DOI: https://doi.org/10.1186/s41239-024-00455-4
تاريخ النشر: 2024-04-11
مصادر التغذية الراجعة في كتابة المقالات: التغذية الراجعة الناتجة عن الأقران أم الناتجة عن الذكاء الاصطناعي؟
سيد كاظم بني هاشم
kazem.banihashem@ou.nl
¹الجامعة المفتوحة، هيرلين، هولندا
البحث، فاغينينغن، هولندا
الملخص
تم تقديم التغذية الراجعة من الأقران كاستراتيجية تعلم فعالة، خاصة في الفصول الكبيرة حيث يواجه المعلمون أعباء عمل عالية. ومع ذلك، بالنسبة للمهام المعقدة مثل كتابة مقال جدلي، قد لا يقدم الأقران تغذية راجعة عالية الجودة بدون دعم، حيث يتطلب ذلك مستوى عالٍ من المعالجة المعرفية، ومهارات التفكير النقدي، وفهم عميق للموضوع. مع التطورات الواعدة في الذكاء الاصطناعي (AI)، وخاصة بعد ظهور ChatGPT، هناك جدل عالمي حول ما إذا كانت أدوات الذكاء الاصطناعي يمكن اعتبارها مصدرًا جديدًا للتغذية الراجعة أم لا للمهام المعقدة. الإجابة على هذا السؤال ليست واضحة تمامًا بعد حيث توجد دراسات محدودة وفهمنا لا يزال مقيدًا. في هذه الدراسة، استخدمنا ChatGPT كمصدر للتغذية الراجعة لمهام كتابة المقالات الجدلية للطلاب وقارنّا جودة التغذية الراجعة الناتجة عن ChatGPT مع تغذية الأقران الراجعة. كانت مجموعة المشاركين تتكون من 74 طالب دراسات عليا من جامعة هولندية. تم تنفيذ الدراسة على مرحلتين: أولاً، تم جمع بيانات مقالات الطلاب أثناء كتابتهم لمقالات حول أحد المواضيع المعطاة؛ بعد ذلك، تم جمع بيانات التغذية الراجعة من الأقران والتغذية الراجعة الناتجة عن ChatGPT من خلال إشراك الأقران في عملية التغذية الراجعة واستخدام ChatGPT كمصدر للتغذية الراجعة. تم استخدام نظامي ترميز بما في ذلك أنظمة الترميز لتحليل المقالات وأنظمة الترميز لتحليل التغذية الراجعة لقياس جودة المقالات والتغذية الراجعة. ثم تم استخدام تحليل MANOVA لتحديد أي تمييزات بين التغذية الراجعة الناتجة عن الأقران وChatGPT. بالإضافة إلى ذلك، تم استخدام ارتباط سبيرمان لاستكشاف الروابط المحتملة بين جودة المقالات والتغذية الراجعة الناتجة عن الأقران وChatGPT. أظهرت النتائج وجود فرق كبير بين التغذية الراجعة الناتجة عن ChatGPT والأقران. بينما قدم ChatGPT تغذية راجعة أكثر وصفًا تتضمن معلومات حول كيفية كتابة المقال، قدم الأقران تغذية راجعة تتضمن معلومات حول تحديد المشكلة في المقال. تشير النظرة العامة على النتائج إلى دور تكميلي محتمل لـ ChatGPT والطلاب في عملية التغذية الراجعة. فيما يتعلق بالعلاقة بين جودة المقالات وجودة التغذية الراجعة المقدمة من ChatGPT والأقران، لم نجد علاقة ذات دلالة عامة. تشير هذه النتائج إلى أن جودة المقالات لا تؤثر على جودة التغذية الراجعة من كل من ChatGPT والأقران. إن تداعيات هذه الدراسة قيمة، حيث تسلط الضوء على الاستخدام المحتمل لـ ChatGPT كمصدر للتغذية الراجعة، خاصة للمهام المعقدة مثل كتابة المقالات الجدلية.
الكلمات الرئيسية: التغذية الراجعة الناتجة عن الذكاء الاصطناعي، ChatGPT، كتابة المقالات، مصادر التغذية الراجعة، التعليم العالي، التغذية الراجعة من الأقران
المقدمة
تغذية راجعة فعالة فهمًا قويًا لمبادئ التغذية الراجعة، وهو عنصر غالبًا ما يفتقر إليه الأقران (لاتيفي وآخرون، 2023؛ نوروزي وآخرون، 2016). علاوة على ذلك، فإن تقديم تغذية راجعة عالية الجودة هو مهمة معقدة بطبيعتها، تتطلب معالجة معرفية كبيرة لتقييم مهام الأقران بدقة، وتحديد المشكلات، واقتراح حلول بناءة (كينغ، 2002؛ نوروزي وآخرون، 2022). علاوة على ذلك، يتطلب تقديم تغذية راجعة قيمة مستوى كبير من الخبرة الخاصة بالمجال، والتي لا يمتلكها الطلاب بشكل متسق (القصاب وآخرون، 2018؛ كرمان وآخرون، 2022).
المعايير في تأليف مقالاتهم (على سبيل المثال، بلقيه وآخرون، 2021؛ نوروزي وآخرون، 2016؛ 2022؛ لطيفي وآخرون، 2023).
طريقة
السياق والمشارك
تصميم الدراسة وإجراءاتها
“مسؤولية المستهلك”. كانت المواضيع المثيرة للجدل مرتبطة مباشرة بمحتوى الدورة ومجال دراسة الطلاب. كان لدى الطلاب أسبوع واحد لكتابة مقالاتهم بشكل فردي وتقديمها على منصة برايت سبيس.
