DOI: https://doi.org/10.1007/s12190-025-02371-w
تاريخ النشر: 2025-01-23
طريقة تشيبيشيف بيتروف-غاليركين للمعادلات التكاملية التفاضلية غير الخطية ذات النواة ذات التفرد المعتدل
تم النشر على الإنترنت: 23 يناير 2025
© المؤلفون 2025
الملخص
في هذه الورقة، يتم تقديم نهج جديد للمعادلات الجزئية التكاملية غير الخطية ذات الفواصل الزمنية مع نوى ضعيفة التفرد (TFPIDE). تنتج الطريقة المقترحة حلاً طيفياً شبه تحليلي باستخدام كثيرات حدود تشيبيشيف من النوع الأول المنقولة (SCP1K) كدوال أساسية. لتلبية متطلبات البداية والحدود المتجانسة، يجب اختيار مجموعة مناسبة من الدوال الأساسية. ثم يتم العثور على معاملات التوسع المجهولة باستخدام تقنية بيتروف-غاليركين. من المثير للاهتمام، أننا نحصل على معادلات دقيقة لكل من عناصر المصفوفات ذات الصلة. تتبع هذه المصفوفات نمطًا واضحًا يسهل إجراء عملية الانعكاس ويسمح بحل المشكلة الجبرية الناتجة عن تقنية بيتروف-غاليركين. تسهم هذه الدراسة في فهم أفضل لجدوى النهج من خلال فحص شامل للتقارب وتحليل الخطأ. توضح الأمثلة العددية قابلية التطبيق والدقة والكفاءة للطريقة المقترحة، مدعومة بمقارنات مع الأبحاث السابقة. تظهر النتائج مدى فعالية هذه الطريقة في حل المعادلات الجزئية التكاملية ذات الفواصل الزمنية، مما يبرز أهميتها كمساهمة مفيدة في مجال المعرفة في هذا المجال.
1 المقدمة
إنشاء نهج قوي ودقيق للحل لمعادلات التفاضل التكاملية غير الخطية ذات الفواصل الزمنية مع نوى ضعيفة التفرد.
- لتجنب العقبات الكامنة، تقديم طريقة جديدة لحل الفئة المعطاة من المعادلات من خلال دمج SCP1K باستخدام خوارزمية بيتروف-غاليركين.
- فحص نهج بيتروف-غاليركين بدقة، موضحًا نظرياته الأساسية وتقديم قائمة بالمشكلات التفاضلية المختلفة التي يمكنه حلها.
- تحديد دالة الأساس لـ SCP1K في الطرق الطيفية، مع تسليط الضوء على مرونتها في تعزيز دقة وكفاءة الحلول العددية.
- قم بالتحقيق بعناية في الطريقة المقترحة باستخدام تحليل الأخطاء لتسليط الضوء على صحتها وموثوقيتها.
- عرض أمثلة عددية ومقارنات مع الدراسات السابقة لإظهار الدقة والقابلية للتطبيق وفعالية النهج الموصى به.
حسب أفضل معرفتنا، يمكن سرد المساهمة الرئيسية والجدة في هذه الورقة في النقاط التالية: - يتم تقديم خلفية نظرية جديدة لمجموعات SCP1K المعدلة.
- إنشاء مصفوفات تشغيلية جديدة للمشتقات الصحيحة والكسريّة لهذه الحدود. تُعتبر هذه المصفوفات أدوات مهمة لمعالجة TFPIDE.
- دراسة حدود الخطأ جديدة.
- من خلال اختيار المجموعات المعدلة من SCP1K كدوال أساسية، فإن بعض الحدود من الأوضاع المحتفظ بها تجعل من الممكن إنتاج تقريبات بدقة ممتازة.
- يتطلب الحصول على الحل التقريبي المطلوب حسابات أقل.
2 المقدمات
2.1 مشتق كابوتو الكسري
الخصائص التالية مُرضية من قبل المشغل
2.2 متعددة الحدود الشيفية من النوع الأول المنقولة
علاوة على ذلك، شكل القوة وعلاقات الانعكاس لـ
3 النظام العددي
3.1 دوال الأساس
(أ)
(ب)
بالنسبة للجزء (ب)، لدينا
الدليل للجزء (ج) يتقدم من خلال الالتزام بنفس الخطوات الموضحة في دليل الجزء (ب).
