DOI: https://doi.org/10.1038/s41598-024-83950-y
PMID: https://pubmed.ncbi.nlm.nih.gov/39754012
تاريخ النشر: 2025-01-03
افتح
مقارنة بين أداء الذكاء الاصطناعي والخبراء البشريين في تقييم الألم الحاد في الأغنام
الملخص
مارسيلو فيغيلشتاين
تستكشف هذه الدراسة السؤال عما إذا كان الذكاء الاصطناعي (AI) يمكن أن يتفوق على الخبراء البشريين في التعرف على الألم في الحيوانات باستخدام الأغنام كحالة دراسية. تستخدم مجموعة بيانات من
كان Deep Blue ذكيًا بالطريقة التي يكون بها منبهك القابل للبرمجة ذكيًا. ليس أن خسارتي أمام منبه بقيمة 10 ملايين دولار جعلتني أشعر بتحسن.
استخدام الذكاء الاصطناعي (AI) في الرعاية الصحية من خلال استخدام خوارزميات التعلم الآلي (ML) وتقنيات تحليل البيانات هو تغيير حقيقي في اللعبة، مما يؤدي إلى نتائج أفضل للمرضى، واستخدام أفضل للموارد، وانخفاض في تكاليف التشغيل
تم تطوير أول مقاييس تعبيرات الألم للحيوانات للجرذان وهي متاحة الآن للعديد من الأنواع الثديية
طرق
مجموعة البيانات



التعرف على الألم بواسطة الخبراء البشر
| طريقة | دقة | استدعاء | دقة | فورمولا 1 | حساسية | خصوصية |
| قطع USAPS 4 | 0.7956 | 0.8776 | 0.7539 | 0.8111 | 0.8776 | 0.7135 |
| حد USAPS 5 | 0.8177 | 0.8411 | 0.8034 | 0.8219 | 0.8411 | 0.7943 |
| حد قطع SPFES 4 | 0.7083 | 0.8672 | 0.6581 | 0.7483 | 0.8672 | 0.5495 |
| آلة | 0.8229 | 0.8125 | 0.8298 | 0.8211 | 0.8125 | 0.8333 |
| تعلم الآلة |
|
|
SFPES | |
| الجامعة الأمريكية في القاهرة | 0.823 | 0.796 | 0.818 | 0.708 |
| طريقة | دقة | استدعاء | دقة | فورمولا 1 | حساسية | خصوصية |
| يوسابس | 0.8365 | 0.9199 | 0.7884 | 0.8491 | 0.9199 | 0.7532 |
| SPFES | 0.7276 | 0.9038 | 0.6682 | 0.7684 | 0.9038 | 0.5512 |
| آلة | 0.7949 | 0.8462 | 0.7674 | 0.8049 | 0.8462 | 0.7436 |
التعرف على الألم بواسطة الآلة
مقاييس الأداء
التحليل الإحصائي
النتائج
المناقشة
تقييم سلوك الألم في الحيوانات في جميع الأنواع المنزلية (Vetpain) ومقياس تعبيرات الألم القططية (https: //www.felinegrimacescale.com).
توفر البيانات
تاريخ الاستلام: 25 أكتوبر 2023؛ تاريخ القبول: 18 ديسمبر 2024
تم النشر على الإنترنت: 03 يناير 2025
References
- Davenport, T. & Kalakota, R. The potential for artificial intelligence in healthcare. Fut. Healthc. J. 6(2), 94 (2019).
- Bajwa, J., Munir, U., Nori, A. & Williams, B. Artificial intelligence in healthcare: Transforming the practice of medicine. Fut. Healthc. J. 8(2), 188 (2021).
- Zamzmi, G. et al. A review of automated pain assessment in infants: Features, classification tasks, and databases. IEEE Rev. Biomed. Eng. 11, 77-96 (2017).
- Atee, M., Hoti, K. & Hughes, J. Painchek
use in clinical practice: An artificial intelligence (AI) assisted-pain assessment tool for aged care residents with dementia. In: 17th IASP World Congress on Pain 2018 (2018). - Hoti, K., Chivers, P. T. & Hughes, J. D. Assessing procedural pain in infants: A feasibility study evaluating a point-of-care mobile solution based on automated facial analysis. The Lancet Digital Health 3(10), 623-634 (2021).
- Hughes, J. D., Chivers, P. & Hoti, K. The clinical suitability of an artificial intelligence-enabled pain assessment tool for use in infants: Feasibility and usability evaluation study. J. Med. Internet Res. 25, 41992 (2023).