القياسات
نظام التشفير لتقييم جودة كتابة المقالات
نظام التشفير لتقييم جودة التعليقات التي تم إنشاؤها من قبل الأقران وChatGPT
التحليل
النتائج
RQ1. إلى أي مدى تختلف جودة التعليقات التي تم إنشاؤها من قبل الأقران وتلك التي تم إنشاؤها بواسطة ChatGPT في سياق كتابة المقالات؟
المتغيرات | المجموعة | جودة التعليق | الفرق | ||
المتوسط | الانحراف المعياري | ||||
العاطفي | تعليقات الأقران | 1.91 | 0.20 |
|
|
تعليقات ChatGPT | 1.93 | 0.18 | |||
الإجمالي | 1.92 | 0.19 | |||
المعرفي | الوصف | تعليقات الأقران | 1.91 | 0.29 |
|
تعليقات ChatGPT | 2.00 | 0.00 | |||
الإجمالي | 1.95 | 0.21 | |||
التحديد | تعليقات الأقران | 1.52 | 0.49 |
|
|
تعليقات ChatGPT | 1.29 | 0.70 | |||
الإجمالي | 1.41 | 0.61 | |||
التبرير | تعليقات الأقران | 0.66 | 0.32 |
|
|
تعليقات ChatGPT | 0.62 | 0.37 | |||
الإجمالي | 0.64 | 0.34 | |||
البنّاء | تعليقات الأقران | 1.63 | 0.44 |
|
|
تعليقات ChatGPT | 1.68 | 0.38 | |||
الإجمالي | 1.65 | 0.41 |
أمثلة | مصدر التعليق | |||
تعليقات تم إنشاؤها بواسطة ChatGPT | تعليقات تم إنشاؤها بواسطة الأقران | |||
مثال #1 | تقدم المقالة حججًا متعددة ضد تعقيم PIF، مثل إمكانية إعادة التلوث أثناء الإنتاج والتحضير، ووجود مكونات مفيدة قد تفقد مع التعقيم، وخطر أن يكون ذلك ذا صلة بمجموعة صغيرة من الرضع. ومع ذلك، تفتقر بعض هذه الحجج إلى توضيح مفصل وأدلة محددة. | نظرًا لأنني أعتقد أن موقفك مفقود في قسم المقدمة، أعتقد أن الرد على الحجج المضادة مفقود أيضًا إلى حد ما. شخصيًا، سأقترح أن تضيف أولاً موقفك، مما سيسهل أيضًا الرد على الحجج المضادة. | ||
مثال #2 | تجادل المقالة بشكل جيد أن المستهلكين هم في النهاية مسؤولون عن استهلاك الطعام بشكل آمن. وتبرز أنه حتى مع وجود لوائح، يحتاج المستهلكون إلى اتخاذ قرارات مستنيرة بشأن التعامل مع الطعام وتحضيره لتقليل مخاطر الأمراض المنقولة عن طريق الغذاء. لتعزيز هذا الحجة، يمكن أن تقدم المقالة أمثلة حقيقية أو دراسات حالة حيث أدى نقص مسؤولية المستهلك إلى أمراض منقولة عن طريق الغذاء، مما يبرز الحاجة إلى الوعي والالتزام بممارسات الطعام الآمنة. | أشعر أن موقفك مفقود، لم أرَ موقفك الواضح في قسم المقدمة، ربما يمكنك إضافة بعض الجمل البسيطة لتوضيح موقفك. | ||
مثال #3 | يقدم جسم المقالة أسبابًا متعددة لماذا يجب أن يكون PIF معقمًا، مثل خطر البكتيريا الضارة مثل Cronobacter sakazakii، وعمر التخزين الممتد، ومخاطر سوء التعامل مع الحرارة والتنظيف غير السليم. يتم دعم كل سبب بمراجع ذات صلة، مما يضيف مصداقية للحجة. ومع ذلك، تفتقر المقالة إلى قسم الحجج المضادة الذي يتناول وجهة النظر المعارضة. لإنشاء مقالة أكثر شمولاً وإقناعًا، من الضروري الاعتراف بالحجج المضادة ودحضها بالأدلة. |
|
||
عاطفي | المعرفي – الوصفي المعرفي – التعرف | التبرير المعرفي |
جودة التعليقات | جودة كتابة المقال | |||||||||
مقدمة | موقف | حجة مفضلة | فقط. مفضل. | أرج. آغا. | فقط. آغا. | القرار. الأرجنتين. | استنتاج | بشكل عام | ||
عاطفي | تعليقات ChatGPT | 0.14 | 0.19 | -0.05 | 0.09 | 0.22 | 0.01 | 0.27* | 0.14 | 0.28* |
تغذية راجعة من الأقران | -0.29* | -0.22 | -0.05 | -0.15 | -0.07 | -0.18 | -0.04 | 0.02 | 0.23* | |
وصف | تعليقات ChatGPT | 0.12 | 0.09 | 0.13 | 0.09 | 0.02 | 0.01 | 0.04 | 0.01 | 0.02 |
تغذية راجعة من الأقران | -0.25* | -0.06 | -0.11 | -0.23* | 0.14 | 0.00 | 0.16 | -0.13 | -0.08 | |
تحديد الهوية | تعليقات ChatGPT | 0.02 | -0.16 | -0.08 | -0.01 | -0.14 | 0.04 | -0.15 | -0.09 | -0.10 |
تغذية راجعة من الأقران | -0.16 | -0.17 | 0.00 | -0.01 | 0.08 | -0.02 | 0.01 | -0.05 | -0.06 | |
تبرير | تعليقات ChatGPT | 0.00 | -0.30* | 0.07 | 0.00 | -0.19 | -0.03 | -0.09 | -0.22 | -0.18 |
تغذية راجعة من الأقران | 0.01 | -0.18 | 0.06 | 0.04 | 0.03 | -0.06 | 0.07 | -0.05 | -0.02 | |
بناء | تعليقات ChatGPT | 0.04 | 0.09 | -0.19 | 0.00 | 0.02 | 0.05 | 0.09 | -0.09 | 0.05 |
تغذية راجعة من الأقران | 0.15 | -0.16 | 0.01 | 0.09 | 0.10 | -0.02 | 0.10 | 0.15 | 0.12 | |
بشكل عام | تعليقات ChatGPT | 0.05 | -0.16 | -0.04 | 0.01 | -0.11 | 0.02 | -0.06 | -0.15 | -0.08 |
تغذية راجعة من الأقران | -0.12 | -0.30* | 0.00 | -0.04 | 0.11 | -0.01 | 0.12 | 0.04 | -0.05 |
لـ ChatGPT. كان هذا الاختلاف ناتجًا بشكل رئيسي عن الوصف وتحديد ميزات المشكلة في التعليقات. كان ChatGPT يميل إلى إنتاج تعليقات وصفية أكثر شمولاً تتضمن بيان ملخص مثل وصف المقال أو الإجراء المتخذ، بينما كان الطلاب يؤدون بشكل أفضل في تحديد وتحديد القضايا في التعليقات المقدمة (انظر الجدول 1).
