DOI: https://doi.org/10.1016/j.glmedi.2024.100099
تاريخ النشر: 2024-04-17
تعزيز الصحة النفسية باستخدام الذكاء الاصطناعي: الاتجاهات الحالية وآفاق المستقبل
معلومات المقال
الكلمات المفتاحية:
الصحة النفسية
العلاج عن بُعد
علم النفس
التشخيص
الملخص
لقد ظهرت الذكاء الاصطناعي (AI) كقوة تحويلية في مجالات متعددة، وتطبيقه في الرعاية الصحية النفسية ليس استثناءً. لذلك، تستكشف هذه المراجعة دمج الذكاء الاصطناعي في الرعاية الصحية النفسية، موضحة الاتجاهات الحالية، والاعتبارات الأخلاقية، والاتجاهات المستقبلية في هذا المجال الديناميكي. شملت هذه المراجعة دراسات حديثة، وأمثلة على تطبيقات الذكاء الاصطناعي، والاعتبارات الأخلاقية التي تشكل هذا المجال. بالإضافة إلى ذلك، تم تحليل الأطر التنظيمية والاتجاهات في البحث والتطوير. قمنا بالبحث بشكل شامل في أربعة قواعد بيانات (PubMed، IEEE Xplore، PsycINFO، وGoogle Scholar). كانت معايير الإدراج هي الأوراق المنشورة في مجلات محكمة، أو وقائع مؤتمرات، أو قواعد بيانات موثوقة على الإنترنت، والأوراق التي تركز بشكل خاص على تطبيق الذكاء الاصطناعي في مجال الرعاية الصحية النفسية، وأوراق المراجعة التي تقدم نظرة شاملة، أو تحليل، أو دمج للأدبيات الموجودة المنشورة باللغة الإنجليزية. تكشف الاتجاهات الحالية عن الإمكانات التحويلية للذكاء الاصطناعي، مع تطبيقات مثل الكشف المبكر عن اضطرابات الصحة النفسية، وخطط العلاج الشخصية، والمعالجين الافتراضيين المدعومين بالذكاء الاصطناعي. ومع ذلك، فإن هذه التقدمات مصحوبة بتحديات أخلاقية تتعلق بالخصوصية، وتخفيف التحيز، والحفاظ على العنصر البشري في العلاج. تؤكد الاتجاهات المستقبلية على الحاجة إلى أطر تنظيمية واضحة، والتحقق الشفاف من نماذج الذكاء الاصطناعي، وجهود البحث والتطوير المستمرة. يمثل دمج الذكاء الاصطناعي في الرعاية الصحية النفسية وعلاج الصحة النفسية حدودًا واعدة في الرعاية الصحية. بينما يحمل الذكاء الاصطناعي القدرة على إحداث ثورة في الرعاية الصحية النفسية، فإن التنفيذ المسؤول والأخلاقي أمر ضروري. من خلال معالجة التحديات الحالية وتشكيل الاتجاهات المستقبلية بعناية، قد نتمكن من الاستفادة بشكل فعال من إمكانات الذكاء الاصطناعي لتعزيز الوصول، والفعالية، والأخلاقية في الرعاية الصحية النفسية، مما يساعد الأفراد والمجتمعات على حد سواء.
مقدمة
تمثل السبب الرئيسي للإعاقة على مستوى العالم [3]. لقد وضعت الزيادة في انتشار اضطرابات الصحة النفسية طلبًا غير مسبوق على أنظمة الرعاية الصحية، مما يكشف عن عدم كفاية النماذج التقليدية للرعاية النفسية [4،5]. النهج التقليدي، الذي يعتمد بشكل كبير على الاستشارات والعلاجات الشخصية، لا يلبي الطلب المتزايد على خدمات الصحة النفسية القابلة للوصول، والميسورة التكلفة، وسهلة التوسع [4]. تسلط هذه الفجوة بين الطلب على الرعاية النفسية وعرضها الضوء على الحاجة الملحة للحلول المبتكرة.
طرق
النتيجة
النسخ المكررة. بعد فحص الملخصات والعناوين، تم استبعاد 32 مقالة لأنها لم تستوفِ معايير الأهلية. لذلك، شملت هذه المراجعة ما مجموعه 92 دراسة مؤهلة. (انظر الجدول 1).
تاريخ الذكاء الاصطناعي في الرعاية الصحية النفسية
عملية البحث عن الكلمات الرئيسية واختيار الأوراق.
قاعدة البيانات/ المصدر | الكلمات الرئيسية المستخدمة | عدد الأوراق الأولي | الأوراق المستبعدة | عدد الأوراق بعد الفحص | عدد الأوراق بعد الأهلية | ||||
PubMed |
|
62 | 28 | 34 | 27 | ||||
IEEE Xplore |
|
24 | 9 | 15 | 8 | ||||
PsycINFO |
|
37 | 14 | 23 | 19 | ||||
Google Scholar |
|
88 | 36 | 52 | 38 | ||||
المجموع | 211 | 87 | 124 | 92 |
دور الذكاء الاصطناعي في التشخيص
الكشف المبكر عن اضطرابات الصحة النفسية

أدوات الذكاء الاصطناعي المستخدمة في الرعاية الصحية النفسية الحالية.
أدوات الذكاء الاصطناعي | العلاج القائم على روبوتات المحادثة | |
1. Woebot | Woebot هو روبوت محادثة يقدم علاجًا قائمًا على CBT للاكتئاب والقلق. لقد ثبت أنه فعال في تقليل أعراض الاكتئاب والقلق في التجارب السريرية. [31] | |
2. Wysa | Wysa هو روبوت محادثة يقدم دعمًا علاجيًا لمجموعة متنوعة من حالات الصحة النفسية، بما في ذلك الاكتئاب والقلق والتوتر والوحدة. يستخدم مزيجًا من CBT، واليقظة، وعلم النفس الإيجابي لمساعدة المستخدمين على تحسين صحتهم النفسية. [32] | |
3. Talkspace | Talkspace هو منصة علاجية عبر الإنترنت تربط المرضى بمعالجين مرخصين من خلال الفيديو والنص والرسائل الصوتية. يستخدم الذكاء الاصطناعي لمطابقة المرضى مع المعالجين الأنسب لاحتياجاتهم. [34] | |
4. BetterHelp | BetterHelp هو منصة علاجية عبر الإنترنت تربط المرضى بمعالجين مرخصين. يستخدم الذكاء الاصطناعي لمطابقة المرضى مع المعالجين ولكنه يقدم مجموعة أوسع من الأساليب العلاجية، بما في ذلك العلاج السلوكي المعرفي (CBT) والعلاج الديناميكي النفسي. [33] | |
أدوات الذكاء الاصطناعي | تطبيقات الصحة العاطفية | |
1. Moodfit | Moodfit هو تطبيق يستخدم الذكاء الاصطناعي لتتبع وتحليل مزاج المستخدمين وعواطفهم. يمكن أن يساعد المستخدمين في تحديد الأنماط في مزاجهم وتطوير استراتيجيات لإدارة عواطفهم. [35] | |
2. Happify | Happify هو تطبيق يستخدم الذكاء الاصطناعي لمساعدة المستخدمين على بناء المرونة والسعادة. يقدم مجموعة متنوعة من الألعاب والأنشطة والتمارين المصممة لتحسين مزاج المستخدمين ورفاهيتهم ومرونتهم. [36] | |
3. Headspace | Headspace هو تطبيق يقدم تأملات موجهة وتمارين اليقظة. يستخدم الذكاء الاصطناعي لتخصيص تجربة التأمل لكل مستخدم. | |
4. هدوء | Calm هو تطبيق يقدم تأملات موجهة وتمارين اليقظة. كما يقدم ميزات أخرى للاسترخاء ومساعدة على النوم، مثل قصص النوم والأصوات المحيطة. | |
5. تألق | شين هو تطبيق يقدم إلهامًا ودعمًا يوميًا مخصصًا. يستخدم الذكاء الاصطناعي للتعرف على احتياجات واهتمامات المستخدمين، ثم يقدم محتوى وموارد مصممة خصيصًا لكل مستخدم. | |
6. مدرب DBT | مدرب DBT هو تطبيق يوفر للمستخدمين أدوات وموارد لمساعدتهم على ممارسة العلاج السلوكي الجدلي (DBT)، الذي يعلم الناس كيفية إدارة مشاعرهم وأفكارهم وسلوكياتهم بشكل صحي. | |
7. رفيق | رفيق CBT هو تطبيق يساعد المستخدمين على ممارسة العلاج السلوكي المعرفي (CBT)، الذي يعلم الناس كيفية التعرف على أنماط التفكير والسلوكيات السلبية وتغييرها. | |
8. تغيير العقل CBT | MindShift CBT هو تطبيق يساعد المستخدمين على ممارسة تقنيات العلاج السلوكي المعرفي للقلق والاكتئاب. يقدم مجموعة متنوعة من التمارين التفاعلية والأدوات لمساعدة المستخدمين في إدارة أعراضهم وتحسين مزاجهم. | |
9. مدرب اضطراب ما بعد الصدمة | مدرب اضطراب ما بعد الصدمة هو تطبيق يوفر للمستخدمين أدوات وموارد لمساعدتهم في إدارة اضطراب ما بعد الصدمة (PTSD)، وهو حالة صحية عقلية يمكن أن تتطور لدى الأشخاص الذين عانوا أو شهدوا حدثًا صادمًا. | |
10. سوبر بيتر | SuperBetter هو تطبيق يساعد المستخدمين على بناء المرونة وتحقيق أهدافهم من خلال تحويل العملية إلى لعبة. يقدم مجموعة متنوعة من التحديات والمكافآت لمساعدة المستخدمين على البقاء متحفزين وإحراز تقدم. | |
أدوات الذكاء الاصطناعي | أدوات الصحة النفسية الذكية | |
1. كينتسوجي | تستخدم كينتسوجي تحليل الوجه والصوت لتوفير تغذية راجعة عاطفية في الوقت الفعلي للمعالجين، مما يساعد في الكشف المبكر عن الضيق العاطفي. | |
2. واتسون هيلث من آي بي إم | تستخدم شركة IBM Watson Health الذكاء الاصطناعي للتنبؤ بتطور الأمراض ونتائج العلاج من خلال تحليل بيانات المرضى الشاملة. | |
3. دماغي | تستخدم سيريبرا الذكاء الاصطناعي لدعم المعالجين في تحسين خطط العلاج الشخصية للمرضى الذين يعانون من حالات الصحة النفسية. | |
4. ميندسترونغ هيلث | تستخدم شركة مايندسترونغ هيلث الذكاء الاصطناعي لتحليل تفاعلات لوحة المفاتيح على الهواتف الذكية خلال العلاج عن بُعد، مما يوفر للمعالجين رؤى حول الحالات العاطفية. | |
5. ساعة ذكية | تقوم الساعات الذكية المزودة بخوارزميات الذكاء الاصطناعي بمراقبة التغيرات في أنماط النوم والنشاط البدني ومعدل ضربات القلب، مما يوفر رؤى قيمة لمراقبة الصحة النفسية. | |
6. إعادة ضبط شركة بير ثيرابيوتيكس | reSET من Pear Therapeutics هو علاج رقمي موصوف معتمد من إدارة الغذاء والدواء الأمريكية (FDA) يتتبع تفاعل المرضى وتقدمهم، مما يتيح تعديلات علاجية مستندة إلى البيانات. |
النمذجة التنبؤية
نتائج العلاج. يمكن للنماذج المدفوعة بالذكاء الاصطناعي التنبؤ بكيفية استجابة المريض لأساليب العلاج المختلفة، سواء كانت العلاج النفسي أو الأدوية أو تغييرات نمط الحياة. تضمن هذه المقاربة الشخصية أن يتلقى الأفراد تدخلات مخصصة، مما يعزز فرص الشفاء ويقلل من مخاطر الآثار الجانبية. علاوة على ذلك، تمتلك النماذج التنبؤية القدرة على التنبؤ بتقدم المرض، مما يساعد مقدمي الرعاية الصحية في اتخاذ قرارات مستنيرة بشأن خطط العلاج وتوزيع الموارد. من خلال التنبؤ بالمسار المحتمل لاضطرابات الصحة النفسية، يمكن لأنظمة الرعاية الصحية تعزيز استعدادها لتلبية متطلبات خدمات الصحة النفسية وتوزيع الموارد بشكل فعال وفقًا لذلك. على سبيل المثال، يستخدم برنامج “واتسون لاكتشاف الأدوية” من IBM الذكاء الاصطناعي لتحليل مجموعات ضخمة من المعلومات الجينية والكيميائية لتحديد مرشحي الأدوية المحتملين لحالات الصحة النفسية مثل الفصام واضطراب ثنائي القطب. هذا يسرع من تطوير الأدوية، مما قد يوفر علاجات أكثر فعالية لهذه الحالات.