- Broome, S. et al. Going deeper than tracking: A survey of computer-vision based recognition of animal pain and emotions. Int. J. Comput. Vision 131(2), 572-590 (2023).
- Andresen, N. et al. Towards a fully automated surveillance of well-being status in laboratory mice using deep learning: Starting with facial expression analysis. PLoS ONE 15(4), 0228059 (2020).
- Tuttle, A. H. et al. A deep neural network to assess spontaneous pain from mouse facial expressions. Mol. Pain 14, 1744806918763658 (2018).
- Lencioni, G. C., de Sousa, R. V., de Souza Sardinha, E. J., Corrêa, R. R. & Zanella, A. J. Pain assessment in horses using automatic facial expression recognition through deep learning-based modeling. PLoS ONE 16(10), 0258672 (2021).
- Broomé, S., Gleerup, K.B., Andersen, P.H. & Kjellstrom, H. Dynamics are important for the recognition of equine pain in video. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 12667-12676 (2019).
- Pessanha, F., Salah, A. A., Loon, T. V. & Veltkamp, R. Facial image-based automatic assessment of equine pain. IEEE Trans. Affect. Comput.[SPACE]https://doi.org/10.1109/TAFFC.2022.3177639 (2022).
- Feighelstein, M. et al. Automated recognition of pain in cats. Sci. Rep. 12(1), 9575 (2022).
- Feighelstein, M. et al. Explainable automated pain recognition in cats. Sci. Rep. 13(1), 8973 (2023).
- Feighelstein, M. et al. Deep learning for video-based automated pain recognition in rabbits. Sci. Rep. 13(1), 14679 (2023).
- Zhu, H., Salgırlı, Y., Can, P., Atılgan, D. & Salah, A.A. Video-based estimation of pain indicators in dogs. arXiv preprint arXiv:2209.13296 (2022).
- Mahmoud, M., Lu, Y., Hou, X., McLennan, K. & Robinson, P. Estimation of pain in sheep using computer vision. Handbook of Pain and Palliative Care: Biopsychosocial and environmental approaches for the life course, 145-157 (2018).
- Pessanha, F., McLennan, K. & Mahmoud, M. Towards automatic monitoring of disease progression in sheep: A hierarchical model for sheep facial expressions analysis from video. In: 2020 15th IEEE international conference on automatic face and gesture recognition (FG 2020), pp. 387-393 (2020).
- McLennan, K. & Mahmoud, M. Development of an automated pain facial expression detection system for sheep (ovis aries). Animals 9(4), 196 (2019).
- Labus, J. S., Keefe, F. J. & Jensen, M. P. Self-reports of pain intensity and direct observations of pain behavior: When are they correlated?. Pain 102(1-2), 109-124 (2003).
- Barrett, L. F. Feelings or words? Understanding the content in self-report ratings of experienced emotion. J. Pers. Soc. Psychol. 87(2), 266-281 (2004).
- Mogil, J. S., Pang, D. S., Dutra, G. G. S. & Chambers, C. T. The development and use of facial grimace scales for pain measurement in animals. Neurosci. Biobehav. Rev. 116, 480-493 (2020).
- Sotocina, S. G. et al. The rat grimace scale: A partially automated method for quantifying pain in the laboratory rat via facial expressions. Mol. Pain 7, 1744-8069 (2011).
- Keating, S. C., Thomas, A. A., Flecknell, P. A. & Leach, M. C. Evaluation of EMLA cream for preventing pain during tattooing of rabbits: Changes in physiological, behavioural and facial expression responses. PloS one[SPACE], https://doi.org/10.1371/journal. pone. 0044437 (2012).
- Dalla Costa, E. et al. Development of the horse grimace scale (hgs) as a pain assessment tool in horses undergoing routine castration. PLoS ONE 9(3), 92281 (2014).
- Di Giminiani, P. et al. The assessment of facial expressions in piglets undergoing tail docking and castration: Toward the development of the piglet grimace scale. Front. Veter. Sci. 3, 100 (2016).
- Reijgwart, M. L. et al. The composition and initial evaluation of a grimace scale in ferrets after surgical implantation of a telemetry probe. PLoS ONE 12(11), 0187986 (2017).
- McLennan, K. M. et al. Development of a facial expression scale using footrot and mastitis as models of pain in sheep. Appl. Anim. Behav. Sci. 176, 19-26 (2016).