RQ2. هل توجد علاقة بين جودة أداء كتابة المقال وجودة التعليقات التي يتم توليدها من قبل الأقران وChatGPT؟
نقاش
مناقشة نتائج RQ1
مناقشة نتائج RQ2
الأقران (على سبيل المثال، Patchan et al.، 2016). وهذا يشير إلى أنه مع رؤية الطلاب لتحسينات في مهارات كتابة المقالات ومعرفتهم لدى أقرانهم، قد تتطور أولويات تعليقاتهم بشكل طبيعي. على سبيل المثال، قد ينتقل الطلاب من التركيز على التعليقات العاطفية والعاطفية إلى التركيز على التعليقات المعرفية والبنائية، بهدف تعزيز الجودة العامة للمقالات.
القيود والآثار المترتبة على الأبحاث والممارسات المستقبلية
والتحكم في العوامل المتعلقة بالأسئلة في الأبحاث المستقبلية عند تقييم أداء ChatGPT وقدراته في مهام وسياقات متنوعة.
الخاتمة
المجال. من منظور عملي في التعليم العالي، تقدم نتائج الدراسة رؤى حول إمكانية دمج ChatGPT كمصدر للتعليقات ضمن سياقات التعليم العالي. تبرز الاكتشافات أن جودة تعليقات ChatGPT يمكن أن تكمل تعليقات الأقران، مما يسلط الضوء على قابليتها لتعزيز ممارسات التعليقات في التعليم العالي. يحمل هذا وعدًا خاصًا للدورات التي تحتوي على تسجيلات كبيرة ومكونات كتابة المقالات، مما يوفر للمعلمين بديلاً قابلاً للتطبيق لتقديم تعليقات بناءة لعدد أكبر من الطلاب.
مساهمات المؤلفين
التمويل
توفر البيانات
الإعلانات
إعلان عن تقنيات الذكاء الاصطناعي المساعدة في عملية الكتابة
المصالح المتنافسة
تم النشر عبر الإنترنت: 12 أبريل 2024
References
Amiryousefi, M., & Geld, R. (2021). The role of redressing teachers’ instructional feedback interventions in EFL learners’ motivation and achievement in distance education. Innovation in Language Learning and Teaching, 15(1), 13-25. https://doi.org/1 0.1080/17501229.2019.1654482.
Banihashem, S. K., Noroozi, O., van Ginkel, S., Macfadyen, L. P., & Biemans, H. J. (2022). A systematic review of the role of learning analytics in enhancing feedback practices in higher education. Educational Research Review, 100489. https://doi. org/10.1016/j.edurev.2022.100489.
Banihashem, S. K., Dehghanzadeh, H., Clark, D., Noroozi, O., & Biemans, H. J. (2023). Learning analytics for online game-based learning: A systematic literature review. Behaviour & Information Technology, 1-28. https://doi.org/10.1080/01449 29X.2023.2255301.
Bellhäuser, H., Dignath, C., & Theobald, M. (2023). Daily automated feedback enhances self-regulated learning: A longitudinal randomized field experiment. Frontiers in Psychology, 14, 1125873. https://doi.org/10.3389/fpsyg.2023.1125873.
Bond, M., Khosravi, H., De Laat, M., Bergdahl, N., Negrea, V., Oxley, E., & Siemens, G. (2024). A meta systematic review of artificial intelligence in higher education: A call for increased ethics, collaboration, and rigour. International Journal of Educational Technology in Higher Education, 21(4), 1-41. https://doi.org/10.1186/s41239-023-00436-z.
Bulqiyah, S., Mahbub, M., & Nugraheni, D. A. (2021). Investigating writing difficulties in Essay writing: Tertiary Students’ perspectives. English Language Teaching Educational Journal, 4(1), 61-73. https://doi.org/10.12928/eltej.v4i1.2371.
Callender, A. A., Franco-Watkins, A. M., & Roberts, A. S. (2016). Improving metacognition in the classroom through instruction, training, and feedback. Metacognition and Learning, 11(2), 215-235. https://doi.org/10.1007/s1 1409-015-9142-6.
Cao, J., Li, M., Wen, M., & Cheung, S. C. (2023). A study on prompt design, advantages and limitations of chatgpt for deep learning program repair. arXiv Preprint arXiv:2304 08191. https://doi.org/10.48550/arXiv.2304.08191.
Dai, W., Lin, J., Jin, F., Li, T., Tsai, Y. S., Gasevic, D., & Chen, G. (2023). Can large language models provide feedback to students? A case study on ChatGPT. https://doi.org/10.35542/osf.io/hcgzj.
Darvishi, A., Khosravi, H., Sadiq, S., Gašević, D., & Siemens, G. (2024). Impact of AI assistance on student agency. Computers & Education, 210, 104967. https://doi.org/10.1016/j.compedu.2023.104967.
Deeva, G., Bogdanova, D., Serral, E., Snoeck, M., & De Weerdt, J. (2021). A review of automated feedback systems for learners: Classification framework, challenges and opportunities. Computers & Education, 162, 104094. https://doi.org/10.1016/j. compedu.2020.104094.
Diezmann, C. M., & Watters, J. J. (2015). The knowledge base of subject matter experts in teaching: A case study of a professional scientist as a beginning teacher. International Journal of Science and Mathematics Education, 13, 1517-1537. https://doi. org/10.1007/s10763-014-9561-x.