الذكاء الاصطناعي في العلاج
خطط علاج شخصية

المعالجون الافتراضيون والدردشات الآلية
الذكاء الاصطناعي في تقديم العلاج
تعزيز العلاج عن بُعد
مساعدة المعالج
المعالجون في ممارستهم [47]. يقوم بتحليل بيانات المرضى ويقدم للمعالجين رؤى حول تقدم العلاج والمجالات المحتملة للتعديل. تعزز هذه المقاربة التعاونية قدرة المعالج على اتخاذ قرارات مستنيرة وتخصيص العلاجات بشكل فعال.
الذكاء الاصطناعي في المراقبة والمتابعة
المراقبة المستمرة
تقييم النتائج
التقدم والفعالية. تمتد هذه التقييمات إلى ما هو أبعد من الاستبيانات التقليدية الذاتية وتدمج بيانات من مصادر متنوعة، مثل استبيانات المرضى، والبيانات الفسيولوجية، والملاحظات السلوكية. تقوم الذكاء الاصطناعي بتحليل هذه البيانات لتقييم نتائج العلاج. على سبيل المثال، reSET هو علاج رقمي موصوف معتمد من إدارة الغذاء والدواء الأمريكية لعلاج اضطراب تعاطي المواد. يستخدم الذكاء الاصطناعي لتتبع تفاعل المرضى وإكمال الوحدات العلاجية. البيانات التي يتم توليدها بواسطة reSET تمكن المعالجين والمرضى من تقييم تقدم العلاج بشكل موضوعي وتعديل التدخلات حسب الحاجة.
نقاش
الاعتبارات الأخلاقية في الذكاء الاصطناعي للرعاية الصحية النفسية
تفاعل الإنسان مع الذكاء الاصطناعي
الخصوصية وأمان البيانات
التحيز والعدالة
تداعيات البحث
نقاط القوة والقيود
لا يمكن المبالغة في أهمية بيانات الصحة النفسية. يشكل تحيز الخوارزميات خطرًا محتملاً لأنه قد يؤدي إلى عدم كفاية أو عدم ملاءمة المساعدة لفئات معينة. علاوة على ذلك، فإن الذكاء الاصطناعي يفتقر إلى التعاطف والفهم البشري، وهما عنصران حيويان في التفاعلات العلاجية. تنشأ مزيد من القيود من الحاجة إلى التكامل مع أنظمة الرعاية الصحية القائمة والتنقل عبر الصعوبات التنظيمية. لذلك، على الرغم من أن الذكاء الاصطناعي يمتلك إمكانيات كبيرة في رعاية الصحة النفسية، فإنه من الضروري التفكير في حدوده لضمان تنفيذ مسؤول وفعال.
الخاتمة
إعلان عن تضارب المصالح
References
[2] G. Espejo, W. Reiner, M. Wenzinger, Exploring the role of artificial intelligence in mental healthcare: progress, pitfalls, and promises, Cureus 15 (9) (2023) e44748, https://doi.org/10.7759/cureus.44748.
[3] World Health Organization, Mental disorders. 〈https://www.who.int/news -room/fact-sheets/detail/mental-disorders/ /, 2022, (Accessed 11 October 2023).
[4] M.L. Wainberg, P. Scorza, J.M. Shultz, et al., Challenges and opportunities in global mental health: a research-to-practice perspective, Curr. Psychiatry Rep. 19 (28) (2017) 1-10, https://doi.org/10.1007/s11920-017-0780-z.
[5] X. Qin, C.R. Hsieh, Understanding and addressing the treatment gap in mental healthcare: economic perspectives and evidence from China, Inq.: J. Health Care Organ. Provis. Financ. 57 (2020). (https//doi.org/10.1177/004695802 0950566).
[6] J. Bajwa, U. Munir, A. Nori, B. Williams, Artificial intelligence in healthcare: transforming the practice of medicine, Future Healthc. J. 8 (2) (2021) e188-e194, https://doi.org/10.7861/fhj.2021-0095.
[7] P. Nilsen, P. Svedberg, J. Nygren, M. Frideros, J. Johansson, S. Schueller, Accelerating the impact of artificial intelligence in mental healthcare through implementation science, Implement. Res. Pract. 3 (2022) 263348952211120, https://doi.org/10.1177/26334895221112033.
[8] M. Langarizadeh, M. Tabatabaei, K. Tavakol, M. Naghipour, F. Moghbeli, Telemental health care, an effective alternative to conventional mental care: a systematic review, Acta Inform. Med. 25 (4) (2017) 240-246, https://doi.org/ 10.5455/aim.2017.25.240-246.
[9] F. Minerva, A. Giubilini, Is AI the future of mental healthcare? Topoi 42 (3) (2023) 809-817, https://doi.org/10.1007/s11245-023-09932-3.
[10] K.B. Johnson, W. Wei, D. Weeraratne, et al., Precision medicine, AI, and the future of personalized health care, Clin. Transl. Sci. 14 (1) (2021) 86-93, https:// doi.org/10.1111/cts. 12884.
[11]M.C.T.Tai,The impact of artificial intelligence on human society and bioethics, Tzu Chi Med.J. 32 (4)(2020)339-343,https://doi.org/10.4103/tcmj.tcmj_71_ 20.
[12]S.Bouhouita-Guermech,P.Gogognon,J.C.Bélisle-Pipon,Specific challenges posed by artificial intelligence in research ethics,Front.Artif.Intell. 6 (2023) 1149082,https://doi.org/10.3389/frai.2023.1149082.
[13]N.Naik,B.M.Z.Hameed,D.K.Shetty,et al.,Legal and ethical consideration in artificial intelligence in healthcare:who takes responsibility?Front.Surg.(2022) 862322 https://doi.org/10.3389/fsurg.2022.862322.
[14]S.Gerke,T.Minssen,G.Cohen,Ethical and legal challenges of artificial intelligence-driven healthcare,Artif.Intell.Healthc.(2020)295-336,https://doi. org/10.1016/B978-0-12-818438-7.00012-5.
[15]D.Arias,S.Saxena,S.Verguet,Quantifying the global burden of mental disorders and their economic value,eClinicalMedicine 54 (2022)101675,https://doi.org/ 10.1016/j.eclinm. 2022.101675.
[16]The Lancet Global Health,Mental health matters,Lancet(2020),https://doi.org/ 10.1016/S2214-109X(20)30432-0(Accessed 20 October 2023).
[17]P.Uwa,Unleashing the potential of artificial intelligence:revolutionizing industries and shaping the future,Medium, 2023 〈https://medium.com/@paul nodfield/unleashing-the-potential-of-artificial-intelligence-revolutionizing-indust ries-and-shaping-the-74a668f9712e),(Accessed 29 October 2023).
[18]R.Anyoha,The history of artificial intelligence,Science in the news, 2017 〈https ://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/),(Accessed 29 October 2023).
[19]I.Goldstein,S.Papert,Artificial intelligence,language,and the study of knowledge,Cogn.Sci. 1 (1)(1977)84-123,https://doi.org/10.1016/S0364- 0213(77)80006-2.
[20]J.S.Abreu,Founding fathers of artificial intelligence,Quidgest, 2021 〈https ://quidgest.com/en/blog-en/ai-founding-fathers/),(Accessed 29 October 2023).
[21]J.Moor,The Dartmouth college artificial intelligence conference:the next fifty years,AI Mag. 27 (4)(2006)87,https://doi.org/10.1609/aimag.v27i4.1911.
[22]A.Basil,ELIZA:The chatbot who revolutionised human-machine interaction[an introduction],Nerd For Tech./https://medium.com/nerd-for-tech/eliza-the-chat bot-who-revolutionised-human-machine-interaction-an-introduction-582a7 581f91c),2021,(Accessed 29 October 2023).
[23]C.Bassett,The computational therapeutic:exploring Weizenbaum's ELIZA as a history of the present,AI Soc. 34 (4)(2018)803-812,https://doi.org/10.1007/ s00146-018-0825-9.
[24]D.D.Luxton,Artificial intelligence in psychological practice:current and future applications and implications,Prof.Psychol.:Res.Pract. 45 (5)(2014)32-339, https://doi.org/10.1037/a0034559.