- Häger, C. et al. The sheep grimace scale as an indicator of post-operative distress and pain in laboratory sheep. PLoS ONE 12(4), 0175839 (2017).
- Holden, E. et al. Evaluation of facial expression in acute pain in cats. J. Small Anim. Pract. 55(12), 615-621 (2014).
- Evangelista, M. C. et al. Facial expressions of pain in cats: The development and validation of a feline grimace scale. Sci. Report 9 (1), 1-11 (2019).
- Brondani, J. T. et al. Validation of the english version of the unesp-botucatu multidimensional composite pain scale for assessing postoperative pain in cats. BMC Vet. Res. 9(1), 1-15 (2013).
- Reid, J. et al. Development of the short-form glasgow composite measure pain scale (cmps-sf) and derivation of an analgesic intervention score. Anim. Welf. 16(S1), 97-104 (2007).
- Haddad Pinho, R. et al. Validation of the rabbit pain behaviour scale (rpbs) to assess acute postoperative pain in rabbits (oryctolagus cuniculus). PLoS One 17(5), 0268973 (2022).
- Luna, S. P. L. et al. Validation of the unesp-botucatu pig composite acute pain scale (upaps). PLoS One 15(6), 0233552 (2020).
- Fonseca, M. W. et al. Development and validation of the unesp-botucatu goat acute pain scale. Animals 13(13), 2136 (2023).
- Silva, N. et al. Correction: Validation of the unesp-botucatu composite scale to assess acute postoperative abdominal pain in sheep (usaps). PLoS ONE 17, 0268305. https://doi.org/10.1371/journal.pone. 0268305 (2022).
- Oliveira, M. G. et al. Validation of the donkey pain scale (dops) for assessing postoperative pain in donkeys. Front. Veter. Sci. 8, 671330 (2021).
- de Oliveira, F. A. et al. Validation of the unesp-botucatu unidimensional composite pain scale for assessing postoperative pain in cattle. BMC Veter. Res. 10, 1-14 (2014).
- De Sario, G. D. et al. Using ai to detect pain through facial expressions: A review. Bioengineering 10(5), 548 (2023).
- Robinson, M. E. & Wise, E. A. Gender bias in the observation of experimental pain. Pain 104(1-2), 259-264 (2003).
- Contreras-Huerta, L. S., Baker, K. S., Reynolds, K. J., Batalha, L. & Cunnington, R. Racial bias in neural empathic responses to pain. PLoS ONE 8(12), 84001 (2013).
- Adami, C., Filipas, M., John, C., Skews, K. & Dobson, E. Inter-observer reliability of three feline pain scales used in clinical practice. J. Feline Med. Surg. 25(9), 1098612-231194423 (2023).
- Reid, J., Scott, E., Calvo, G. & Nolan, A. Definitive glasgow acute pain scale for cats: Validation and intervention level. Veterin. Record. [SPACE], https://doi.org/10.1136/vr. 104208 (2017).
- Shipley, H., Guedes, A., Graham, L., Goudie-DeAngelis, E. & Wendt-Hornickle, E. Preliminary appraisal of the reliability and validity of the colorado state university feline acute pain scale. J. Feline Med. Surg. 21(4), 335-339 (2019).
- Weber, G., Morton, J. & Keates, H. Postoperative pain and perioperative analgesic administration in dogs: Practices, attitudes and beliefs of Queensland veterinarians. Aust. Vet. J. 90(5), 186-193 (2012).
- Williams, V., Lascelles, B. & Robson, M. Current attitudes to, and use of, peri-operative analgesia in dogs and cats by veterinarians in New Zealand. N. Z. Vet. J. 53(3), 193-202 (2005).
- Bell, A., Helm, J. & Reid, J. Veterinarians’ attitudes to chronic pain in dogs. Veter. Record 175(17), 428-428 (2014).
- Kilkenny, C., Browne, W., Cuthill, I. C., Emerson, M. & Altman, D. G. Animal research: Reporting in vivo experiments: The arrive guidelines. Br. J. Pharmacol. 160(7), 1577 (2010).
- Banks, R. The Four Rs of research. Contemp. Top. Lab. Anim. Sci. 34(1), 50-51 (1995).
- Russell, W.M.S. & Burch, R.L. The principles of humane experimental technique. Methuen, (1959).