بموجب النظرية 2 في [29]، يمكن كتابة التكامل التالي على النحو التالي
3.2 حل بيتروف-غاليركين لمعادلة TFPIDE غير الخطية
4 تحليل الأخطاء
5 أمثلة توضيحية
| طريقتنا في
|
الطريقة في [32] | ||
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ١٤٠.٩٥٣ | ١٣٣.٦٢٦ | 131.668 | ١٣٢٫٦٨٩ |

| طريقتنا في | الطريقة في [32] | ||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ١٤٥.٩٠٨ | 141.503 | ١٣٩٫٧٦٨ | ١٤٤.١٥٢ |

| طريقتنا في
|
الطريقة في [32] | ||
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234.892 | 231.752 | 234.892 | 238.262 |



|
|
طريقتنا عند
|
||
|
|
|
|
|
| 0.1 |
|
|
|
| 0.2 |
|
|
|
| 0.3 |
|
|
|
| 0.4 |
|
|
|
| 0.5 |
|
|
|
| 0.6 |
|
|
|
| 0.7 |
|
|
|
| 0.8 |
|
|
|
| 0.9 |
|
|
|
6 ملاحظات ختامية
مساهمات المؤلفين ساهم YHY وAGA بالتساوي في العمل.
التمويل تم توفير تمويل الوصول المفتوح من قبل هيئة تمويل العلوم والتكنولوجيا والابتكار (STDF) بالتعاون مع البنك المصري للمعرفة (EKB). لا تتلقى هذه البحث أي تمويل.
الإعلانات
موافقة الأخلاقيات والموافقة على المشاركة غير قابلة للتطبيق.
الوصول المفتوح هذه المقالة مرخصة بموجب رخصة المشاع الإبداعي للاستخدام والمشاركة والتكيف والتوزيع وإعادة الإنتاج في أي وسيلة أو شكل، طالما أنك تعطي الائتمان المناسب للمؤلفين الأصليين والمصدر، وتوفر رابطًا لرخصة المشاع الإبداعي، وتوضح ما إذا كانت هناك تغييرات قد تم إجراؤها. الصور أو المواد الأخرى من طرف ثالث في هذه المقالة مشمولة في رخصة المشاع الإبداعي للمقالة، ما لم يُشار إلى خلاف ذلك في سطر ائتمان للمادة. إذا لم تكن المادة مشمولة في رخصة المشاع الإبداعي للمقالة واستخدامك المقصود غير مسموح به
بموجب اللوائح القانونية أو يتجاوز الاستخدام المسموح به، ستحتاج إلى الحصول على إذن مباشرة من صاحب حقوق الطبع والنشر. لعرض نسخة من هذه الرخصة، قم بزيارةhttp://creativecommons.org/licenses/by/4.0/.
References
- Ghanbari, F., Ghanbari, K., Mokhtary, P.: Generalized Jacobi-Galerkin method for nonlinear fractional differential algebraic equations. Comput. Appl. Math. 37, 5456-5475 (2018)
- Zaky, M.A., Abo-Gabal, H., Hafez, R.M., Doha, E.H.: Computational and theoretical aspects of Romanovski-Bessel polynomials and their applications in spectral approximations. Numer. Algor. 89, 1-35 (2022)
- Youssri, Y.H., Ismail, M., Atta, A.G.: Chebyshev Petrov-Galerkin procedure for the time-fractional heat equation with nonlocal conditions. Phys. Scr. 99(1), 015251 (2024)
- Youssri, Y.H., Atta, A.G.: Modal spectral Tchebyshev Petrov-Galerkin stratagem for the time-fractional nonlinear Burgers’ equation. Iran. J. Numer. Anal. Optim. 14(1), 1 (2024)
- Moustafa, M., Youssri, Y.H., Atta, A.G.: Explicit Chebyshev-Galerkin scheme for the time-fractional diffusion equation. Int. J. Mod. Phys. C 35(1), 2450002 (2024)
- Atta, A.G., Youssri, Y.H.: Shifted second-kind Chebyshev spectral collocation-based technique for time-fractional KdV-Burgers’ equation. Iran. J. Math. Chem. 14(4), 207-224 (2023)
- Hafez, R.M., Youssri, Y.H., Atta, A.G.: Jacobi rational operational approach for time-fractional subdiffusion equation on a semi-infinite domain. Contemp. Math. 4(4), 853-876 (2023)
- Youssri, Y.H., Atta, A.G.: Fejér-Quadrature collocation algorithm for solving fractional integrodifferential equations via Fibonacci polynomials. Contemp. Math. 5(1), 296-308 (2024)
- Zheng, W., Chen, Y., Zhou, J.: A Legendre spectral method for multidimensional partial Volterra integro-differential equations. J. Comput. Appl. Math. 436, 115302 (2024)
- Tu, H., Wang, Y., Zhang, Y., Liao, H., Liu, W.: Parallel numerical simulation of weakly range-dependent ocean acoustic waveguides by adiabatic modes based on a spectral method. Phys. Fluids 35(1), 017119 (2023)
- Tu, H., Wang, Y., Yang, C., Liu, W., Wang, X.: A Chebyshev-Tau spectral method for coupled modes of underwater sound propagation in range-dependent ocean environments. Phys. Fluids 35(3), 037113 (2023)