[25]S.Zhou,J.Zhao,L.Zhang,Application of artificial intelligence on psychological interventions and diagnosis:an overview,Front.Psychiatry 13 (2021)811665, https://doi.org/10.3389/fpsyt.2022.811665.
[26]G.Finocchiaro,The regulation of artificial intelligence,AI Soc. 3 (4)(2023)1-8, https://doi.org/10.1007/s00146-023-01650-z.
[27]S.Tutun,M.E.Johnson,A.Ahmed,et al.,An AI-based decision support system for predicting mental health disorders,Inf.Syst.Front. 25 (2022)1261-1276, https://doi.org/10.1007/s10796-022-10282-5.
[28]S.E.Blackwell,T.Heidenreich,Cognitive behavior therapy at the crossroads,Int. J.Cogn.Ther. 14 (1)(2021)1-22,https://doi.org/10.1007/s41811-021-00104- y.
[29]S.D.A.Hupp,D.Reitman,J.D.Jewell,Cognitive-behavioral theory,in:M.Hersen, A.M.Gross(Eds.),Handbook of Clinical Psychology,Vol 2,Children and Adolescents,John Wiley &Sons,Inc.,2008,pp.263-287.
[30]S.D'Alfonso,AI in mental health,Curr.Opin.Psychol. 36 (2020)112-117, https://doi.org/10.1016/j.copsyc.2020.04.005.
[31]Woebot Health,Mental health chatbot,Woebot,〈https://woebothealth.com/
[32]W.Wysa,Everyday mental health,Talkspace,2023.(https://www.talkspace. com//,2018,(Accessed October 30,2023).
[33]Better Help,Professional counseling with a licensed therapist,Betterhelp.com. (https://www.betterhelp.com/),2013,(Accessed 31 October 2023).
[34]Talkspace,Online therapy,counseling online,marriage counseling,Talkspace. com.(https://www.talkspace.com/),2018,(Accessed 30 October 2023).
[35]Moodfit,Tools &insight for your mental health,Moodfit.(https://www.get moodfit.com/),2023,(Accessed 31 October 2023).
[36]Happify,Happify:science-based activities and games,Happify.com,〈https:// www.happify.com/
[37]Headspace,Get the headspace app,Headspace,(https://www.headspace.com/he adspace-meditation-app//,2019,(Accessed 31 October 2023).
[38]Calm,Experience calm,Calm.(https://www.calm.com/),2019,(Accessed 31 October 2023).
[39]Shine,Calm anxiety &stress,theshineapp.com.(https://www.theshineapp. com/
[40]M.M.Braun,Dialectical behavior therapy:new frontiers in practice,in: D.Wedding(Ed.),Psyccritiques,50,2005,https://doi.org/10.1037/051667.
[41]Resiliens,CBT Companion-a comprehensive app for cognitive behavioral therapy,Resiliens,〈https://resiliens.com/cbt-companion/〉,(2021)(Accessed 31 October 2023).
[42]Anxiety Canada,MindShift
[43]US.Department of Veteran Affairs,PTSD Coach-PTSD:National Center for PTSD,〈https://www.ptsd.va.gov/appvid/mobile/ptsdcoach_app.asp),2022,(Accessed 31 October 2023).
[44]SuperBetter,Social-emotional learning,mental health &resilience training, Superbetter.com,(https://superbetter.com//,2023,(Accessed 31 October 2023).
[45]Kintusugi,Kintsugi.Kintsugihealth,〈https://www.kintsugihealth.com/ 7 ,2022, (Accessed 31 October 2023).
[46]IBM Watson Health,IBM watson health is now merative,
[47]Cerebral,The Cerebral Way.cerebral.com,<https://cerebral.com/
[48]T.Gruber,AI for mental health,Mindstrong AI models|Digital Brain Biomarkers, Humanistic AI,(https://tomgruber.org/mindstrong-story),2023,(Accessed 31 October 2023).
[49]J.M.Peake,G.Kerr,J.P.Sullivan,A critical review of consumer wearables, mobile applications,and equipment for providing biofeedback,monitoring stress, and sleep in physically active populations,Front.Physiol. 9 (2018)743,https:// doi.org/10.3389/fphys.2018.00743.
[50]Prime Therapeutics,Prime Therapeutics and Pear Therapeutics announce first comprehensive value-based agreement for prescription digital therapeutics reSET® and reSET-O® for the treatment of substance and opioid use disorders, Prime Therapeutics LLC,〈https://www.primetherapeutics.com/news/prime- therapeutics-and-pear-therapeutics-announce-first-comprehensive-value-based-a greement-for-prescription-digital-therapeutics-reset-and-reset-o-for-the-treatmen t-of-substance-and-opioi//,2021,(Accessed 31 October 2023).
[51]S.Graham,C.Depp,E.E.Lee,et al.,Artificial intelligence for mental health and mental illnesses:an overview,Curr.Psychiatry Rep. 21 (11)(2019)116,https:// doi.org/10.1007/s11920-019-1094-0.
[52]T.Davenport,R.Kalakota,The potential for artificial intelligence in healthcare, Future Healthc.J. 6 (2)(2019)94-98,https://doi.org/10.7861/futurehosp.6-2- 94.
[53]T.Zhang,A.M.Schoene,S.Ji,S.Ananiadou,Natural language processing applied to mental illness detection:a narrative review,npj Digit.Med. 5 (2022)46, https://doi.org/10.1038/s41746-022-00589-7.
[54]D.Khurana,A.Koli,K.Khatter,S.Singh,Natural language processing:state of the art,current trends and challenges,Multimed.Tools Appl. 82 (2022)3713-3744, https://doi.org/10.1007/s11042-022-13428-4.
[55]A.S.Uban,B.Chulvi,P.Rosso,An emotion and cognitive based analysis of mental health disorders from social media data,Future Gener.Comput.Syst. 123 (2021) 480-494,https://doi.org/10.1016/j.future.2021.05.032.
[56]O.Flanagan,A.Chan,P.Roop,F.Sundram,Using acoustic speech patterns from smartphones to investigate mood disorders:scoping review,JMIR mHealth uHealth 9 (9)(2021)e24352,https://doi.org/10.2196/24352.
[57]G.Fagherazzi,A.Fischer,M.Ismael,V.Despotovic,Voice for health:the use of vocal biomarkers from research to clinical practice,Digit.Biomark. 5 (1)(2021) 78-88,https://doi.org/10.1159/000515346.
[58]N.Haines,M.W.Southward,J.S.Cheavens,T.Beauchaine,W.Y.Ahn,Using computer-vision and machine learning to automate facial coding of positive and negative affect intensity,Hinojosa J.A.,ed.PLoS One,vol. 14 (no.2),2019, e0211735,〈https://doi.org/10.1371/journal.pone.0211735〉.
[59]G.Zhao,X.Li,Automatic Micro-expression analysis:open challenges,Front. Psychol. 10 (2019)1833,https://doi.org/10.3389/fpsyg.2019.01833.
[60]C.Kuziemsky,A.J.Maeder,O.John,et al.,Role of artificial intelligence within the telehealth domain,Yearb.Med.Inform. 28 (1)(2019)35-40,https://doi.org/
[61]Cogito,Training data solutions for ai and machine learning,Cogitotech,<htt ps://www.cogitotech.com/
[62]Affectiva,humanizing technology to bridge the gap between humans and machines,Affectiva,〈https://www.affectiva.com//,2017,(Accessed 31 October 2023).
[63]F.C.Krause,E.Linardatos,D.M.Fresco,M.T.Moore,Facial emotion recognition in major depressive disorder:a meta-analytic review,J.Affect.Disord. 293 (2021)320-328,https://doi.org/10.1016/j.jad.2021.06.053.
[64]Y.S.Lee,W.H.Park,Diagnosis of depressive disorder model on facial expression based on fast R-CNN,Diagnostics 12 (2)(2022)317,https://doi.org/10.3390/ diagnostics12020317.
[65]N.K.Iyortsuun,S.H.Kim,M.Jhon,H.J.Yang,S.Pant,A review of machine learning and deep learning approaches on mental health diagnosis,Healthcare 11 (3)(2023)285,https://doi.org/10.3390/healthcare11030285.
[66]A.M.Chekroud,J.Bondar,J.Delgadillo,et al.,The promise of machine learning in predicting treatment outcomes in psychiatry,World Psychiatry 20 (2)(2021) 154-170,https://doi.org/10.1002/wps. 20882.
[67]Al Kuwaiti,K.Nazer,A.Al-Reedy,et al.,a review of the role of artificial intelligence in healthcare,J.Pers.Med. 13 (6)(2023)951,https://doi.org/ 10.3390/jpm13060951.
[68]J.Yu,N.Shen,S.E.Conway,et al.,A holistic approach to integrating patient, family,and lived experience voices in the development of the Brain Health Databank:a digital learning health system to enable artificial intelligence in the clinic,Front.Health Serv. 3 (2023)1198195,https://doi.org/10.3389/ frhs.2023.1198195.
[69]Google Health,Health self-assessment tools,health.google,<https://health.googl e/consumers/self-assessments/,2017,(Accessed 31 October 2023).
[70]M.Giliberti,Learning more about clinical depression with the PHQ-9 questionnaire.Google,〈https://blog.google/products/search/learning-more-abo ut-clinical-depression-phq-9-questionnaire//,2017,(Accessed 31 October 2023).
[71]K.Kroenke,R.L.Spitzer,J.B.W.Williams,Patient Health Questionnaire-9,APA PsycTests,〈https://doi.org/10.1037/t06165-000〉,1999,(Accessed 31 October 2023).
[72]N.Koutsouleris,T.U.Hauser,V.Skvortsova,M.De Choudhury,From promise to practice:towards the realisation of AI-informed mental health care,Lancet Digit. Health 4 (1)(2022)e829-e840,https://doi.org/10.1016/s2589-7500(22)00153- 4.
[73]Headspace,Ginger's mental health app is now Headspace care organizations, headspace.com,〈https://organizations.headspace.com/ginger-is-now-part-of-he adspace),2023,(Accessed 1 November 2023).
[74]Stong,Ginger.io:striking a balance between humans and technology in mental health,Harvard Technology and Operations Management,〈https://d3.harvard. edu/platform-rctom/submission/ginger-io-striking-a-balance-between-humans- and-technology-in-mental-health//,2016,(Accessed 1 November 2023).
