for second-order superlinear Emden-Fowler neutral differential equations, Monatsh. Math., 184 (2017), 489-500.
[26] T. Li, Y. V. Rogovchenko, On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations, Appl. Math. Lett., 105 (2020), 7 pages. 1
[27] T. Li, G. Viglialoro, Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime, Differential Integral Equations, 34 (2021), 315-336. 1
[28] F. Masood, O. Moaaz, S. S. Santra, U. Fernandez-Gamiz, H. El-Metwally, On the monotonic properties and oscillatory behavior of solutions of neutral differential equations, Demonstr. Math., 56 (2023), dema-2023-0123. 1
[29] F. Masood, O. Moaaz, S. S. Santra, U. Fernandez-Gamiz, H. A. El-Metwally, Oscillation theorems for fourth-order quasi-linear delay differential equations, AIMS Math., 8 (2023), 16291-16307. 1
[30] O. Moaaz, E. M. Elabbasy, A. Muhib, Oscillation criteria for even-order neutral differential equations with distributed deviating arguments, Adv. Difference Equ., 2019 (2019), 10 pages. 1
[31] A. Ndiaye, F. Mansal, Existence and uniqueness results of Volterra-Fredholm integro-differential equations via Caputo fractional derivative, J. Math., 2021 (2021), 8 pages. 1, 2
[32] P. Raghavendran, T. Gunasekar, H. Balasundaram, S. S. Santra, D. Majumder, D. Baleanu, Solving fractional integrodifferential equations by Aboodh transform, J. Math. Comput. Sci., 32 (2024), 229-240. 1
[33] S. Sangeetha, S. K. Thamilvanan, S. S. Santra, S. Noeiaghdam, M. Abdollahzadeh, Property
[34] S. S. Santra, Oscillation Criteria for Nonlinear Neutral Differential Equations of First Order with Several Delays, Mathematica, 57 (2015), 75-89.
[35] S. S. Santra, Necessary and sufficient conditions for oscillation of second-order differential equation with several delays, Stud. Univ. Babeş-Bolyai Math., 68 (2023), 319-330. 1
[36] S. S. Santra, P. Mondal, M. E. Samei, H. Alotaibi, M. Altanji, T. Botmart, Study on the oscillation of solution to second-order impulsive systems, AIMS Math., 8 (2023), 22237-22255.
[37] S. S. Santra, S. Priyadharshini, V. Sadhasivam, J. Kavitha, U. Fernandez-Gamiz, S. Noeiaghdam, K. M. Khedher, On the oscillation of certain class of conformable Emden-Fowler type elliptic partial differential equations, AIMS Math., 8 (2023), 12622-12636. 1
[38] N. Sene, A. Ndiaye, On class of fractional-order chaotic or hyperchaotic systems in the context of the Caputo fractional-order derivative, J. Math., 2020 (2020), 15 pages.
[39] D. R. Smart, Fixed point theorems, Cambridge University Press, London-New York, (1974). 1, 2
[40] H. M. Srivastava, R. K. Saxena Some Volterra-type fractional integro-differential equations with a multivariable confluent hypergeometric function as their kernel, J. Integral Equations Appl., 17 (2005), 199-217. 1
[41] A. K. Tripathy, S. S. Santra, Necessary and Sufficient Conditions for oscillations to a Second-order Neutral Differential Equations with Impulses, Kragujevac J. Math., 47 (2023), 81-93. 1
[42] J. Wang, L. Lv, Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ., 2011 (2011), 10 pages. 1
[43] X. Wang, L. Wang, Q. Zeng, Fractional differential equations with integral boundary conditions, J. Nonlinear Sci. Appl., 8 (2015), 309-314.
[44] J. Wang, Y. Zhou, M. Medved,Existence and stability of fractional differential equations with Hadamard derivative, Topol. Methods Nonlinear Anal., 41 (2013), 113-133. 1
[45] J. Wu, Y. Liu, Existence and uniqueness of solutions for the fractional integro-differential equations in Banach spaces, Electron. J. Differential Equations, 2009 (2009), 8 pages. 1
[46] Y. Zhou, Basic theory of fractional differential equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, (2023).