- Konoplya, R.A., Zhidenko, A.: Bernstein spectral method for quasinormal modes of a generic black hole spacetime and application to instability of dilaton-de Sitter solution. Phys. Rev. D. 107(4), 044009 (2023)
- Youssri, Y.H., Atta, A.G.: Radical Petrov-Galerkin approach for the time-fractional KdV-Burgers’ equation. Math. Comput. Appl. 29(6), 107 (2024)
- Youssri, Y.H., Atta, A.G., Abu Waar, Z.Y., Moustafa, M.O.: Petrov-Galerkin method for small deflections in fourth-order beam equations in civil engineering. Nonlinear Eng. 13(1), 20240022 (2024)
- Kharazmi, E., Zayernouri, M., Em Karniadakis, G.: A Petrov-Galerkin spectral element method for fractional elliptic problems. Comput. Methods Appl. Mech. Eng. 324, 512-536 (2017)
- Hafez, R.M., Zaky, M.A., Hendy, A.S.: A novel spectral Galerkin/Petrov-Galerkin algorithm for the multi-dimensional space-time fractional advection-diffusion-reaction equations with nonsmooth solutions. Math. Comput. Simul. 190, 678-690 (2021)
- Wang, M., Au, F.T.K.: Precise integration methods based on the Chebyshev polynomial of the first kind. Earthq. Eng. Eng. Vib. 7(2), 207-216 (2008)
- Ahmed, H.M.: Numerical Solutions for Singular Lane-Emden Equations Using Shifted Chebyshev Polynomials of the First Kind. Contemp. Math. 4, 132-149 (2023)
- Abd-Elhameed, W.M., Youssri, Y.H., Atta, A.G.: Tau algorithm for fractional delay differential equations utilizing seventh-kind Chebyshev polynomials. J. Math. Model. 12, 277-299 (2024)
- Lebedev, V.I., Finogenov, S.A.: Some algorithms for computing Chebyshev normalized first-kind polynomials by roots. Russ. J. Numer. Anal. Math. Model. 20(4), 353-363 (2005)
- Shoukralla, E.S.: Application of Chebyshev polynomials of the second kind to the numerical solution of weakly singular Fredholm integral equations of the first kind. IAENG Int. J. Appl. Math. 51(1), 1-16 (2021)
- Akram, T., Ali, Z., Rabiei, F., Shah, K., Kumam, P.: A numerical study of nonlinear fractional order partial integro-differential equation with a weakly singular kernel. Fract. Fract. 5(3), 85 (2021)
- Loh, J.R., Phang, C., Tay, K.G.: New method for solving fractional partial integro-differential equations by combination of Laplace transform and resolvent kernel method. Chin. J. Phys. 67, 666-680 (2020)
- Abbas, M., Aslam, S., Abdullah, F.A., Riaz, M.B., Gepreel, K.A.: An efficient spline technique for solving time-fractional integro-differential equations. Heliyon 9(9), e19307 (2023)
- Atta, A.G., Abd-Elhameed, W.M., Moatimid, G.M., Youssri, Y.H.: Modal shifted fifth-kind Chebyshev Tau integral approach for solving heat conduction equation. Fract. Fract. 6(11), 619 (2022)
- Abdelghany, E.M., Abd-Elhameed, W.M., Moatimid, G.M., Youssri, Y.H., Atta, A.G.: A tau approach for solving time-fractional heat equation based on the shifted sixth-kind Chebyshev polynomials. Symmetry 15(3), 594 (2023)
- Atta, A.G., Abd-Elhameed, W.M., Moatimid, G.M., Youssri, Y.H.: Novel spectral schemes to fractional problems with nonsmooth solutions. Math. Methods Appl. Sci. 46(13), 14745-14764 (2023)
- Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier, San Diego (1998)
- Atta, A.G., Youssri, Y.H.: Advanced shifted first-kind Chebyshev collocation approach for solving the nonlinear time-fractional partial integro-differential equation with a weakly singular kernel. Comput. Appl. Math. 41(8), 381 (2022)
- Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York (2002)
- Youssri, Y.H., Atta, A.G.: Double Tchebyshev spectral Tau algorithm for solving KdV equation, with soliton application. In: Solitons, pp. 451-467. Springer (2022)
- Alavi, J., Aminikhah, H.: An efficient parametric finite difference and orthogonal spline approximation for solving the weakly singular nonlinear time-fractional partial integro-differential equation. Comput. Appl. Math. 42(8), 350 (2023)