[75]F.Sabry,T.Eltaras,W.Labda,K.Alzoubi,Q.Malluhi,machine learning for healthcare wearable devices:the big picture,in:Y.Wu(ed.)Journal of Healthcare Engineering, 2022 2022,4653923.(https://doi.org/10.1155/2022/ 4653923).
[76]N.Ghaffar Nia,E.Kaplanoglu,A.Nasab,Evaluation of artificial intelligence techniques in disease diagnosis and prediction,Discov.r Artif.Intell.,vol. 3 (no. 1),2023,5,〈https://doi.org/10.1007/s44163-023-00049-5〉.
[77]F.M.Dawoodbhoy,J.Delaney,P.Cecula,et al.,AI in patient flow:applications of artificial intelligence to improve patient flow in NHS acute mental health inpatient units,Heliyon 7 (5)(2021)e06993,https://doi.org/10.1016/j. heliyon.2021.e06993.
[78]M.Toma,O.C.Wei,Predictive modeling in Medicine,Encyclopedia 3 (2)(2023) 590-601,https://doi.org/10.3390/encyclopedia3020042.
[79]IBM Watson for Drug Discovery,IBM Documentation,〈www.ibm.com〉.(https ://www.ibm.com/docs/en/announcements/watson-drug-discovery?region =CAN>,2023,(Accessed 1 November 2023).
[80]E.L.Van der Schyff,B.Ridout,K.L.Amon,R.Forsyth,A.J.Campbell,Providing self-led mental health support through an artificial intelligence-powered chat bot (Leora)to Meet the demand of mental health care,J.Med.Internet Res. 25 (2023) e46448,https://doi.org/10.2196/46448.
[81]S.Sabour,W.Zhang,X.Xiao,et al.,A chatbot for mental health support: exploring the impact of Emohaa on reducing mental distress in China,Front. Digit.Health 5 (2023)1133987,https://doi.org/10.3389/fdgth.2023.1133987.
[82]A.N.Vaidyam,H.Wisniewski,J.D.Halamka,M.S.Kashavan,J.B.Torous, Chatbots and conversational agents in mental health:a review of the psychiatric landscape,Can.J.Psychiatry Rev.Can.Psychiatr. 64 (7)(2019)456-464, https://doi.org/10.1177/0706743719828977.
[83]S.N.Mohsin,A.Gapizov,C.Ekhator,et al.,The role of artificial intelligence in prediction,risk stratification,and personalized treatment planning for congenital heart diseases,Cureus 15 (8)(2023)e44374,https://doi.org/10.7759/ cureus. 44374.
[84]I.H.Sarker,Machine learning:algorithms,real-world applications and research directions,SN Comput.Sci. 2 (160)(2021)1-21,https://doi.org/10.1007/ s42979-021-00592-x.
[85]E.Lin,C.H.Lin,H.Y.Lane,Precision psychiatry applications with pharmacogenomics:artificial intelligence and machine learning approaches,Int. J.Mol.Sci. 21 (3)(2020)969,https://doi.org/10.3390/ijms21030969.
[86]E.Lin,P.H.Kuo,Y.L.Liu,Y.W.Y.Yu,A.C.Yang,S.J.Tsai,A deep learning approach for predicting antidepressant response in major depression using clinical and genetic biomarkers,Front.Psychiatry 9 (9)(2018)290,https://doi. org/10.3389/fpsyt.2018.00290.
[87]P.Gual-Montolio,I.Jaén,V.Martínez-Borba,D.Castilla,C.Suso-Ribera,Using Artificial intelligence to enhance ongoing psychological interventions for emotional problems in real-or close to real-time:a systematic review,Int.J. Environ.Res.Public Health 19 (13)(2022)7737,https://doi.org/10.3390/ ijerph19137737.
[88]H.Siala,Y.Wang,SHIFTing artificial intelligence to be responsible in healthcare: a systematic review,Soc.Sci.Med. 296 (2022)114782,https://doi.org/10.1016/ j.socscimed.2022.114782.
[89]B.Chhetri,L.M.Goyal,M.Mittal,How machine learning is used to study addiction in digital healthcare:a systematic review,Int.J.Inf.Manag.Data Insights 3 (2)(2023)100175,https://doi.org/10.1016/j.jjimei.2023.100175.
[90]S.Carreiro,M.Taylor,S.Shrestha,M.Reinhardt,N.Gilbertson,P.Indic,Realize, analyze,engage(RAE):a digital tool to support recovery from substance use disorder,J.Psychiatry Brain Sci. 6 (2021)e210002,https://doi.org/10.20900/ jpbs. 20210002.
[91]Y.Kumar,A.Koul,R.Singla,M.F.Ijaz,Artificial intelligence in disease diagnosis: a systematic literature review,synthesizing framework and future research agenda,J.Ambient Intell.Humaniz.Comput. 14 (7)(2022)8459-8486,https:// doi.org/10.1007/s12652-021-03612-z.
[92]A.Bohr,K.Memarzadeh,The rise of artificial intelligence in healthcare applications,Artif.Intell.Healthc. 1 (1)(2020)25-60,https://doi.org/10.1016/ B978-0-12-818438-7.00002-2.
[93]S.Dash,S.K.Shakyawar,M.Sharma,S.Kaushik,Big data in healthcare: management,analysis and future prospects,J.Big Data 6 (54)(2019)1-25, https://doi.org/10.1186/s40537-019-0217-0.
[94]A.Thieme,M.Hanratty,M.Lyons,et al.,Designing human-centered AI for mental health:developing clinically relevant applications for online CBT treatment,ACM Trans.Comput.-Hum.Interact. 30 (2)(2022)1-50,https://doi.org/10.1145/ 3564752.
[95]V.Kaldo,N.Isacsson,E.Forsell,P.Bjurner,F.B.Abdesslem,M.Boman,AI-driven adaptive treatment strategies in internet-delivered CBT,Eur.Psychiatry 64 (S1) (2021),https://doi.org/10.1192/j.eurpsy.2021.75(S20-S20).
[96]B.Omarov,Z.Zhumanov,A.Gumar,L.Kuntunova,Artificial intelligence enabled mobile chatbot psychologist using AIML and cognitive behavioral therapy,Int.J.
[97]E.Bendig,B.Erb,L.Schulze-Thuesing,H.Baumeister,The next generation: chatbots in clinical psychology and psychotherapy to foster mental health-a scoping review,Verhaltenstherapie 32 (Suppl.1)(2019)S64-S76,https://doi. org/10.1159/000501812.
[98]Crisis Text Line,Crisis Text Line,Crisis Text Line Published 2013.Accessed 1 November 2023,〈https://www.crisistextline.org/
[99]M.Wedyan,J.Falah,R.Alturki,et al.,Augmented reality for autistic children to enhance their understanding of facial expressions,Multimodal Technol.Interact. 5 (8)(2021),https://doi.org/10.3390/mti5080048.
[100]K.Briot,A.Pizano,M.Bouvard,A.Amestoy,New technologies as promising tools for assessing facial emotion expressions impairments in ASD:a systematic review, Front.Psychiatry 12 (2021)634756,https://doi.org/10.3389/ fpsyt.2021.634756.
[101]E.Bekele,Z.Zheng,A.Swanson,J.Crittendon,Z.Warren,N.Sarkar, Understanding how adolescents with autism respond to facial expressions in virtual reality environments,IEEE Trans.Vis.Comput.Graph. 19 (4)(2013) 711-720,https://doi.org/10.1109/tvcg.2013.42.
[102]A.Ray,A.Bhardwaj,Y.K.Malik,S.Singh,R.Gupta,Artificial intelligence and psychiatry:an overview,Asian J.Psychiatry 70 (2022)103021,https://doi.org/ 10.1016/j.ajp.2022.103021.
[103]S.Borna,C.R.Haider,K.C.Maita,et al.,A review of voice-based pain detection in adults using artificial intelligence,Bioengineering 10 (4)(2023)500,https://doi. org/10.3390/bioengineering10040500.
[104]M.Flynn,D.Effraimidis,A.Angelopoulou,et al.,Assessing the effectiveness of automated emotion recognition in adults and children for clinical investigation, Front.Hum.Neurosci. 14 (2020)70,https://doi.org/10.3389/ fnhum.2020.00070.
[105]O.Ali,W.Abdelbaki,A.Shrestha,E.Elbasi,M.A.A.Alryalat,Y.K.Dwivedi, A systematic literature review of artificial intelligence in the healthcare sector: benefits,challenges,methodologies,and functionalities,J.Innov.Knowl. 8 (1) (2023)100333,https://doi.org/10.1016/j.jik.2023.100333.
[106]M.Senbekov,T.Saliev,Z.Bukeyeva,et al.,The recent progress and applications of digital technologies in healthcare:a review,in:J.Fayn(Ed.),International Journal of Telemedicine and Applications,2020,p.8830200,https://doi.org/ 10.1155/2020/8830200.
[107]S.A.Alowais,S.S.Alghamdi,N.Alsuhebany,et al.,Revolutionizing healthcare: the role of artificial intelligence in clinical practice,BMC Med.Educ. 23 (689) (2023),https://doi.org/10.1186/s12909-023-04698-z.
[108]A.Zlatintsi,P.P.Filntisis,C.Garoufis,et al.,E-prevention:advanced support system for monitoring and relapse prevention in patients with psychotic disorders analyzing long-term multimodal data from wearables and video captures,Sensors 22 (19)(2022),https://doi.org/10.3390/s22197544(7544-7544).
[109]N.Gomes,M.Pato,A.R.Lourenço,N.Datia,A survey on wearable sensors for mental health monitoring,Sensors 23 (3)(2023)1330,https://doi.org/10.3390/ s23031330.
[110]B.A.Hickey,T.Chalmers,P.Newton,et al.,Smart devices and wearable technologies to detect and monitor mental health conditions and stress:a systematic review,Sensors 21 (10)(2021)3461,https://doi.org/10.3390/ s21103461.
[111]Oura Ring,Oura Ring:the most accurate sleep and activity tracker,Oura Ring Published,2022.Accessed 1 November 2023,〈https://ouraring.com/
[112]R.Garriga,J.Mas,S.Abraha,et al.,Machine learning model to predict mental health crises from electronic health records,Nat.Med. 28 (6)(2022)1240-1248, https://doi.org/10.1038/s41591-022-01811-5.
[113]M.Javaid,A.Haleem,R.Pratap Singh,R.Suman,S.Rab,Significance of machine learning in healthcare:features,pillars and applications,Int.J.Intell.Netw. 3 (2022)58-73,https://doi.org/10.1016/j.ijin.2022.05.002(3).