[47] Y. Zhou, J. Wang, L. Zhang, Basic theory of fractional differential equations, World scientific, (2016). 1, 2, 2.2, 2.3, 2.6, 2.7, 2.8, 2.9
- *Corresponding author
Email addresses: tguna84@gmail.com or m23air514@iitj.ac.in (Tharmalingam Gunasekar), rockypraba55@gmail.com (Prabakaran Raghavendran), shyam01.math@gmail.com or shyamsundar.santra@jiscollege.ac.in (Shyam Sundar Santra), msajd@qu.edu.sa (Mohammad Sajid)
doi: 10.22436/jmcs.033.04.06
DOI: https://doi.org/10.22436/jmcs.033.04.06
Publication Date: 2024-01-28
Analyzing existence, uniqueness, and stability of neutral fractional Volterra-Fredholm integro-differential equations
Abstract
This paper explores the investigation of a Volterra-Fredholm integro-differential equation that incorporates Caputo fractional derivatives and adheres to specific order conditions. The study rigorously establishes both the existence and uniqueness of analytical solutions by applying the Banach principle. Additionally, it presents a unique outcome regarding the existence of at least one solution, supported by exacting conditions derived from the Krasnoselskii fixed point theorem. Furthermore, the paper encompasses neutral Volterra-Fredholm integro-differential equations, thus extending the applicability of the findings. Additionally, the paper explores the concept of Ulam stability for the obtained solutions, providing valuable insights into their long-term behavior. To emphasis the practical significance and reliability of the results, an illustrative example is included, effectively demonstrating the applicability of the theoretical discoveries.
©2024 All rights reserved.
1. Introduction
2. Preliminaries
Definition 2.2 ([47]). The RL derivative of order
-
is a contraction mapping; -
is compact and continuous; - for all
, and in , such that remains within .
3. Volterra-Fredholm integro-differential equation
3.1. Existence and uniqueness results
(A1) Consider continuous functions
Proof. This can be readily demonstrated by utilizing the integral operator (2.1) on both sides of equation (3.1), resulting in the integral equation (3.3).
Step 2. Our objective is to demonstrate that
(A4)
This implies that there is at least one solution to the problem described in (3.1)-(3.2) over the interval
Proof. Choose a fixed
3.2. Ulam stability results
Proof. Consider
4. Neutral Volterra-Fredholm integro-differential equation
4.1. Existence and uniqueness results
(B1) Consider continuous functions
Lemma 4.1. If
(B4)
4.2. Ulam stability results
Proof. Consider
5. Conclusion
Acknowledgement
References
[2] B. Ahmad, S. Sivasundaram, Some existence results for fractional integro-differential equations with nonlinear conditions, Commun. Appl. Anal., 12 (2008), 107-112. 1
[3] M. Ahmad, A. Zada, J. Alzabut, Hyers-Ulam stability of a coupled system of fractional differential equations of HilferHadamard type, Demonstr. Math., 52 (2019), 283-295. 1
[4] R. P. Agarwal, C. Zhang, T. Li, Some remarks on oscillation of second order neutral differential equations, Appl. Math. Comput., 274 (2016), 178-181. 1
[5] J. Alzabut, S. R. Grace, J. M. Jonnalagadda, S. S. Santra, B. Abdalla, Higher-order Nabla Difference Equations of Arbitrary Order with Forcing, Positive and Negative Terms: Non-oscillatory Solutions, Axioms, 12 (2023), 1-14. 1
[6] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Mathematics, 20 (2016), 1-8.
[7] S. Begum, A. Zada, S. Saifullah, I.-L. Popa, Dynamical behavior of random fractional integro-differential equation via hilfer fractional derivative, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 84 (2022), 137-148. 1
[8] M. Bohner, T. Li, Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coefficient, Appl. Math. Lett., 37 (2014), 72-76. 1
[9] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85.