- Teixeira, P. et al. Ovariectomy by laparotomy, a video-assisted approach or a complete laparoscopic technique in santa ines sheep. Small Rumin. Res. 99(2-3), 199-202 (2011).
- McLennan, K. M. et al. Development of a facial expression scale using footrot and mastitis as models of pain in sheep. Appl. Anim. Behav. Sci. 176, 19-26. https://doi.org/10.1016/j.applanim.2016.01.007 (2016).
- Vikramkumar, Vijaykumar, B., Trilochan: Bayes and naive bayes classifier. arXiv:abs/1404.0933 (2014).
- Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., et al. Learning transferable visual models from natural language supervision. In: International conference on machine learning, pp. 8748-8763 (2021). PMLR.
- Li, J. et al. Feature selection: A data perspective. ACM Comput. Surv. (CSUR) 50(6), 1-45 (2017).
- DeLong, E. R., DeLong, D. M. & Clarke-Pearson, D. L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 44(3), 837-845 (1988).
- Lu, Y., Mahmoud, M. & Robinson, P. Estimating sheep pain level using facial action unit detection. In: 2017 12th IEEE International conference on automatic face & gesture recognition (FG 2017), IEEE, pp. 394-399 (2017).
- Evangelista, M. C., Monteiro, B. P. & Steagall, P. V. Measurement properties of grimace scales for pain assessment in nonhuman mammals: A systematic review. Pain 163(6), 697-714 (2022).
- Tomacheuski, R. M., Monteiro, B. P., Evangelista, M. C., Luna, S. P. L. & Steagall, P. V. Measurement properties of pain scoring instruments in farm animals: A systematic review using the cosmin checklist. PLoS ONE 18(1), 0280830 (2023).
الشكر والتقدير
مساهمات المؤلفين
معلومات إضافية
معلومات إعادة الطبع والتصاريح متاحة على www.nature.com/reprints.
ملاحظة الناشر تظل Springer Nature محايدة فيما يتعلق بالمطالبات القضائية في الخرائط المنشورة والانتماءات المؤسسية.
© المؤلفون 2025
قسم نظم المعلومات، جامعة حيفا، حيفا، إسرائيل. كلية الطب البيطري وعلوم الحيوان، جامعة ولاية ساو باولو (يونيسب)، ساو باولو، البرازيل. قسم علم الأمراض السكانية، جامعة ولاية كارولينا الشمالية، رالي، الولايات المتحدة الأمريكية. قسم علوم الحاسوب والمعلومات، جامعة نورثومبريا، نيوكاسل أبون تاين، المملكة المتحدة. البريد الإلكتروني: feighels@gmail.com; annazam@is.haifa.ac.il; annazam@gmail.com
DOI: https://doi.org/10.1038/s41598-024-83950-y
PMID: https://pubmed.ncbi.nlm.nih.gov/39754012
Publication Date: 2025-01-03
OPEN
Comparison between AI and human expert performance in acute pain assessment in sheep
Abstract
Marcelo Feighelstein
This study explores the question whether Artificial Intelligence (AI) can outperform human experts in animal pain recognition using sheep as a case study. It uses a dataset of
“Deep Blue was intelligent the way your programmable alarm clock is intelligent. Not that losing to a 10$ million alarm clock made me feel any better.”
The use of artificial intelligence (AI) in healthcare by utilizing machine learning (ML) algorithms and data analysis techniques is a real game-changer, resulting in better patient outcomes, better use of resources, and lower operating costs
The first animal grimace scales were developed for rodents and they are now available for many mammalian species
Methods
The dataset



Pain recognition by human experts
| Method | Accuracy | Recall | Precision | F1 | Sensitivity | Specificity |
| USAPS Cut-Off 4 | 0.7956 | 0.8776 | 0.7539 | 0.8111 | 0.8776 | 0.7135 |
| USAPS Cut-Off 5 | 0.8177 | 0.8411 | 0.8034 | 0.8219 | 0.8411 | 0.7943 |
| SPFES Cut-Off 4 | 0.7083 | 0.8672 | 0.6581 | 0.7483 | 0.8672 | 0.5495 |
| Machine | 0.8229 | 0.8125 | 0.8298 | 0.8211 | 0.8125 | 0.8333 |
| ML |
|
|
SFPES | |
| AUC | 0.823 | 0.796 | 0.818 | 0.708 |
| Method | Accuracy | Recall | Precision | F1 | Sensitivity | Specificity |
| USAPS | 0.8365 | 0.9199 | 0.7884 | 0.8491 | 0.9199 | 0.7532 |
| SPFES | 0.7276 | 0.9038 | 0.6682 | 0.7684 | 0.9038 | 0.5512 |
| Machine | 0.7949 | 0.8462 | 0.7674 | 0.8049 | 0.8462 | 0.7436 |
Pain recognition by machine
Performance metrics
Statistical analysis
Results
Discussion
assessment of animal pain body behavior in all domestic species (Vetpain) and the Feline Grimace Scale (https: //www.felinegrimacescale.com).