- Y. H. Youssri
youssri@cu.edu.eg
A. G. Atta
ahmed_gamal@edu.asu.edu.eg
1 Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt
2 Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo 11341, Egypt
DOI: https://doi.org/10.1007/s12190-025-02371-w
Publication Date: 2025-01-23
Chebyshev Petrov-Galerkin method for nonlinear time-fractional integro-differential equations with a mildly singular kernel
Published online: 23 January 2025
© The Author(s) 2025
Abstract
In this paper, a new approach to time-fractional partial integro-differential equations with weakly singular kernels (TFPIDE) is presented. The suggested method produces a spectral semi-analytic solution by using shifted first-kind Chebyshev polynomials (SCP1K) as basis functions. To satisfy homogeneous beginning and boundary requirements, a suitable collection of basis functions should be chosen. The unknown expansion coefficients are then found using the Petrov-Galerkin technique. Interestingly, we obtain precise equations for each of the related matrices’ elements. These matrices follow a clear pattern that facilitates the inversion procedure and allows the algebraic problem generated by the Petrov-Galerkin technique to be solved. The work contributes to a better knowledge of the dependability of the approach by thoroughly examining convergence and error analysis. Numerical examples demonstrate the applicability, accuracy, and efficiency of the suggested technique, supplemented by comparisons with previous research. The outcomes demonstrate how well this method works for solving time fractional partial integro-differential equations, highlighting its importance as a useful contribution to the body of knowledge in the area.
1 Introduction
possible to create a strong and exact solution approach for nonlinear time-fractional partial integro-differential equations with weakly singular kernels.
- To avoid inherent obstacles, provide a novel method for resolving the given class of equations by integrating SCP1K using the Petrov-Galerkin algorithm.
- Examine the Petrov-Galerkin approach thoroughly, outlining its basic theories and presenting a list of the various differential problems it may solve.
- Define the basis function of SCP1K in spectral approaches, highlighting their flexibility in enhancing the accuracy and efficiency of numerical solutions.
- Carefully investigate the suggested method using error analysis to shed light on its correctness and dependability.
- Exhibit numerical examples and comparisons with earlier studies to demonstrate the precision, applicability, and efficacy of the recommended approach.
To the best of our knowledge, the main contribution and novelty of this paper can be listed in the following points: - A new theoretical background to the modified sets of SCP1K are presented.
- Establishing new operational matrices of integer and fractional derivatives for these polynomials. These matrices are considered important tools for treating TFPIDE.
- The study of the error bound is new.
- By choosing the modified sets of SCP1K as basis functions, a few terms of the retained modes make it possible to produce approximations with excellent precision.
- Less calculation is required to obtain the desired approximate solution.
2 Preliminaries
2.1 Caputo fractional derivative
The following properties are satisfied by the operator
2.2 Shifted first-kind Chebyshev polynomials
Moreover, the power form and inversion relations of
3 The numerical scheme
3.1 Basis functions
(a)
(b)
For part (b), we have
The proof for Part (c) proceeds by adhering to the same steps outlined in the proof of Part (b).