Drachsler, H., & Kalz, M. (2016). The MOOC and learning analytics innovation cycle (MOLAC): A reflective summary of ongoing research and its challenges. Journal of Computer Assisted Learning, 32(3), 281-290. https://doi.org/10.1111/jcal.12135.
Er, E., Dimitriadis, Y., & Gašević, D. (2021). Collaborative peer feedback and learning analytics: Theory-oriented design for supporting class-wide interventions. Assessment & Evaluation in Higher Education, 46(2), 169-190. https://doi.org/10.1080/026 02938.2020.1764490.
Gao, X., Noroozi, O., Gulikers, J.T. M., Biemans, H. J., & Banihashem, S. K. (2024). A systematic review of the key components of online peer feedback practices in higher education. Educational Research Review, 100588. https://doi.org/10.1016/j. edurev.2023.100588.
Gielen, M., & De Wever, B. (2015). Scripting the role of assessor and assessee in peer assessment in a wiki environment: Impact on peer feedback quality and product improvement. Computers & Education, 88, 370-386. https://doi.org/10.1016/j. compedu.2015.07.012.
Gombert, S., Fink, A., Giorgashvili, T., Jivet, I., Di Mitri, D., Yau, J., & Drachsler, H. (2024). From the Automated Assessment of Student Essay Content to highly informative feedback: A case study. International Journal of Artificial Intelligence in Education, 1-39. https://doi.org/10.1007/s40593-023-00387-6.
Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81-112. https://doi. org/10.3102/003465430298487.
Holt-Reynolds, D. (1999). Good readers, good teachers? Subject matter expertise as a challenge in learning to teach. Harvard Educational Review, 69(1), 29-51. https://doi.org/10.17763/haer.69.1.pl5m5083286l77t2.
Huang, A. Y., Lu, O. H., & Yang, S. J. (2023). Effects of artificial intelligence-enabled personalized recommendations on learners’ learning engagement, motivation, and outcomes in a flipped classroom. Computers & Education, 194, 104684. https://doi. org/10.1016/j.compedu.2022.104684.
Katz, A., Wei, S., Nanda, G., Brinton, C., & Ohland, M. (2023). Exploring the efficacy of ChatGPT in analyzing Student Teamwork Feedback with an existing taxonomy. arXiv Preprint arXiv. https://doi.org/10.48550/arXiv.2305.11882.
Kerman, N. T., Noroozi, O., Banihashem, S. K., Karami, M., & Biemans, H. J. (2022). Online peer feedback patterns of success and failure in argumentative essay writing. Interactive Learning Environments, 1-13. https://doi.org/10.1080/10494820.2022.20 93914.
King, A. (2002). Structuring peer interaction to promote high-level cognitive processing. Theory into Practice, 41(1), 33-39. https://doi.org/10.1207/s15430421tip4101_6.
Konold, K. E., Miller, S. P., & Konold, K. B. (2004). Using teacher feedback to enhance student learning. Teaching Exceptional Children, 36(6), 64-69. https://doi.org/10.1177/004005990403600608.
Korteling, J. H., van de Boer-Visschedijk, G. C., Blankendaal, R. A., Boonekamp, R. C., & Eikelboom, A. R. (2021). Human-versus artificial intelligence. Frontiers in Artificial Intelligence, 4, 622364. https://doi.org/10.3389/frai.2021.622364.
Labuhn, A. S., Zimmerman, B. J., & Hasselhorn, M. (2010). Enhancing students’ self-regulation and mathematics performance: The influence of feedback and self-evaluative standards. Metacognition and Learning, 5, 173-194. https://doi.org/10.1007/ s11409-010-9056-2.
Lamb, R., Firestone, J., Schmitter-Edgecombe, M., & Hand, B. (2019). A computational model of student cognitive processes while solving a critical thinking problem in science. The Journal of Educational Research, 112(2), 243-254. https://doi.org/10 .1080/00220671.2018.1514357.
Latifi, S., Noroozi, O., & Talaee, E. (2023). Worked example or scripting? Fostering students’ online argumentative peer feedback, essay writing and learning. Interactive Learning Environments, 31(2), 655-669. https://doi.org/10.1080/10494820.2020.179 9032.
Liu, N. F., & Carless, D. (2006). Peer feedback: The learning element of peer assessment. Teaching in Higher Education, 11(3), 279-290. https://doi.org/10.1080/13562510600680582.
Liunokas, Y. (2020). Assessing students’ ability in writing argumentative essay at an Indonesian senior high school. IDEAS: Journal on English language teaching and learning. Linguistics and Literature, 8(1), 184-196. https://doi.org/10.24256/ideas. v8i1.1344.
Nelson, M. M., & Schunn, C. D. (2009). The nature of feedback: How different types of peer feedback affect writing performance. Instructional Science, 37, 375-401. https://doi.org/10.1007/s11251-008-9053-x.
Noroozi, O., Banihashem, S. K., Taghizadeh Kerman, N., Parvaneh Akhteh Khaneh, M., Babayi, M., Ashrafi, H., & Biemans, H. J. (2022). Gender differences in students’ argumentative essay writing, peer review performance and uptake in online learning environments. Interactive Learning Environments, 1-15. https://doi.org/10.1080/10494820.2022.2034887.
Noroozi, O., Biemans, H., & Mulder, M. (2016). Relations between scripted online peer feedback processes and quality of written argumentative essay. The Internet and Higher Education, 31, 20-31. https://doi.org/10.1016/j.iheduc.2016.05.002
Noroozi, O., Banihashem, S. K., Biemans, H. J., Smits, M., Vervoort, M. T., & Verbaan, C. L. (2023). Design, implementation, and evaluation of an online supported peer feedback module to enhance students’ argumentative essay quality. Education and Information Technologies, 1-28. https://doi.org/10.1007/s10639-023-11683-y.
Papamitsiou, Z., & Economides, A. A. (2014). Learning analytics and educational data mining in practice: A systematic literature review of empirical evidence. Journal of Educational Technology & Society, 17(4), 49-64. https://doi.org/10.2307/jeductechsoci.17.4.49. https://www.jstor.org/stable/.