Data availability
Received: 25 October 2023; Accepted: 18 December 2024
Published online: 03 January 2025
References
- Davenport, T. & Kalakota, R. The potential for artificial intelligence in healthcare. Fut. Healthc. J. 6(2), 94 (2019).
- Bajwa, J., Munir, U., Nori, A. & Williams, B. Artificial intelligence in healthcare: Transforming the practice of medicine. Fut. Healthc. J. 8(2), 188 (2021).
- Zamzmi, G. et al. A review of automated pain assessment in infants: Features, classification tasks, and databases. IEEE Rev. Biomed. Eng. 11, 77-96 (2017).
- Atee, M., Hoti, K. & Hughes, J. Painchek
use in clinical practice: An artificial intelligence (AI) assisted-pain assessment tool for aged care residents with dementia. In: 17th IASP World Congress on Pain 2018 (2018). - Hoti, K., Chivers, P. T. & Hughes, J. D. Assessing procedural pain in infants: A feasibility study evaluating a point-of-care mobile solution based on automated facial analysis. The Lancet Digital Health 3(10), 623-634 (2021).
- Hughes, J. D., Chivers, P. & Hoti, K. The clinical suitability of an artificial intelligence-enabled pain assessment tool for use in infants: Feasibility and usability evaluation study. J. Med. Internet Res. 25, 41992 (2023).
- Broome, S. et al. Going deeper than tracking: A survey of computer-vision based recognition of animal pain and emotions. Int. J. Comput. Vision 131(2), 572-590 (2023).
- Andresen, N. et al. Towards a fully automated surveillance of well-being status in laboratory mice using deep learning: Starting with facial expression analysis. PLoS ONE 15(4), 0228059 (2020).
- Tuttle, A. H. et al. A deep neural network to assess spontaneous pain from mouse facial expressions. Mol. Pain 14, 1744806918763658 (2018).
- Lencioni, G. C., de Sousa, R. V., de Souza Sardinha, E. J., Corrêa, R. R. & Zanella, A. J. Pain assessment in horses using automatic facial expression recognition through deep learning-based modeling. PLoS ONE 16(10), 0258672 (2021).
- Broomé, S., Gleerup, K.B., Andersen, P.H. & Kjellstrom, H. Dynamics are important for the recognition of equine pain in video. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 12667-12676 (2019).
- Pessanha, F., Salah, A. A., Loon, T. V. & Veltkamp, R. Facial image-based automatic assessment of equine pain. IEEE Trans. Affect. Comput.[SPACE]https://doi.org/10.1109/TAFFC.2022.3177639 (2022).
- Feighelstein, M. et al. Automated recognition of pain in cats. Sci. Rep. 12(1), 9575 (2022).
- Feighelstein, M. et al. Explainable automated pain recognition in cats. Sci. Rep. 13(1), 8973 (2023).
- Feighelstein, M. et al. Deep learning for video-based automated pain recognition in rabbits. Sci. Rep. 13(1), 14679 (2023).
- Zhu, H., Salgırlı, Y., Can, P., Atılgan, D. & Salah, A.A. Video-based estimation of pain indicators in dogs. arXiv preprint arXiv:2209.13296 (2022).
- Mahmoud, M., Lu, Y., Hou, X., McLennan, K. & Robinson, P. Estimation of pain in sheep using computer vision. Handbook of Pain and Palliative Care: Biopsychosocial and environmental approaches for the life course, 145-157 (2018).
- Pessanha, F., McLennan, K. & Mahmoud, M. Towards automatic monitoring of disease progression in sheep: A hierarchical model for sheep facial expressions analysis from video. In: 2020 15th IEEE international conference on automatic face and gesture recognition (FG 2020), pp. 387-393 (2020).
- McLennan, K. & Mahmoud, M. Development of an automated pain facial expression detection system for sheep (ovis aries). Animals 9(4), 196 (2019).