By virtue of Theorem 2 in [29], the following integral can be written as
3.2 Petrov-Galerkin solution for nonlinear TFPIDE
4 Error analysis
5 Illustrative examples
| Our method at
|
Method in [32] | ||
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140.953 | 133.626 | 131.668 | 132.689 |

| Our method at | Method in [32] | ||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145.908 | 141.503 | 139.768 | 144.152 |

| Our method at
|
Method in [32] | ||
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234.892 | 231.752 | 234.892 | 238.262 |



|
|
Our method at
|
||
|
|
|
|
|
| 0.1 |
|
|
|
| 0.2 |
|
|
|
| 0.3 |
|
|
|
| 0.4 |
|
|
|
| 0.5 |
|
|
|
| 0.6 |
|
|
|
| 0.7 |
|
|
|
| 0.8 |
|
|
|
| 0.9 |
|
|
|
6 Concluding remarks
Author Contributions YHY and AGA contributed equally to the work.
Funding Open access funding provided by The Science, Technology amp; Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB). This research receives no funding.
Declarations
Ethics approval and consent to participate Not applicable.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
References
- Ghanbari, F., Ghanbari, K., Mokhtary, P.: Generalized Jacobi-Galerkin method for nonlinear fractional differential algebraic equations. Comput. Appl. Math. 37, 5456-5475 (2018)
- Zaky, M.A., Abo-Gabal, H., Hafez, R.M., Doha, E.H.: Computational and theoretical aspects of Romanovski-Bessel polynomials and their applications in spectral approximations. Numer. Algor. 89, 1-35 (2022)
- Youssri, Y.H., Ismail, M., Atta, A.G.: Chebyshev Petrov-Galerkin procedure for the time-fractional heat equation with nonlocal conditions. Phys. Scr. 99(1), 015251 (2024)
- Youssri, Y.H., Atta, A.G.: Modal spectral Tchebyshev Petrov-Galerkin stratagem for the time-fractional nonlinear Burgers’ equation. Iran. J. Numer. Anal. Optim. 14(1), 1 (2024)
- Moustafa, M., Youssri, Y.H., Atta, A.G.: Explicit Chebyshev-Galerkin scheme for the time-fractional diffusion equation. Int. J. Mod. Phys. C 35(1), 2450002 (2024)
- Atta, A.G., Youssri, Y.H.: Shifted second-kind Chebyshev spectral collocation-based technique for time-fractional KdV-Burgers’ equation. Iran. J. Math. Chem. 14(4), 207-224 (2023)
- Hafez, R.M., Youssri, Y.H., Atta, A.G.: Jacobi rational operational approach for time-fractional subdiffusion equation on a semi-infinite domain. Contemp. Math. 4(4), 853-876 (2023)
- Youssri, Y.H., Atta, A.G.: Fejér-Quadrature collocation algorithm for solving fractional integrodifferential equations via Fibonacci polynomials. Contemp. Math. 5(1), 296-308 (2024)
- Zheng, W., Chen, Y., Zhou, J.: A Legendre spectral method for multidimensional partial Volterra integro-differential equations. J. Comput. Appl. Math. 436, 115302 (2024)
- Tu, H., Wang, Y., Zhang, Y., Liao, H., Liu, W.: Parallel numerical simulation of weakly range-dependent ocean acoustic waveguides by adiabatic modes based on a spectral method. Phys. Fluids 35(1), 017119 (2023)
- Tu, H., Wang, Y., Yang, C., Liu, W., Wang, X.: A Chebyshev-Tau spectral method for coupled modes of underwater sound propagation in range-dependent ocean environments. Phys. Fluids 35(3), 037113 (2023)
- Konoplya, R.A., Zhidenko, A.: Bernstein spectral method for quasinormal modes of a generic black hole spacetime and application to instability of dilaton-de Sitter solution. Phys. Rev. D. 107(4), 044009 (2023)
- Youssri, Y.H., Atta, A.G.: Radical Petrov-Galerkin approach for the time-fractional KdV-Burgers’ equation. Math. Comput. Appl. 29(6), 107 (2024)