[10] A. Columbu, S. Frassu, G. Viglialoro, Properties of given and detected unbounded solutions to a class of chemotaxis models, Stud. Appl. Math., 151 (2023), 1349-1379. 1
[11] Z. Dahmani, A. Taeb, New existence and uniqueness results for high dimensional fractional differential systems, Facta Univ. Ser. Math. Inform., 30 (2015), 281-293. 1
[12] L. S. Dong, N. V. Hoa, H. Vu, Existence and Ulam stability for random fractional integro-differential equation, Afr. Mat., 31 (2020), 1283-1294. 1
[13] M. Fečkan, J. Wang, M. Pospíšil, Fractional-order equations and inclusions, De Gruyter, Berlin, (2017). 1
[14] A. Ganesh, S. Deepa, D. Baleanu, S. S. Santra, O. Moaaz, V. Govindan, R. Ali, Hyers-Ulam-Mittag-Leffler stability of fractional differential equations with two Caputo derivative using fractional Fourier transform, AIMS Math., 7 (2022), 1791-1810. 2
[15] H. HamaRashid, H. M. Srivastava, M. Hama, P. O. Mohammed, M. Y. Almusawa, D. Baleanu, Novel algorithms to approximate the solution of nonlinear integro-differential equations of Volterra-Fredholm integro type, AIMS Math., 8 (2023), 14572-14591. 1
[16] H. HamaRashid, H. M. Srivastava, M. Hama, P. O. Mohammed, E. Al-Sarairah, M. Y. Almusawa, New Numerical Results on Existence of Volterra-Fredholm Integral Equation of Nonlinear Boundary Integro-Differential Type, Symmetry, 15 (2023), 1-20. 1, 2, 2.6, 2.7
[17] A. Hamoud, Existence and uniqueness of solutions for fractional neutral volterra-fredholm integro differential equations, Adv. Theory Nonlinear Anal. Appl., 4 (2020), 321-331.
[18] A. A. Hamoud, K. P. Ghadle, Some new uniqueness results of solutions for fractional Volterra-Fredholm integrodifferential equations, Iran. J. Math. Sci. Inform., 17 (2022), 135-144. 1, 2
[19] A. Hamoud, N. Mohammed, K. Ghadle, Existence and uniqueness results for Volterra-Fredholm integro differential equations, Adv. Theory Nonlinear Anal. Appl., 4 (2020), 361-372.
[20] K. Hattaf, A new generalized definition of fractional derivative with non-singular kernel, Computation, 8 (2020), 1-9.
[21] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam, (2006). 1, 2, 2.1, 2.4, 2.5
[22] T. Li, S. Frassu, G. Viglialoro, Combining effects ensuring boundedness in an attraction a repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., 74 (2023), 21 pages. 1
[23] T. Li, N. Pintus, G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 70 (2019), 18 pages. 1
[24] T. Li, Y. V. Rogovchenko, Oscillation of second-order neutral differential equations, Math. Nachr., 288 (2015), 1150-1162. 1
[25] T. Li, Y. V. Rogovchenko, Oscillation criteria for second-order superlinear Emden-Fowler neutral differential equations, Monatsh. Math., 184 (2017), 489-500.