[114]Digital Therapeutics Alliance,reSET(
[115]N.Norori,Q.Hu,F.M.Aellen,F.D.Faraci,A.Tzovara,Addressing bias in big data and AI for health care:a call for open science,Patterns 2 (10)(2021)100347, https://doi.org/10.1016/j.patter.2021.100347.
[116]B.Murdoch,Privacy and artificial intelligence:challenges for protecting health information in a new era,BMC Med.Ethics 22 (2021)122,https://doi.org/ 10.1186/s12910-021-00687-3.
[117]R.Rodrigues,Legal and human rights issues of AI:gaps,challenges and vulnerabilities,J.Respons.Technol. 4 (2020)100005,https://doi.org/10.1016/j. jrt.2020.100005.
[118]Center for Devices and Radiological Health,Artificial Intelligence and Machine Learning in Software.U.S.Food and Drug Administration,Published, 2021. Accessed 1 November 2023,<https://www.fda.gov/medical-devices/software-m edical-device-samd/artificial-intelligence-and-machine-learning-software-m edical-device).
[119]A.Kiseleva,D.Kotzinos,P.De Hert,Transparency of AI in healthcare as a multilayered system of accountabilities:between legal requirements and technical limitations,Front.Artif.Intell. 5 (2022)879603,https://doi.org/ 10.3389/frai.2022.879603.
[120]C.Wang,J.Zhang,N.Lassi,X.Zhang,Privacy protection in using artificial intelligence for healthcare:Chinese regulation in comparative perspective, Healthcare 10 (10)(2022)1878,https://doi.org/10.3390/healthcare10101878.
[121]CDC,Health insurance portability and accountability act of 1996 (HIPAA), Centers for Disease Control and Prevention,Published,2022.Accessed 1 November 2023,〈https://www.cdc.gov/phlp/publications/topic/hipaa.html〉.
[122] R. Agarwal, M. Bjarnadottir, L. Rhue, et al., Addressing algorithmic bias and the perpetuation of health inequities: an AI bias aware framework, Health Policy Technol. 12 (1) (2023) 100702, https://doi.org/10.1016/j.hlpt.2022.100702.
[123] L.H. Nazer, R. Zatarah, S. Waldrip, et al., Bias in artificial intelligence algorithms and recommendations for mitigation, PLoS Digit. Health 2 (6) (2023) e0000278, https://doi.org/10.1371/journal.pdig. 0000278.
[124] IBM Data and AI Team, Shedding light on AI bias with real world examples, IBM Blog, Published, 2023. Accessed 1 November 2023, 〈https://www.ibm.com /blog/shedding-light-on-ai-bias-with-real-world-examples/
[125] D.B. Olawade, O.J. Wada, A.C. David-Olawade, E. Kunonga, O.J. Abaire, Ling, Using artificial intelligence to improve public health: a narrative review, Front. Public Health 11 (2023) 1196397.
[126] Y. Chen, E.W. Clayton, L.L. Novak, S. Anders, B. Malin, human-centered design to address biases n artificial intelligence, J. Med. Internet Res. 25 (2023) e43251, https://doi.org/10.2196/43251.
- Corresponding author.
E-mail address: d.olawade@uel.ac.uk (D.B. Olawade).
DOI: https://doi.org/10.1016/j.glmedi.2024.100099
Publication Date: 2024-04-17
Enhancing mental health with Artificial Intelligence: Current trends and future prospects
ARTICLE INFO
Keywords:
Mental Health
Teletherapy
Psychology
Diagnosis
Abstract
Artificial Intelligence (AI) has emerged as a transformative force in various fields, and its application in mental healthcare is no exception. Hence, this review explores the integration of AI into mental healthcare, elucidating current trends, ethical considerations, and future directions in this dynamic field. This review encompassed recent studies, examples of AI applications, and ethical considerations shaping the field. Additionally, regulatory frameworks and trends in research and development were analyzed. We comprehensively searched four databases (PubMed, IEEE Xplore, PsycINFO, and Google Scholar). The inclusion criteria were papers published in peer-reviewed journals, conference proceedings, or reputable online databases, papers that specifically focus on the application of AI in the field of mental healthcare, and review papers that offer a comprehensive overview, analysis, or integration of existing literature published in the English language. Current trends reveal AI’s transformative potential, with applications such as the early detection of mental health disorders, personalized treatment plans, and AI-driven virtual therapists. However, these advancements are accompanied by ethical challenges concerning privacy, bias mitigation, and the preservation of the human element in therapy. Future directions emphasize the need for clear regulatory frameworks, transparent validation of AI models, and continuous research and development efforts. Integrating AI into mental healthcare and mental health therapy represents a promising frontier in healthcare. While AI holds the potential to revolutionize mental healthcare, responsible and ethical implementation is essential. By addressing current challenges and shaping future directions thoughtfully, we may effectively utilize the potential of AI to enhance the accessibility, efficacy, and ethicality of mental healthcare, thereby helping both individuals and communities.
Introduction
representing the leading cause of disability globally [3]. The surge in the prevalence of mental health disorders has placed an unprecedented demand on healthcare systems, revealing the inadequacies of traditional models of mental health care [4,5]. The conventional approach, which heavily relies on in-person consultations and therapies, falls short of addressing the increasing demand for accessible, affordable, and easily expandable mental health services [4]. This disparity between the demand for and supply of mental healthcare highlights the pressing need for innovative solutions.
Methods
Result
duplicates. Following the abstract and title screening, 32 articles were eliminated as they did not fulfill the eligibility criteria. Therefore, this review included a total of 92 eligible studies. (See Table 1).
History of AI in mental healthcare
Keyword search and paper selection process.
Database/ Source | Keywords used | Initial number of papers | Papers screened out | Number of papers after screening | Number of papers after eligibility | ||||
PubMed |
|
62 | 28 | 34 | 27 | ||||
IEEE Xplore |
|
24 | 9 | 15 | 8 | ||||
PsycINFO |
|
37 | 14 | 23 | 19 | ||||
Google Scholar |
|
88 | 36 | 52 | 38 | ||||
Total | 211 | 87 | 124 | 92 |
The role of AI in diagnosis
Early detection of mental health disorders

AI tools used in current mental healthcare.
AI tools | Chatbot-based therapy | |
1. Woebot | Woebot is a chatbot that provides CBT-based therapy for depression and anxiety. It has been shown to be effective in reducing symptoms of depression and anxiety in clinical trials. [31] | |
2. Wysa | Wysa is a chatbot that provides therapy support for a variety of mental health conditions, including depression, anxiety, stress, and loneliness. It uses a combination of CBT, mindfulness, and positive psychology to help users improve their mental health. [32] | |
3. Talkspace | Talkspace is an online therapy platform connecting patients with licensed therapists through video, text, and audio messaging. It uses AI to match patients with therapists best suited to their needs. [34] | |
4. BetterHelp | BetterHelp is an online therapy platform that connects patients with licensed therapists. It uses AI to match patients with therapists but offers a broader range of therapeutic approaches, including cognitive-behavioral therapy (CBT) and psychodynamic therapy. [33] | |
AI tools | Emotional health apps | |
1. Moodfit | Moodfit is an app that uses AI to track and analyze users’ moods and emotions. It can help users to identify patterns in their moods and to develop strategies for managing their emotions. [35] | |
2. Happify | Happify is an app that uses AI to help users build resilience and happiness. It offers a variety of games, activities, and exercises designed to improve users’ mood, well-being, and resilience. [36] | |
3. Headspace | Headspace is an app that offers guided meditation and mindfulness exercises. It uses AI to personalize the meditation experience for each user. [37] | |
4. Calm | Calm is an app offering guided meditation and mindfulness exercises. It also offers other relaxation and sleep-aid features, such as sleep stories and ambient sounds. [38] | |
5. Shine | Shine is an app that provides personalized daily inspiration and support. It uses AI to learn about users’ needs and interests and then provides content and resources tailored to each user. [39] | |
6. DBT Coach | DBT Coach is an app that provides users with tools and resources to help them practice dialectical behavior therapy (DBT), which teaches people how to manage their emotions, thoughts, and behaviors healthily. [40] | |
7. Companion | CBT Companion is an app that helps users practice cognitive-behavioral therapy (CBT), which teaches people how to identify and change negative thought patterns and behaviors. [41] | |
8. MindShift CBT | MindShift CBT is an app that helps users practice CBT techniques for anxiety and depression. It offers a variety of interactive exercises and tools to help users manage their symptoms and improve their mood. [42] | |
9. PTSD Coach | PTSD Coach is an app that provides users with tools and resources to help them manage post-traumatic stress disorder (PTSD), a mental health condition that can develop in people who have experienced or witnessed a traumatic event. [43] | |
10. SuperBetter | SuperBetter is an app that helps users build resilience and achieve their goals by gamifying the process. It offers a variety of challenges and rewards to help users stay motivated and make progress. [44] | |
AI tools | Smart mental health tools | |
1. Kintsugi | Kintsugi utilizes facial and voice analysis to provide real-time emotional feedback to therapists, aiding in the early detection of emotional distress. [45] | |
2. IBM’s Watson Health | IBM’s Watson Health employs AI to predict disease progression and treatment outcomes by analyzing comprehensive patient data. [46] | |
3. Cerebral | Cerebral utilizes AI to support therapists in refining personalized treatment plans for patients with mental health conditions. [47] | |
4. Mindstrong Health | Mindstrong Health employs AI to analyze smartphone keyboard interactions during teletherapy, providing therapists with insights into emotional states. [48] | |
5. Smartwatch | Smartwatches equipped with AI algorithms monitor changes in sleep patterns, physical activity, and heart rate, offering valuable insights for mental health monitoring. [49] | |
6. Pear Therapeutics’ reset | Pear Therapeutics’ reSET is an FDA-approved prescription digital therapeutic that tracks patient engagement and progress, enabling data-driven treatment adjustments. [50] |
Predictive modeling
treatment outcomes. AI-driven models can predict how a patient may respond to different treatment approaches, whether psychotherapy, medication, or lifestyle changes [10,76]. This personalized approach ensures that individuals receive tailored interventions, optimizing the chances of recovery and minimizing the risk of adverse effects [77]. Furthermore, predictive models have the capability to forecast disease progression, thereby assisting healthcare providers in making well-informed decisions about treatment plans and resource allocation [78]. By predicting the probable course of mental health disorders, healthcare systems can enhance their readiness to address the requirements of mental health services and effectively allocate resources accordingly. For example, IBM’s “Watson for Drug Discovery” uses AI to analyze vast genetic and chemical information datasets to identify potential drug candidates for mental health conditions such as schizophrenia and bipolar disorder [79]. This accelerates drug development, potentially offering more effective treatments for these conditions.