- Youssri, Y.H., Atta, A.G., Abu Waar, Z.Y., Moustafa, M.O.: Petrov-Galerkin method for small deflections in fourth-order beam equations in civil engineering. Nonlinear Eng. 13(1), 20240022 (2024)
- Kharazmi, E., Zayernouri, M., Em Karniadakis, G.: A Petrov-Galerkin spectral element method for fractional elliptic problems. Comput. Methods Appl. Mech. Eng. 324, 512-536 (2017)
- Hafez, R.M., Zaky, M.A., Hendy, A.S.: A novel spectral Galerkin/Petrov-Galerkin algorithm for the multi-dimensional space-time fractional advection-diffusion-reaction equations with nonsmooth solutions. Math. Comput. Simul. 190, 678-690 (2021)
- Wang, M., Au, F.T.K.: Precise integration methods based on the Chebyshev polynomial of the first kind. Earthq. Eng. Eng. Vib. 7(2), 207-216 (2008)
- Ahmed, H.M.: Numerical Solutions for Singular Lane-Emden Equations Using Shifted Chebyshev Polynomials of the First Kind. Contemp. Math. 4, 132-149 (2023)
- Abd-Elhameed, W.M., Youssri, Y.H., Atta, A.G.: Tau algorithm for fractional delay differential equations utilizing seventh-kind Chebyshev polynomials. J. Math. Model. 12, 277-299 (2024)
- Lebedev, V.I., Finogenov, S.A.: Some algorithms for computing Chebyshev normalized first-kind polynomials by roots. Russ. J. Numer. Anal. Math. Model. 20(4), 353-363 (2005)
- Shoukralla, E.S.: Application of Chebyshev polynomials of the second kind to the numerical solution of weakly singular Fredholm integral equations of the first kind. IAENG Int. J. Appl. Math. 51(1), 1-16 (2021)
- Akram, T., Ali, Z., Rabiei, F., Shah, K., Kumam, P.: A numerical study of nonlinear fractional order partial integro-differential equation with a weakly singular kernel. Fract. Fract. 5(3), 85 (2021)
- Loh, J.R., Phang, C., Tay, K.G.: New method for solving fractional partial integro-differential equations by combination of Laplace transform and resolvent kernel method. Chin. J. Phys. 67, 666-680 (2020)
- Abbas, M., Aslam, S., Abdullah, F.A., Riaz, M.B., Gepreel, K.A.: An efficient spline technique for solving time-fractional integro-differential equations. Heliyon 9(9), e19307 (2023)
- Atta, A.G., Abd-Elhameed, W.M., Moatimid, G.M., Youssri, Y.H.: Modal shifted fifth-kind Chebyshev Tau integral approach for solving heat conduction equation. Fract. Fract. 6(11), 619 (2022)
- Abdelghany, E.M., Abd-Elhameed, W.M., Moatimid, G.M., Youssri, Y.H., Atta, A.G.: A tau approach for solving time-fractional heat equation based on the shifted sixth-kind Chebyshev polynomials. Symmetry 15(3), 594 (2023)
- Atta, A.G., Abd-Elhameed, W.M., Moatimid, G.M., Youssri, Y.H.: Novel spectral schemes to fractional problems with nonsmooth solutions. Math. Methods Appl. Sci. 46(13), 14745-14764 (2023)
- Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier, San Diego (1998)
- Atta, A.G., Youssri, Y.H.: Advanced shifted first-kind Chebyshev collocation approach for solving the nonlinear time-fractional partial integro-differential equation with a weakly singular kernel. Comput. Appl. Math. 41(8), 381 (2022)
- Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, New York (2002)
- Youssri, Y.H., Atta, A.G.: Double Tchebyshev spectral Tau algorithm for solving KdV equation, with soliton application. In: Solitons, pp. 451-467. Springer (2022)
- Alavi, J., Aminikhah, H.: An efficient parametric finite difference and orthogonal spline approximation for solving the weakly singular nonlinear time-fractional partial integro-differential equation. Comput. Appl. Math. 42(8), 350 (2023)
- Y. H. Youssri
youssri@cu.edu.eg
A. G. Atta
ahmed_gamal@edu.asu.edu.eg
1 Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt
2 Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo 11341, Egypt