Pardo, A., Jovanovic, J., Dawson, S., Gašević, D., & Mirriahi, N. (2019). Using learning analytics to scale the provision of personalised feedback. British Journal of Educational Technology, 50(1), 128-138. https://doi.org/10.1111/bjet.12592.
Ramsden, P. (2003). Learning to teach in higher education. Routledge.
Ray, P. P. (2023). ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. Internet of Things and Cyber-Physical Systems, 3, 121-154. https://doi.org/10.1016/j.iotcps.2023.04.003.
Rüdian, S., Heuts, A., & Pinkwart, N. (2020). Educational Text Summarizer: Which sentences are worth asking for? In DELFI 2020 The 18th Conference on Educational Technologies of the German Informatics Society (pp. 277-288). Bonn, Germany.
Rummel, N., Walker, E., & Aleven, V. (2016). Different futures of adaptive collaborative learning support. International Journal of Artificial Intelligence in Education, 26, 784-795. https://doi.org/10.1007/s40593-016-0102-3.
Shi, M. (2019). The effects of class size and instructional technology on student learning performance. The International Journal of Management Education, 17(1), 130-138. https://doi.org/10.1016/j.jjme.2019.01.004.
Toulmin, S. (1958). The uses of argument. Cambridge University Press.
Valero Haro, A., Noroozi, O., Biemans, H. J., Mulder, M., & Banihashem, S. K. (2023). How does the type of online peer feedback influence feedback quality, argumentative essay writing quality, and domain-specific learning? Interactive Learning Environments, 1-20. https://doi.org/10.1080/10494820.2023.2215822.
White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., & Schmidt, D. C. (2023). A prompt pattern catalog to enhance prompt engineering with chatgpt. arXiv preprint arXiv:2302.11382. https://doi.org/10.48550/arXiv.2302.11382.
Wu, Y., & Schunn, C. D. (2020). From feedback to revisions: Effects of feedback features and perceptions. Contemporary Educational Psychology, 60, 101826. https://doi.org/10.1016/j.cedpsych.2019.101826.
Xia, Q., Chiu, T. K., Zhou, X., Chai, C. S., & Cheng, M. (2022). Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Computers and Education: Artificial Intelligence, 100118. https://doi.org/10.1016/j.caeai.2022.100118.
Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education-where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 1-27. https://doi.org/10.1186/s41239-019-0171-0.
Zhang, Z. V., & Hyland, K. (2022). Fostering student engagement with feedback: An integrated approach. Assessing Writing, 51, 100586. https://doi.org/10.1016/j.asw.2021.100586.
- Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
DOI: https://doi.org/10.1186/s41239-024-00455-4
Publication Date: 2024-04-11
Feedback sources in essay writing: peergenerated or Al-generated feedback?
Seyyed Kazem Banihashem
kazem.banihashem@ou.nl
¹Open Universiteit, Heerlen, The Netherlands
Research, Wageningen, The Netherlands
Abstract
Peer feedback is introduced as an effective learning strategy, especially in largesize classes where teachers face high workloads. However, for complex tasks such as writing an argumentative essay, without support peers may not provide highquality feedback since it requires a high level of cognitive processing, critical thinking skills, and a deep understanding of the subject. With the promising developments in Artificial Intelligence (AI), particularly after the emergence of ChatGPT, there is a global argument that whether AI tools can be seen as a new source of feedback or not for complex tasks. The answer to this question is not completely clear yet as there are limited studies and our understanding remains constrained. In this study, we used ChatGPT as a source of feedback for students’ argumentative essay writing tasks and we compared the quality of ChatGPT-generated feedback with peer feedback. The participant pool consisted of 74 graduate students from a Dutch university. The study unfolded in two phases: firstly, students’ essay data were collected as they composed essays on one of the given topics; subsequently, peer feedback and ChatGPT-generated feedback data were collected through engaging peers in a feedback process and using ChatGPT as a feedback source. Two coding schemes including coding schemes for essay analysis and coding schemes for feedback analysis were used to measure the quality of essays and feedback. Then, a MANOVA analysis was employed to determine any distinctions between the feedback generated by peers and ChatGPT. Additionally, Spearman’s correlation was utilized to explore potential links between the essay quality and the feedback generated by peers and ChatGPT. The results showed a significant difference between feedback generated by ChatGPT and peers. While ChatGPT provided more descriptive feedback including information about how the essay is written, peers provided feedback including information about identification of the problem in the essay. The overarching look at the results suggests a potential complementary role for ChatGPT and students in the feedback process. Regarding the relationship between the quality of essays and the quality of the feedback provided by ChatGPT and peers, we found no overall significant relationship. These findings imply that the quality of the essays does not impact both ChatGPT and peer feedback quality. The implications of this study are valuable, shedding light on the prospective use of ChatGPT as a feedback source, particularly for complex tasks like argumentative essay writing.
Keywords Al-generated feedback, ChatGPT, Essay writing, Feedback sources, Higher education, Peer feedback
Introduction
effective feedback necessitates a solid understanding of feedback principles, an element that peers often lack (Latifi et al., 2023; Noroozi et al., 2016). Moreover, offering high-quality feedback is inherently a complex task, demanding substantial cognitive processing to meticulously evaluate peers’ assignments, identify issues, and propose constructive remedies (King, 2002; Noroozi et al., 2022). Furthermore, the provision of valuable feedback calls for a significant level of domain-specific expertise, which is not consistently possessed by students (Alqassab et al., 2018; Kerman et al., 2022).
standards in their essay composition (e.g., Bulqiyah et al., 2021; Noroozi et al., 2016;, 2022; Latifi et al., 2023).
Method
Context and participant
Study design and procedure
the responsibility of the consumer”. The given controversial topics were directly related to the course content and students’ area of study. Students had time for one week to write their essays individually and submit them to the Brightspace platform.
Measurements
Coding scheme to assess the quality of essay writing
Coding scheme to assess the quality of feedback generated by peers and ChatGPT
Analysis
Results
RQ1. To what extent does the quality of peer-generated and ChatGPT-generated feedback differ in the context of essay writing?