[26] T. Li, Y. V. Rogovchenko, On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations, Appl. Math. Lett., 105 (2020), 7 pages. 1
[27] T. Li, G. Viglialoro, Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime, Differential Integral Equations, 34 (2021), 315-336. 1
[28] F. Masood, O. Moaaz, S. S. Santra, U. Fernandez-Gamiz, H. El-Metwally, On the monotonic properties and oscillatory behavior of solutions of neutral differential equations, Demonstr. Math., 56 (2023), dema-2023-0123. 1
[29] F. Masood, O. Moaaz, S. S. Santra, U. Fernandez-Gamiz, H. A. El-Metwally, Oscillation theorems for fourth-order quasi-linear delay differential equations, AIMS Math., 8 (2023), 16291-16307. 1
[30] O. Moaaz, E. M. Elabbasy, A. Muhib, Oscillation criteria for even-order neutral differential equations with distributed deviating arguments, Adv. Difference Equ., 2019 (2019), 10 pages. 1
[31] A. Ndiaye, F. Mansal, Existence and uniqueness results of Volterra-Fredholm integro-differential equations via Caputo fractional derivative, J. Math., 2021 (2021), 8 pages. 1, 2
[32] P. Raghavendran, T. Gunasekar, H. Balasundaram, S. S. Santra, D. Majumder, D. Baleanu, Solving fractional integrodifferential equations by Aboodh transform, J. Math. Comput. Sci., 32 (2024), 229-240. 1
[33] S. Sangeetha, S. K. Thamilvanan, S. S. Santra, S. Noeiaghdam, M. Abdollahzadeh, Property
[34] S. S. Santra, Oscillation Criteria for Nonlinear Neutral Differential Equations of First Order with Several Delays, Mathematica, 57 (2015), 75-89.
[35] S. S. Santra, Necessary and sufficient conditions for oscillation of second-order differential equation with several delays, Stud. Univ. Babeş-Bolyai Math., 68 (2023), 319-330. 1
[36] S. S. Santra, P. Mondal, M. E. Samei, H. Alotaibi, M. Altanji, T. Botmart, Study on the oscillation of solution to second-order impulsive systems, AIMS Math., 8 (2023), 22237-22255.
[37] S. S. Santra, S. Priyadharshini, V. Sadhasivam, J. Kavitha, U. Fernandez-Gamiz, S. Noeiaghdam, K. M. Khedher, On the oscillation of certain class of conformable Emden-Fowler type elliptic partial differential equations, AIMS Math., 8 (2023), 12622-12636. 1
[38] N. Sene, A. Ndiaye, On class of fractional-order chaotic or hyperchaotic systems in the context of the Caputo fractional-order derivative, J. Math., 2020 (2020), 15 pages.
[39] D. R. Smart, Fixed point theorems, Cambridge University Press, London-New York, (1974). 1, 2
[40] H. M. Srivastava, R. K. Saxena Some Volterra-type fractional integro-differential equations with a multivariable confluent hypergeometric function as their kernel, J. Integral Equations Appl., 17 (2005), 199-217. 1
[41] A. K. Tripathy, S. S. Santra, Necessary and Sufficient Conditions for oscillations to a Second-order Neutral Differential Equations with Impulses, Kragujevac J. Math., 47 (2023), 81-93. 1
[42] J. Wang, L. Lv, Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ., 2011 (2011), 10 pages. 1
[43] X. Wang, L. Wang, Q. Zeng, Fractional differential equations with integral boundary conditions, J. Nonlinear Sci. Appl., 8 (2015), 309-314.
[44] J. Wang, Y. Zhou, M. Medved,Existence and stability of fractional differential equations with Hadamard derivative, Topol. Methods Nonlinear Anal., 41 (2013), 113-133. 1
[45] J. Wu, Y. Liu, Existence and uniqueness of solutions for the fractional integro-differential equations in Banach spaces, Electron. J. Differential Equations, 2009 (2009), 8 pages. 1
[46] Y. Zhou, Basic theory of fractional differential equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, (2023).
[47] Y. Zhou, J. Wang, L. Zhang, Basic theory of fractional differential equations, World scientific, (2016). 1, 2, 2.2, 2.3, 2.6, 2.7, 2.8, 2.9
- *Corresponding author
Email addresses: tguna84@gmail.com or m23air514@iitj.ac.in (Tharmalingam Gunasekar), rockypraba55@gmail.com (Prabakaran Raghavendran), shyam01.math@gmail.com or shyamsundar.santra@jiscollege.ac.in (Shyam Sundar Santra), msajd@qu.edu.sa (Mohammad Sajid)
doi: 10.22436/jmcs.033.04.06