AI in treatment
Personalized treatment plans

Virtual therapists and chatbots
AI in therapy delivery
Teletherapy enhancement
Therapist assistance
therapists in their practice [47]. It analyzes patient data and provides therapists with insights into treatment progress and potential areas for adjustment. This collaborative approach enhances the therapist’s ability to make informed decisions and tailor treatments effectively.
AI in monitoring and follow-up
Continuous monitoring
Outcome assessment
progress and effectiveness. These assessments extend beyond traditional self-report questionnaires and incorporate data from various sources, such as patient surveys, physiological data, and behavioral observations [93,112]. AI analyzes this data to gauge treatment outcomes. For example, reSET is a US Food and Drug Administration-approved prescription digital therapeutic for substance use disorder [114]. It uses AI to track patient engagement and completion of therapeutic modules. The data generated by reSET enables therapists and patients to assess treatment progress objectively and adjust interventions as needed.
Discussion
Ethical considerations in AI for mental healthcare
Human-AI interaction
Privacy and data security
Bias and fairness
Implications of research
Strengths and limitations
nature of mental health data cannot be overstated. Algorithm bias poses a potential risk since it may result in insufficient or unsuitable assistance for specific populations. Moreover, AI is devoid of human empathy and comprehension, which are vital in therapeutic interactions. Further limitations arise from the need to integrate with preexisting healthcare systems and navigate regulatory difficulties. Hence, although AI possesses considerable potential in mental health care, it is crucial to deliberate its limitations to ensure responsible and effective implementation.
Conclusion
Declaration of Competing Interest
References
[2] G. Espejo, W. Reiner, M. Wenzinger, Exploring the role of artificial intelligence in mental healthcare: progress, pitfalls, and promises, Cureus 15 (9) (2023) e44748, https://doi.org/10.7759/cureus.44748.
[3] World Health Organization, Mental disorders. 〈https://www.who.int/news -room/fact-sheets/detail/mental-disorders/ /, 2022, (Accessed 11 October 2023).
[4] M.L. Wainberg, P. Scorza, J.M. Shultz, et al., Challenges and opportunities in global mental health: a research-to-practice perspective, Curr. Psychiatry Rep. 19 (28) (2017) 1-10, https://doi.org/10.1007/s11920-017-0780-z.
[5] X. Qin, C.R. Hsieh, Understanding and addressing the treatment gap in mental healthcare: economic perspectives and evidence from China, Inq.: J. Health Care Organ. Provis. Financ. 57 (2020). (https//doi.org/10.1177/004695802 0950566).
[6] J. Bajwa, U. Munir, A. Nori, B. Williams, Artificial intelligence in healthcare: transforming the practice of medicine, Future Healthc. J. 8 (2) (2021) e188-e194, https://doi.org/10.7861/fhj.2021-0095.
[7] P. Nilsen, P. Svedberg, J. Nygren, M. Frideros, J. Johansson, S. Schueller, Accelerating the impact of artificial intelligence in mental healthcare through implementation science, Implement. Res. Pract. 3 (2022) 263348952211120, https://doi.org/10.1177/26334895221112033.
[8] M. Langarizadeh, M. Tabatabaei, K. Tavakol, M. Naghipour, F. Moghbeli, Telemental health care, an effective alternative to conventional mental care: a systematic review, Acta Inform. Med. 25 (4) (2017) 240-246, https://doi.org/ 10.5455/aim.2017.25.240-246.
[9] F. Minerva, A. Giubilini, Is AI the future of mental healthcare? Topoi 42 (3) (2023) 809-817, https://doi.org/10.1007/s11245-023-09932-3.
[10] K.B. Johnson, W. Wei, D. Weeraratne, et al., Precision medicine, AI, and the future of personalized health care, Clin. Transl. Sci. 14 (1) (2021) 86-93, https:// doi.org/10.1111/cts. 12884.
[11]M.C.T.Tai,The impact of artificial intelligence on human society and bioethics, Tzu Chi Med.J. 32 (4)(2020)339-343,https://doi.org/10.4103/tcmj.tcmj_71_ 20.
[12]S.Bouhouita-Guermech,P.Gogognon,J.C.Bélisle-Pipon,Specific challenges posed by artificial intelligence in research ethics,Front.Artif.Intell. 6 (2023) 1149082,https://doi.org/10.3389/frai.2023.1149082.
[13]N.Naik,B.M.Z.Hameed,D.K.Shetty,et al.,Legal and ethical consideration in artificial intelligence in healthcare:who takes responsibility?Front.Surg.(2022) 862322 https://doi.org/10.3389/fsurg.2022.862322.
[14]S.Gerke,T.Minssen,G.Cohen,Ethical and legal challenges of artificial intelligence-driven healthcare,Artif.Intell.Healthc.(2020)295-336,https://doi. org/10.1016/B978-0-12-818438-7.00012-5.
[15]D.Arias,S.Saxena,S.Verguet,Quantifying the global burden of mental disorders and their economic value,eClinicalMedicine 54 (2022)101675,https://doi.org/ 10.1016/j.eclinm. 2022.101675.
[16]The Lancet Global Health,Mental health matters,Lancet(2020),https://doi.org/ 10.1016/S2214-109X(20)30432-0(Accessed 20 October 2023).
[17]P.Uwa,Unleashing the potential of artificial intelligence:revolutionizing industries and shaping the future,Medium, 2023 〈https://medium.com/@paul nodfield/unleashing-the-potential-of-artificial-intelligence-revolutionizing-indust ries-and-shaping-the-74a668f9712e),(Accessed 29 October 2023).
[18]R.Anyoha,The history of artificial intelligence,Science in the news, 2017 〈https ://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/),(Accessed 29 October 2023).
[19]I.Goldstein,S.Papert,Artificial intelligence,language,and the study of knowledge,Cogn.Sci. 1 (1)(1977)84-123,https://doi.org/10.1016/S0364- 0213(77)80006-2.
[20]J.S.Abreu,Founding fathers of artificial intelligence,Quidgest, 2021 〈https ://quidgest.com/en/blog-en/ai-founding-fathers/),(Accessed 29 October 2023).
[21]J.Moor,The Dartmouth college artificial intelligence conference:the next fifty years,AI Mag. 27 (4)(2006)87,https://doi.org/10.1609/aimag.v27i4.1911.
[22]A.Basil,ELIZA:The chatbot who revolutionised human-machine interaction[an introduction],Nerd For Tech./https://medium.com/nerd-for-tech/eliza-the-chat bot-who-revolutionised-human-machine-interaction-an-introduction-582a7 581f91c),2021,(Accessed 29 October 2023).
[23]C.Bassett,The computational therapeutic:exploring Weizenbaum's ELIZA as a history of the present,AI Soc. 34 (4)(2018)803-812,https://doi.org/10.1007/ s00146-018-0825-9.
[24]D.D.Luxton,Artificial intelligence in psychological practice:current and future applications and implications,Prof.Psychol.:Res.Pract. 45 (5)(2014)32-339, https://doi.org/10.1037/a0034559.
[25]S.Zhou,J.Zhao,L.Zhang,Application of artificial intelligence on psychological interventions and diagnosis:an overview,Front.Psychiatry 13 (2021)811665, https://doi.org/10.3389/fpsyt.2022.811665.
[26]G.Finocchiaro,The regulation of artificial intelligence,AI Soc. 3 (4)(2023)1-8, https://doi.org/10.1007/s00146-023-01650-z.
[27]S.Tutun,M.E.Johnson,A.Ahmed,et al.,An AI-based decision support system for predicting mental health disorders,Inf.Syst.Front. 25 (2022)1261-1276, https://doi.org/10.1007/s10796-022-10282-5.
[28]S.E.Blackwell,T.Heidenreich,Cognitive behavior therapy at the crossroads,Int. J.Cogn.Ther. 14 (1)(2021)1-22,https://doi.org/10.1007/s41811-021-00104- y.
[29]S.D.A.Hupp,D.Reitman,J.D.Jewell,Cognitive-behavioral theory,in:M.Hersen, A.M.Gross(Eds.),Handbook of Clinical Psychology,Vol 2,Children and Adolescents,John Wiley &Sons,Inc.,2008,pp.263-287.
[30]S.D'Alfonso,AI in mental health,Curr.Opin.Psychol. 36 (2020)112-117, https://doi.org/10.1016/j.copsyc.2020.04.005.
[31]Woebot Health,Mental health chatbot,Woebot,〈https://woebothealth.com/
[32]W.Wysa,Everyday mental health,Talkspace,2023.(https://www.talkspace. com//,2018,(Accessed October 30,2023).
[33]Better Help,Professional counseling with a licensed therapist,Betterhelp.com. (https://www.betterhelp.com/),2013,(Accessed 31 October 2023).
[34]Talkspace,Online therapy,counseling online,marriage counseling,Talkspace. com.(https://www.talkspace.com/),2018,(Accessed 30 October 2023).
[35]Moodfit,Tools &insight for your mental health,Moodfit.(https://www.get moodfit.com/),2023,(Accessed 31 October 2023).
[36]Happify,Happify:science-based activities and games,Happify.com,〈https:// www.happify.com/
[37]Headspace,Get the headspace app,Headspace,(https://www.headspace.com/he adspace-meditation-app//,2019,(Accessed 31 October 2023).
[38]Calm,Experience calm,Calm.(https://www.calm.com/),2019,(Accessed 31 October 2023).
[39]Shine,Calm anxiety &stress,theshineapp.com.(https://www.theshineapp. com/
[40]M.M.Braun,Dialectical behavior therapy:new frontiers in practice,in: D.Wedding(Ed.),Psyccritiques,50,2005,https://doi.org/10.1037/051667.
[41]Resiliens,CBT Companion-a comprehensive app for cognitive behavioral therapy,Resiliens,〈https://resiliens.com/cbt-companion/〉,(2021)(Accessed 31 October 2023).
[42]Anxiety Canada,MindShift
[43]US.Department of Veteran Affairs,PTSD Coach-PTSD:National Center for PTSD,〈https://www.ptsd.va.gov/appvid/mobile/ptsdcoach_app.asp),2022,(Accessed 31 October 2023).