Variables | Group | Feedback quality | Difference | ||
Mean | SD | ||||
Affective | Peer feedback | 1.91 | 0.20 |
|
|
ChatGPT feedback | 1.93 | 0.18 | |||
Total | 1.92 | 0.19 | |||
Cognitive | Description | Peer feedback | 1.91 | 0.29 |
|
ChatGPT feedback | 2.00 | 0.00 | |||
Total | 1.95 | 0.21 | |||
Identification | Peer feedback | 1.52 | 0.49 |
|
|
ChatGPT feedback | 1.29 | 0.70 | |||
Total | 1.41 | 0.61 | |||
Justification | Peer feedback | 0.66 | 0.32 |
|
|
ChatGPT feedback | 0.62 | 0.37 | |||
Total | 0.64 | 0.34 | |||
Constructive | Peer feedback | 1.63 | 0.44 |
|
|
ChatGPT feedback | 1.68 | 0.38 | |||
Total | 1.65 | 0.41 |
Examples | Feedback Source | |||
ChatGPT-generated feedback | Peer-generated feedback | |||
Example #1 | The essay presents multiple arguments against PIF sterilization, such as the possibility of recontamination during production and preparation, the presence of beneficial components that may be lost with sterilization, and the risk being relevant only to a small group of infants. However, some of these arguments lack detailed elaboration and specific evidence. | Since I think your position is missing in the introduction section, I think the response to counter arguments is also somewhat missing. Personally, I would suggest that you could first add your position, which would also make the response to counter arguments easier. | ||
Example #2 | The essay nicely argues that consumers are ultimately responsible for the safe consumption of food. It highlights that even with regulations in place, consumers need to make informed decisions about handling and preparing food to minimize foodborne illness risks. To strengthen this argument, the essay could provide real-life examples or case studies where lack of consumer responsibility led to foodborne illnesses, highlighting the need for awareness and adherence to safe food practices. | I feel that your position is missing, I didn’t see your clear stand in the introduction section, perhaps you could add some simple sentences to show where you stand. | ||
Example #3 | The body of the essay presents multiple reasons why PIF should be sterile, such as the risk of harmful bacteria like Cronobacter sakazakii, the extended shelf life, and the risks of temperature abuse and improper cleaning. Each reason is supported with relevant citations, which adds credibility to the argument. However, the essay lacks a counterargument section that addresses the opposing perspective. To create a more comprehensive and persuasive essay, it’s essential to acknowledge the counterarguments and refute them with evidence. |
|
||
Affective | Cognitive- Descriptive Cognitive-Identification | Cognitive-Justification |
Feedback quality | Essay writing quality | |||||||||
Introduction | Position | Arg. Fav. | Just. Fav. | Arg. Aga. | Just. Aga. | Res. Arg. | Conclusion | Overall | ||
Affective | ChatGPT feedback | 0.14 | 0.19 | -0.05 | 0.09 | 0.22 | 0.01 | 0.27* | 0.14 | 0.28* |
Peer feedback | -0.29* | -0.22 | -0.05 | -0.15 | -0.07 | -0.18 | -0.04 | 0.02 | 0.23* | |
Description | ChatGPT feedback | 0.12 | 0.09 | 0.13 | 0.09 | 0.02 | 0.01 | 0.04 | 0.01 | 0.02 |
Peer feedback | -0.25* | -0.06 | -0.11 | -0.23* | 0.14 | 0.00 | 0.16 | -0.13 | -0.08 | |
Identification | ChatGPT feedback | 0.02 | -0.16 | -0.08 | -0.01 | -0.14 | 0.04 | -0.15 | -0.09 | -0.10 |
Peer feedback | -0.16 | -0.17 | 0.00 | -0.01 | 0.08 | -0.02 | 0.01 | -0.05 | -0.06 | |
Justification | ChatGPT feedback | 0.00 | -0.30* | 0.07 | 0.00 | -0.19 | -0.03 | -0.09 | -0.22 | -0.18 |
Peer feedback | 0.01 | -0.18 | 0.06 | 0.04 | 0.03 | -0.06 | 0.07 | -0.05 | -0.02 | |
Constructive | ChatGPT feedback | 0.04 | 0.09 | -0.19 | 0.00 | 0.02 | 0.05 | 0.09 | -0.09 | 0.05 |
Peer feedback | 0.15 | -0.16 | 0.01 | 0.09 | 0.10 | -0.02 | 0.10 | 0.15 | 0.12 | |
Overall | ChatGPT feedback | 0.05 | -0.16 | -0.04 | 0.01 | -0.11 | 0.02 | -0.06 | -0.15 | -0.08 |
Peer feedback | -0.12 | -0.30* | 0.00 | -0.04 | 0.11 | -0.01 | 0.12 | 0.04 | -0.05 |
to ChatGPT. This difference was mainly due to the descriptive and identification of the problem features of feedback. ChatGPT tended to produce more extensive descriptive feedback including a summary statement such as the description of the essay or taken action, while students performed better in pinpointing and identifying the issues in the feedback provided (see Table 1).
RQ2. Does a relationship exist between the quality of essay writing performance and the quality of feedback generated by peers and ChatGPT?
Discussion
Discussion on the results of RQ1
Discussion on the results of RQ2
peers (e.g., Patchan et al., 2016). This suggests that as students witness improvements in their peers’ essay-writing skills and knowledge, their feedback priorities may naturally evolve. For instance, students may transition from emphasizing emotional and affective comments to focusing on cognitive and constructive feedback, with the goal of further enhancing the overall quality of the essays.
Limitations and implications for future research and practice
and control for prompt-related factors in future research when assessing ChatGPT’s performance and capabilities in various tasks and contexts.
Conclusion
field. From a practical perspective of higher education, the study’s findings offer insights into the potential integration of ChatGPT as a feedback source within higher education contexts. The discovery that ChatGPT’s feedback quality could potentially complement peer feedback highlights its applicability for enhancing feedback practices in higher education. This holds particular promise for courses with substantial enrolments and essay-writing components, providing teachers with a feasible alternative for delivering constructive feedback to a larger number of students.
Author contributions
Funding
Data availability
Declarations
Declaration of Al-assisted technologies in the writing process
Competing interests
Published online: 12 April 2024
References
Amiryousefi, M., & Geld, R. (2021). The role of redressing teachers’ instructional feedback interventions in EFL learners’ motivation and achievement in distance education. Innovation in Language Learning and Teaching, 15(1), 13-25. https://doi.org/1 0.1080/17501229.2019.1654482.
Banihashem, S. K., Noroozi, O., van Ginkel, S., Macfadyen, L. P., & Biemans, H. J. (2022). A systematic review of the role of learning analytics in enhancing feedback practices in higher education. Educational Research Review, 100489. https://doi. org/10.1016/j.edurev.2022.100489.
Banihashem, S. K., Dehghanzadeh, H., Clark, D., Noroozi, O., & Biemans, H. J. (2023). Learning analytics for online game-based learning: A systematic literature review. Behaviour & Information Technology, 1-28. https://doi.org/10.1080/01449 29X.2023.2255301.
Bellhäuser, H., Dignath, C., & Theobald, M. (2023). Daily automated feedback enhances self-regulated learning: A longitudinal randomized field experiment. Frontiers in Psychology, 14, 1125873. https://doi.org/10.3389/fpsyg.2023.1125873.
Bond, M., Khosravi, H., De Laat, M., Bergdahl, N., Negrea, V., Oxley, E., & Siemens, G. (2024). A meta systematic review of artificial intelligence in higher education: A call for increased ethics, collaboration, and rigour. International Journal of Educational Technology in Higher Education, 21(4), 1-41. https://doi.org/10.1186/s41239-023-00436-z.
Bulqiyah, S., Mahbub, M., & Nugraheni, D. A. (2021). Investigating writing difficulties in Essay writing: Tertiary Students’ perspectives. English Language Teaching Educational Journal, 4(1), 61-73. https://doi.org/10.12928/eltej.v4i1.2371.
Callender, A. A., Franco-Watkins, A. M., & Roberts, A. S. (2016). Improving metacognition in the classroom through instruction, training, and feedback. Metacognition and Learning, 11(2), 215-235. https://doi.org/10.1007/s1 1409-015-9142-6.
Cao, J., Li, M., Wen, M., & Cheung, S. C. (2023). A study on prompt design, advantages and limitations of chatgpt for deep learning program repair. arXiv Preprint arXiv:2304 08191. https://doi.org/10.48550/arXiv.2304.08191.
Dai, W., Lin, J., Jin, F., Li, T., Tsai, Y. S., Gasevic, D., & Chen, G. (2023). Can large language models provide feedback to students? A case study on ChatGPT. https://doi.org/10.35542/osf.io/hcgzj.
Darvishi, A., Khosravi, H., Sadiq, S., Gašević, D., & Siemens, G. (2024). Impact of AI assistance on student agency. Computers & Education, 210, 104967. https://doi.org/10.1016/j.compedu.2023.104967.
Deeva, G., Bogdanova, D., Serral, E., Snoeck, M., & De Weerdt, J. (2021). A review of automated feedback systems for learners: Classification framework, challenges and opportunities. Computers & Education, 162, 104094. https://doi.org/10.1016/j. compedu.2020.104094.
Diezmann, C. M., & Watters, J. J. (2015). The knowledge base of subject matter experts in teaching: A case study of a professional scientist as a beginning teacher. International Journal of Science and Mathematics Education, 13, 1517-1537. https://doi. org/10.1007/s10763-014-9561-x.
Drachsler, H., & Kalz, M. (2016). The MOOC and learning analytics innovation cycle (MOLAC): A reflective summary of ongoing research and its challenges. Journal of Computer Assisted Learning, 32(3), 281-290. https://doi.org/10.1111/jcal.12135.
Er, E., Dimitriadis, Y., & Gašević, D. (2021). Collaborative peer feedback and learning analytics: Theory-oriented design for supporting class-wide interventions. Assessment & Evaluation in Higher Education, 46(2), 169-190. https://doi.org/10.1080/026 02938.2020.1764490.
Gao, X., Noroozi, O., Gulikers, J.T. M., Biemans, H. J., & Banihashem, S. K. (2024). A systematic review of the key components of online peer feedback practices in higher education. Educational Research Review, 100588. https://doi.org/10.1016/j. edurev.2023.100588.
Gielen, M., & De Wever, B. (2015). Scripting the role of assessor and assessee in peer assessment in a wiki environment: Impact on peer feedback quality and product improvement. Computers & Education, 88, 370-386. https://doi.org/10.1016/j. compedu.2015.07.012.
Gombert, S., Fink, A., Giorgashvili, T., Jivet, I., Di Mitri, D., Yau, J., & Drachsler, H. (2024). From the Automated Assessment of Student Essay Content to highly informative feedback: A case study. International Journal of Artificial Intelligence in Education, 1-39. https://doi.org/10.1007/s40593-023-00387-6.
Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81-112. https://doi. org/10.3102/003465430298487.
Holt-Reynolds, D. (1999). Good readers, good teachers? Subject matter expertise as a challenge in learning to teach. Harvard Educational Review, 69(1), 29-51. https://doi.org/10.17763/haer.69.1.pl5m5083286l77t2.
Huang, A. Y., Lu, O. H., & Yang, S. J. (2023). Effects of artificial intelligence-enabled personalized recommendations on learners’ learning engagement, motivation, and outcomes in a flipped classroom. Computers & Education, 194, 104684. https://doi. org/10.1016/j.compedu.2022.104684.
Katz, A., Wei, S., Nanda, G., Brinton, C., & Ohland, M. (2023). Exploring the efficacy of ChatGPT in analyzing Student Teamwork Feedback with an existing taxonomy. arXiv Preprint arXiv. https://doi.org/10.48550/arXiv.2305.11882.
Kerman, N. T., Noroozi, O., Banihashem, S. K., Karami, M., & Biemans, H. J. (2022). Online peer feedback patterns of success and failure in argumentative essay writing. Interactive Learning Environments, 1-13. https://doi.org/10.1080/10494820.2022.20 93914.