[44]SuperBetter,Social-emotional learning,mental health &resilience training, Superbetter.com,(https://superbetter.com//,2023,(Accessed 31 October 2023).
[45]Kintusugi,Kintsugi.Kintsugihealth,〈https://www.kintsugihealth.com/ 7 ,2022, (Accessed 31 October 2023).
[46]IBM Watson Health,IBM watson health is now merative,
[47]Cerebral,The Cerebral Way.cerebral.com,<https://cerebral.com/
[48]T.Gruber,AI for mental health,Mindstrong AI models|Digital Brain Biomarkers, Humanistic AI,(https://tomgruber.org/mindstrong-story),2023,(Accessed 31 October 2023).
[49]J.M.Peake,G.Kerr,J.P.Sullivan,A critical review of consumer wearables, mobile applications,and equipment for providing biofeedback,monitoring stress, and sleep in physically active populations,Front.Physiol. 9 (2018)743,https:// doi.org/10.3389/fphys.2018.00743.
[50]Prime Therapeutics,Prime Therapeutics and Pear Therapeutics announce first comprehensive value-based agreement for prescription digital therapeutics reSET® and reSET-O® for the treatment of substance and opioid use disorders, Prime Therapeutics LLC,〈https://www.primetherapeutics.com/news/prime- therapeutics-and-pear-therapeutics-announce-first-comprehensive-value-based-a greement-for-prescription-digital-therapeutics-reset-and-reset-o-for-the-treatmen t-of-substance-and-opioi//,2021,(Accessed 31 October 2023).
[51]S.Graham,C.Depp,E.E.Lee,et al.,Artificial intelligence for mental health and mental illnesses:an overview,Curr.Psychiatry Rep. 21 (11)(2019)116,https:// doi.org/10.1007/s11920-019-1094-0.
[52]T.Davenport,R.Kalakota,The potential for artificial intelligence in healthcare, Future Healthc.J. 6 (2)(2019)94-98,https://doi.org/10.7861/futurehosp.6-2- 94.
[53]T.Zhang,A.M.Schoene,S.Ji,S.Ananiadou,Natural language processing applied to mental illness detection:a narrative review,npj Digit.Med. 5 (2022)46, https://doi.org/10.1038/s41746-022-00589-7.
[54]D.Khurana,A.Koli,K.Khatter,S.Singh,Natural language processing:state of the art,current trends and challenges,Multimed.Tools Appl. 82 (2022)3713-3744, https://doi.org/10.1007/s11042-022-13428-4.
[55]A.S.Uban,B.Chulvi,P.Rosso,An emotion and cognitive based analysis of mental health disorders from social media data,Future Gener.Comput.Syst. 123 (2021) 480-494,https://doi.org/10.1016/j.future.2021.05.032.
[56]O.Flanagan,A.Chan,P.Roop,F.Sundram,Using acoustic speech patterns from smartphones to investigate mood disorders:scoping review,JMIR mHealth uHealth 9 (9)(2021)e24352,https://doi.org/10.2196/24352.
[57]G.Fagherazzi,A.Fischer,M.Ismael,V.Despotovic,Voice for health:the use of vocal biomarkers from research to clinical practice,Digit.Biomark. 5 (1)(2021) 78-88,https://doi.org/10.1159/000515346.
[58]N.Haines,M.W.Southward,J.S.Cheavens,T.Beauchaine,W.Y.Ahn,Using computer-vision and machine learning to automate facial coding of positive and negative affect intensity,Hinojosa J.A.,ed.PLoS One,vol. 14 (no.2),2019, e0211735,〈https://doi.org/10.1371/journal.pone.0211735〉.
[59]G.Zhao,X.Li,Automatic Micro-expression analysis:open challenges,Front. Psychol. 10 (2019)1833,https://doi.org/10.3389/fpsyg.2019.01833.
[60]C.Kuziemsky,A.J.Maeder,O.John,et al.,Role of artificial intelligence within the telehealth domain,Yearb.Med.Inform. 28 (1)(2019)35-40,https://doi.org/
[61]Cogito,Training data solutions for ai and machine learning,Cogitotech,<htt ps://www.cogitotech.com/
[62]Affectiva,humanizing technology to bridge the gap between humans and machines,Affectiva,〈https://www.affectiva.com//,2017,(Accessed 31 October 2023).
[63]F.C.Krause,E.Linardatos,D.M.Fresco,M.T.Moore,Facial emotion recognition in major depressive disorder:a meta-analytic review,J.Affect.Disord. 293 (2021)320-328,https://doi.org/10.1016/j.jad.2021.06.053.
[64]Y.S.Lee,W.H.Park,Diagnosis of depressive disorder model on facial expression based on fast R-CNN,Diagnostics 12 (2)(2022)317,https://doi.org/10.3390/ diagnostics12020317.
[65]N.K.Iyortsuun,S.H.Kim,M.Jhon,H.J.Yang,S.Pant,A review of machine learning and deep learning approaches on mental health diagnosis,Healthcare 11 (3)(2023)285,https://doi.org/10.3390/healthcare11030285.
[66]A.M.Chekroud,J.Bondar,J.Delgadillo,et al.,The promise of machine learning in predicting treatment outcomes in psychiatry,World Psychiatry 20 (2)(2021) 154-170,https://doi.org/10.1002/wps. 20882.
[67]Al Kuwaiti,K.Nazer,A.Al-Reedy,et al.,a review of the role of artificial intelligence in healthcare,J.Pers.Med. 13 (6)(2023)951,https://doi.org/ 10.3390/jpm13060951.
[68]J.Yu,N.Shen,S.E.Conway,et al.,A holistic approach to integrating patient, family,and lived experience voices in the development of the Brain Health Databank:a digital learning health system to enable artificial intelligence in the clinic,Front.Health Serv. 3 (2023)1198195,https://doi.org/10.3389/ frhs.2023.1198195.
[69]Google Health,Health self-assessment tools,health.google,<https://health.googl e/consumers/self-assessments/,2017,(Accessed 31 October 2023).
[70]M.Giliberti,Learning more about clinical depression with the PHQ-9 questionnaire.Google,〈https://blog.google/products/search/learning-more-abo ut-clinical-depression-phq-9-questionnaire//,2017,(Accessed 31 October 2023).
[71]K.Kroenke,R.L.Spitzer,J.B.W.Williams,Patient Health Questionnaire-9,APA PsycTests,〈https://doi.org/10.1037/t06165-000〉,1999,(Accessed 31 October 2023).
[72]N.Koutsouleris,T.U.Hauser,V.Skvortsova,M.De Choudhury,From promise to practice:towards the realisation of AI-informed mental health care,Lancet Digit. Health 4 (1)(2022)e829-e840,https://doi.org/10.1016/s2589-7500(22)00153- 4.
[73]Headspace,Ginger's mental health app is now Headspace care organizations, headspace.com,〈https://organizations.headspace.com/ginger-is-now-part-of-he adspace),2023,(Accessed 1 November 2023).
[74]Stong,Ginger.io:striking a balance between humans and technology in mental health,Harvard Technology and Operations Management,〈https://d3.harvard. edu/platform-rctom/submission/ginger-io-striking-a-balance-between-humans- and-technology-in-mental-health//,2016,(Accessed 1 November 2023).
[75]F.Sabry,T.Eltaras,W.Labda,K.Alzoubi,Q.Malluhi,machine learning for healthcare wearable devices:the big picture,in:Y.Wu(ed.)Journal of Healthcare Engineering, 2022 2022,4653923.(https://doi.org/10.1155/2022/ 4653923).
[76]N.Ghaffar Nia,E.Kaplanoglu,A.Nasab,Evaluation of artificial intelligence techniques in disease diagnosis and prediction,Discov.r Artif.Intell.,vol. 3 (no. 1),2023,5,〈https://doi.org/10.1007/s44163-023-00049-5〉.
[77]F.M.Dawoodbhoy,J.Delaney,P.Cecula,et al.,AI in patient flow:applications of artificial intelligence to improve patient flow in NHS acute mental health inpatient units,Heliyon 7 (5)(2021)e06993,https://doi.org/10.1016/j. heliyon.2021.e06993.
[78]M.Toma,O.C.Wei,Predictive modeling in Medicine,Encyclopedia 3 (2)(2023) 590-601,https://doi.org/10.3390/encyclopedia3020042.
[79]IBM Watson for Drug Discovery,IBM Documentation,〈www.ibm.com〉.(https ://www.ibm.com/docs/en/announcements/watson-drug-discovery?region =CAN>,2023,(Accessed 1 November 2023).
[80]E.L.Van der Schyff,B.Ridout,K.L.Amon,R.Forsyth,A.J.Campbell,Providing self-led mental health support through an artificial intelligence-powered chat bot (Leora)to Meet the demand of mental health care,J.Med.Internet Res. 25 (2023) e46448,https://doi.org/10.2196/46448.
[81]S.Sabour,W.Zhang,X.Xiao,et al.,A chatbot for mental health support: exploring the impact of Emohaa on reducing mental distress in China,Front. Digit.Health 5 (2023)1133987,https://doi.org/10.3389/fdgth.2023.1133987.
[82]A.N.Vaidyam,H.Wisniewski,J.D.Halamka,M.S.Kashavan,J.B.Torous, Chatbots and conversational agents in mental health:a review of the psychiatric landscape,Can.J.Psychiatry Rev.Can.Psychiatr. 64 (7)(2019)456-464, https://doi.org/10.1177/0706743719828977.
[83]S.N.Mohsin,A.Gapizov,C.Ekhator,et al.,The role of artificial intelligence in prediction,risk stratification,and personalized treatment planning for congenital heart diseases,Cureus 15 (8)(2023)e44374,https://doi.org/10.7759/ cureus. 44374.
[84]I.H.Sarker,Machine learning:algorithms,real-world applications and research directions,SN Comput.Sci. 2 (160)(2021)1-21,https://doi.org/10.1007/ s42979-021-00592-x.
[85]E.Lin,C.H.Lin,H.Y.Lane,Precision psychiatry applications with pharmacogenomics:artificial intelligence and machine learning approaches,Int. J.Mol.Sci. 21 (3)(2020)969,https://doi.org/10.3390/ijms21030969.
[86]E.Lin,P.H.Kuo,Y.L.Liu,Y.W.Y.Yu,A.C.Yang,S.J.Tsai,A deep learning approach for predicting antidepressant response in major depression using clinical and genetic biomarkers,Front.Psychiatry 9 (9)(2018)290,https://doi. org/10.3389/fpsyt.2018.00290.
[87]P.Gual-Montolio,I.Jaén,V.Martínez-Borba,D.Castilla,C.Suso-Ribera,Using Artificial intelligence to enhance ongoing psychological interventions for emotional problems in real-or close to real-time:a systematic review,Int.J. Environ.Res.Public Health 19 (13)(2022)7737,https://doi.org/10.3390/ ijerph19137737.
[88]H.Siala,Y.Wang,SHIFTing artificial intelligence to be responsible in healthcare: a systematic review,Soc.Sci.Med. 296 (2022)114782,https://doi.org/10.1016/ j.socscimed.2022.114782.
[89]B.Chhetri,L.M.Goyal,M.Mittal,How machine learning is used to study addiction in digital healthcare:a systematic review,Int.J.Inf.Manag.Data Insights 3 (2)(2023)100175,https://doi.org/10.1016/j.jjimei.2023.100175.
[90]S.Carreiro,M.Taylor,S.Shrestha,M.Reinhardt,N.Gilbertson,P.Indic,Realize, analyze,engage(RAE):a digital tool to support recovery from substance use disorder,J.Psychiatry Brain Sci. 6 (2021)e210002,https://doi.org/10.20900/ jpbs. 20210002.
[91]Y.Kumar,A.Koul,R.Singla,M.F.Ijaz,Artificial intelligence in disease diagnosis: a systematic literature review,synthesizing framework and future research agenda,J.Ambient Intell.Humaniz.Comput. 14 (7)(2022)8459-8486,https:// doi.org/10.1007/s12652-021-03612-z.
[92]A.Bohr,K.Memarzadeh,The rise of artificial intelligence in healthcare applications,Artif.Intell.Healthc. 1 (1)(2020)25-60,https://doi.org/10.1016/ B978-0-12-818438-7.00002-2.
[93]S.Dash,S.K.Shakyawar,M.Sharma,S.Kaushik,Big data in healthcare: management,analysis and future prospects,J.Big Data 6 (54)(2019)1-25, https://doi.org/10.1186/s40537-019-0217-0.
[94]A.Thieme,M.Hanratty,M.Lyons,et al.,Designing human-centered AI for mental health:developing clinically relevant applications for online CBT treatment,ACM Trans.Comput.-Hum.Interact. 30 (2)(2022)1-50,https://doi.org/10.1145/ 3564752.
[95]V.Kaldo,N.Isacsson,E.Forsell,P.Bjurner,F.B.Abdesslem,M.Boman,AI-driven adaptive treatment strategies in internet-delivered CBT,Eur.Psychiatry 64 (S1) (2021),https://doi.org/10.1192/j.eurpsy.2021.75(S20-S20).
[96]B.Omarov,Z.Zhumanov,A.Gumar,L.Kuntunova,Artificial intelligence enabled mobile chatbot psychologist using AIML and cognitive behavioral therapy,Int.J.
[97]E.Bendig,B.Erb,L.Schulze-Thuesing,H.Baumeister,The next generation: chatbots in clinical psychology and psychotherapy to foster mental health-a scoping review,Verhaltenstherapie 32 (Suppl.1)(2019)S64-S76,https://doi. org/10.1159/000501812.
[98]Crisis Text Line,Crisis Text Line,Crisis Text Line Published 2013.Accessed 1 November 2023,〈https://www.crisistextline.org/
[99]M.Wedyan,J.Falah,R.Alturki,et al.,Augmented reality for autistic children to enhance their understanding of facial expressions,Multimodal Technol.Interact. 5 (8)(2021),https://doi.org/10.3390/mti5080048.
[100]K.Briot,A.Pizano,M.Bouvard,A.Amestoy,New technologies as promising tools for assessing facial emotion expressions impairments in ASD:a systematic review, Front.Psychiatry 12 (2021)634756,https://doi.org/10.3389/ fpsyt.2021.634756.
[101]E.Bekele,Z.Zheng,A.Swanson,J.Crittendon,Z.Warren,N.Sarkar, Understanding how adolescents with autism respond to facial expressions in virtual reality environments,IEEE Trans.Vis.Comput.Graph. 19 (4)(2013) 711-720,https://doi.org/10.1109/tvcg.2013.42.
[102]A.Ray,A.Bhardwaj,Y.K.Malik,S.Singh,R.Gupta,Artificial intelligence and psychiatry:an overview,Asian J.Psychiatry 70 (2022)103021,https://doi.org/ 10.1016/j.ajp.2022.103021.
[103]S.Borna,C.R.Haider,K.C.Maita,et al.,A review of voice-based pain detection in adults using artificial intelligence,Bioengineering 10 (4)(2023)500,https://doi. org/10.3390/bioengineering10040500.
[104]M.Flynn,D.Effraimidis,A.Angelopoulou,et al.,Assessing the effectiveness of automated emotion recognition in adults and children for clinical investigation, Front.Hum.Neurosci. 14 (2020)70,https://doi.org/10.3389/ fnhum.2020.00070.
[105]O.Ali,W.Abdelbaki,A.Shrestha,E.Elbasi,M.A.A.Alryalat,Y.K.Dwivedi, A systematic literature review of artificial intelligence in the healthcare sector: benefits,challenges,methodologies,and functionalities,J.Innov.Knowl. 8 (1) (2023)100333,https://doi.org/10.1016/j.jik.2023.100333.
[106]M.Senbekov,T.Saliev,Z.Bukeyeva,et al.,The recent progress and applications of digital technologies in healthcare:a review,in:J.Fayn(Ed.),International Journal of Telemedicine and Applications,2020,p.8830200,https://doi.org/ 10.1155/2020/8830200.
[107]S.A.Alowais,S.S.Alghamdi,N.Alsuhebany,et al.,Revolutionizing healthcare: the role of artificial intelligence in clinical practice,BMC Med.Educ. 23 (689) (2023),https://doi.org/10.1186/s12909-023-04698-z.
[108]A.Zlatintsi,P.P.Filntisis,C.Garoufis,et al.,E-prevention:advanced support system for monitoring and relapse prevention in patients with psychotic disorders analyzing long-term multimodal data from wearables and video captures,Sensors 22 (19)(2022),https://doi.org/10.3390/s22197544(7544-7544).
[109]N.Gomes,M.Pato,A.R.Lourenço,N.Datia,A survey on wearable sensors for mental health monitoring,Sensors 23 (3)(2023)1330,https://doi.org/10.3390/ s23031330.
[110]B.A.Hickey,T.Chalmers,P.Newton,et al.,Smart devices and wearable technologies to detect and monitor mental health conditions and stress:a systematic review,Sensors 21 (10)(2021)3461,https://doi.org/10.3390/ s21103461.
[111]Oura Ring,Oura Ring:the most accurate sleep and activity tracker,Oura Ring Published,2022.Accessed 1 November 2023,〈https://ouraring.com/
[112]R.Garriga,J.Mas,S.Abraha,et al.,Machine learning model to predict mental health crises from electronic health records,Nat.Med. 28 (6)(2022)1240-1248, https://doi.org/10.1038/s41591-022-01811-5.
[113]M.Javaid,A.Haleem,R.Pratap Singh,R.Suman,S.Rab,Significance of machine learning in healthcare:features,pillars and applications,Int.J.Intell.Netw. 3 (2022)58-73,https://doi.org/10.1016/j.ijin.2022.05.002(3).
[114]Digital Therapeutics Alliance,reSET(
[115]N.Norori,Q.Hu,F.M.Aellen,F.D.Faraci,A.Tzovara,Addressing bias in big data and AI for health care:a call for open science,Patterns 2 (10)(2021)100347, https://doi.org/10.1016/j.patter.2021.100347.
[116]B.Murdoch,Privacy and artificial intelligence:challenges for protecting health information in a new era,BMC Med.Ethics 22 (2021)122,https://doi.org/ 10.1186/s12910-021-00687-3.
[117]R.Rodrigues,Legal and human rights issues of AI:gaps,challenges and vulnerabilities,J.Respons.Technol. 4 (2020)100005,https://doi.org/10.1016/j. jrt.2020.100005.
[118]Center for Devices and Radiological Health,Artificial Intelligence and Machine Learning in Software.U.S.Food and Drug Administration,Published, 2021. Accessed 1 November 2023,<https://www.fda.gov/medical-devices/software-m edical-device-samd/artificial-intelligence-and-machine-learning-software-m edical-device).
[119]A.Kiseleva,D.Kotzinos,P.De Hert,Transparency of AI in healthcare as a multilayered system of accountabilities:between legal requirements and technical limitations,Front.Artif.Intell. 5 (2022)879603,https://doi.org/ 10.3389/frai.2022.879603.
[120]C.Wang,J.Zhang,N.Lassi,X.Zhang,Privacy protection in using artificial intelligence for healthcare:Chinese regulation in comparative perspective, Healthcare 10 (10)(2022)1878,https://doi.org/10.3390/healthcare10101878.
[121]CDC,Health insurance portability and accountability act of 1996 (HIPAA), Centers for Disease Control and Prevention,Published,2022.Accessed 1 November 2023,〈https://www.cdc.gov/phlp/publications/topic/hipaa.html〉.
[122] R. Agarwal, M. Bjarnadottir, L. Rhue, et al., Addressing algorithmic bias and the perpetuation of health inequities: an AI bias aware framework, Health Policy Technol. 12 (1) (2023) 100702, https://doi.org/10.1016/j.hlpt.2022.100702.
[123] L.H. Nazer, R. Zatarah, S. Waldrip, et al., Bias in artificial intelligence algorithms and recommendations for mitigation, PLoS Digit. Health 2 (6) (2023) e0000278, https://doi.org/10.1371/journal.pdig. 0000278.
[124] IBM Data and AI Team, Shedding light on AI bias with real world examples, IBM Blog, Published, 2023. Accessed 1 November 2023, 〈https://www.ibm.com /blog/shedding-light-on-ai-bias-with-real-world-examples/
[125] D.B. Olawade, O.J. Wada, A.C. David-Olawade, E. Kunonga, O.J. Abaire, Ling, Using artificial intelligence to improve public health: a narrative review, Front. Public Health 11 (2023) 1196397.
[126] Y. Chen, E.W. Clayton, L.L. Novak, S. Anders, B. Malin, human-centered design to address biases n artificial intelligence, J. Med. Internet Res. 25 (2023) e43251, https://doi.org/10.2196/43251.
- Corresponding author.
E-mail address: d.olawade@uel.ac.uk (D.B. Olawade).