King, A. (2002). Structuring peer interaction to promote high-level cognitive processing. Theory into Practice, 41(1), 33-39. https://doi.org/10.1207/s15430421tip4101_6.
Konold, K. E., Miller, S. P., & Konold, K. B. (2004). Using teacher feedback to enhance student learning. Teaching Exceptional Children, 36(6), 64-69. https://doi.org/10.1177/004005990403600608.
Korteling, J. H., van de Boer-Visschedijk, G. C., Blankendaal, R. A., Boonekamp, R. C., & Eikelboom, A. R. (2021). Human-versus artificial intelligence. Frontiers in Artificial Intelligence, 4, 622364. https://doi.org/10.3389/frai.2021.622364.
Labuhn, A. S., Zimmerman, B. J., & Hasselhorn, M. (2010). Enhancing students’ self-regulation and mathematics performance: The influence of feedback and self-evaluative standards. Metacognition and Learning, 5, 173-194. https://doi.org/10.1007/ s11409-010-9056-2.
Lamb, R., Firestone, J., Schmitter-Edgecombe, M., & Hand, B. (2019). A computational model of student cognitive processes while solving a critical thinking problem in science. The Journal of Educational Research, 112(2), 243-254. https://doi.org/10 .1080/00220671.2018.1514357.
Latifi, S., Noroozi, O., & Talaee, E. (2023). Worked example or scripting? Fostering students’ online argumentative peer feedback, essay writing and learning. Interactive Learning Environments, 31(2), 655-669. https://doi.org/10.1080/10494820.2020.179 9032.
Liu, N. F., & Carless, D. (2006). Peer feedback: The learning element of peer assessment. Teaching in Higher Education, 11(3), 279-290. https://doi.org/10.1080/13562510600680582.
Liunokas, Y. (2020). Assessing students’ ability in writing argumentative essay at an Indonesian senior high school. IDEAS: Journal on English language teaching and learning. Linguistics and Literature, 8(1), 184-196. https://doi.org/10.24256/ideas. v8i1.1344.
Nelson, M. M., & Schunn, C. D. (2009). The nature of feedback: How different types of peer feedback affect writing performance. Instructional Science, 37, 375-401. https://doi.org/10.1007/s11251-008-9053-x.
Noroozi, O., Banihashem, S. K., Taghizadeh Kerman, N., Parvaneh Akhteh Khaneh, M., Babayi, M., Ashrafi, H., & Biemans, H. J. (2022). Gender differences in students’ argumentative essay writing, peer review performance and uptake in online learning environments. Interactive Learning Environments, 1-15. https://doi.org/10.1080/10494820.2022.2034887.
Noroozi, O., Biemans, H., & Mulder, M. (2016). Relations between scripted online peer feedback processes and quality of written argumentative essay. The Internet and Higher Education, 31, 20-31. https://doi.org/10.1016/j.iheduc.2016.05.002
Noroozi, O., Banihashem, S. K., Biemans, H. J., Smits, M., Vervoort, M. T., & Verbaan, C. L. (2023). Design, implementation, and evaluation of an online supported peer feedback module to enhance students’ argumentative essay quality. Education and Information Technologies, 1-28. https://doi.org/10.1007/s10639-023-11683-y.
Papamitsiou, Z., & Economides, A. A. (2014). Learning analytics and educational data mining in practice: A systematic literature review of empirical evidence. Journal of Educational Technology & Society, 17(4), 49-64. https://doi.org/10.2307/jeductechsoci.17.4.49. https://www.jstor.org/stable/.
Pardo, A., Jovanovic, J., Dawson, S., Gašević, D., & Mirriahi, N. (2019). Using learning analytics to scale the provision of personalised feedback. British Journal of Educational Technology, 50(1), 128-138. https://doi.org/10.1111/bjet.12592.
Ramsden, P. (2003). Learning to teach in higher education. Routledge.
Ray, P. P. (2023). ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. Internet of Things and Cyber-Physical Systems, 3, 121-154. https://doi.org/10.1016/j.iotcps.2023.04.003.
Rüdian, S., Heuts, A., & Pinkwart, N. (2020). Educational Text Summarizer: Which sentences are worth asking for? In DELFI 2020 The 18th Conference on Educational Technologies of the German Informatics Society (pp. 277-288). Bonn, Germany.
Rummel, N., Walker, E., & Aleven, V. (2016). Different futures of adaptive collaborative learning support. International Journal of Artificial Intelligence in Education, 26, 784-795. https://doi.org/10.1007/s40593-016-0102-3.
Shi, M. (2019). The effects of class size and instructional technology on student learning performance. The International Journal of Management Education, 17(1), 130-138. https://doi.org/10.1016/j.jjme.2019.01.004.
Toulmin, S. (1958). The uses of argument. Cambridge University Press.
Valero Haro, A., Noroozi, O., Biemans, H. J., Mulder, M., & Banihashem, S. K. (2023). How does the type of online peer feedback influence feedback quality, argumentative essay writing quality, and domain-specific learning? Interactive Learning Environments, 1-20. https://doi.org/10.1080/10494820.2023.2215822.
White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., & Schmidt, D. C. (2023). A prompt pattern catalog to enhance prompt engineering with chatgpt. arXiv preprint arXiv:2302.11382. https://doi.org/10.48550/arXiv.2302.11382.
Wu, Y., & Schunn, C. D. (2020). From feedback to revisions: Effects of feedback features and perceptions. Contemporary Educational Psychology, 60, 101826. https://doi.org/10.1016/j.cedpsych.2019.101826.
Xia, Q., Chiu, T. K., Zhou, X., Chai, C. S., & Cheng, M. (2022). Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Computers and Education: Artificial Intelligence, 100118. https://doi.org/10.1016/j.caeai.2022.100118.
Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education-where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 1-27. https://doi.org/10.1186/s41239-019-0171-0.
Zhang, Z. V., & Hyland, K. (2022). Fostering student engagement with feedback: An integrated approach. Assessing Writing, 51, 100586. https://doi.org/10.1016/j.asw.2021.100586.
- Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.