- Labus, J. S., Keefe, F. J. & Jensen, M. P. Self-reports of pain intensity and direct observations of pain behavior: When are they correlated?. Pain 102(1-2), 109-124 (2003).
- Barrett, L. F. Feelings or words? Understanding the content in self-report ratings of experienced emotion. J. Pers. Soc. Psychol. 87(2), 266-281 (2004).
- Mogil, J. S., Pang, D. S., Dutra, G. G. S. & Chambers, C. T. The development and use of facial grimace scales for pain measurement in animals. Neurosci. Biobehav. Rev. 116, 480-493 (2020).
- Sotocina, S. G. et al. The rat grimace scale: A partially automated method for quantifying pain in the laboratory rat via facial expressions. Mol. Pain 7, 1744-8069 (2011).
- Keating, S. C., Thomas, A. A., Flecknell, P. A. & Leach, M. C. Evaluation of EMLA cream for preventing pain during tattooing of rabbits: Changes in physiological, behavioural and facial expression responses. PloS one[SPACE], https://doi.org/10.1371/journal. pone. 0044437 (2012).
- Dalla Costa, E. et al. Development of the horse grimace scale (hgs) as a pain assessment tool in horses undergoing routine castration. PLoS ONE 9(3), 92281 (2014).
- Di Giminiani, P. et al. The assessment of facial expressions in piglets undergoing tail docking and castration: Toward the development of the piglet grimace scale. Front. Veter. Sci. 3, 100 (2016).
- Reijgwart, M. L. et al. The composition and initial evaluation of a grimace scale in ferrets after surgical implantation of a telemetry probe. PLoS ONE 12(11), 0187986 (2017).
- McLennan, K. M. et al. Development of a facial expression scale using footrot and mastitis as models of pain in sheep. Appl. Anim. Behav. Sci. 176, 19-26 (2016).
- Häger, C. et al. The sheep grimace scale as an indicator of post-operative distress and pain in laboratory sheep. PLoS ONE 12(4), 0175839 (2017).
- Holden, E. et al. Evaluation of facial expression in acute pain in cats. J. Small Anim. Pract. 55(12), 615-621 (2014).
- Evangelista, M. C. et al. Facial expressions of pain in cats: The development and validation of a feline grimace scale. Sci. Report 9 (1), 1-11 (2019).
- Brondani, J. T. et al. Validation of the english version of the unesp-botucatu multidimensional composite pain scale for assessing postoperative pain in cats. BMC Vet. Res. 9(1), 1-15 (2013).
- Reid, J. et al. Development of the short-form glasgow composite measure pain scale (cmps-sf) and derivation of an analgesic intervention score. Anim. Welf. 16(S1), 97-104 (2007).
- Haddad Pinho, R. et al. Validation of the rabbit pain behaviour scale (rpbs) to assess acute postoperative pain in rabbits (oryctolagus cuniculus). PLoS One 17(5), 0268973 (2022).
- Luna, S. P. L. et al. Validation of the unesp-botucatu pig composite acute pain scale (upaps). PLoS One 15(6), 0233552 (2020).
- Fonseca, M. W. et al. Development and validation of the unesp-botucatu goat acute pain scale. Animals 13(13), 2136 (2023).
- Silva, N. et al. Correction: Validation of the unesp-botucatu composite scale to assess acute postoperative abdominal pain in sheep (usaps). PLoS ONE 17, 0268305. https://doi.org/10.1371/journal.pone. 0268305 (2022).
- Oliveira, M. G. et al. Validation of the donkey pain scale (dops) for assessing postoperative pain in donkeys. Front. Veter. Sci. 8, 671330 (2021).
- de Oliveira, F. A. et al. Validation of the unesp-botucatu unidimensional composite pain scale for assessing postoperative pain in cattle. BMC Veter. Res. 10, 1-14 (2014).
- De Sario, G. D. et al. Using ai to detect pain through facial expressions: A review. Bioengineering 10(5), 548 (2023).
- Robinson, M. E. & Wise, E. A. Gender bias in the observation of experimental pain. Pain 104(1-2), 259-264 (2003).
- Contreras-Huerta, L. S., Baker, K. S., Reynolds, K. J., Batalha, L. & Cunnington, R. Racial bias in neural empathic responses to pain. PLoS ONE 8(12), 84001 (2013).
- Adami, C., Filipas, M., John, C., Skews, K. & Dobson, E. Inter-observer reliability of three feline pain scales used in clinical practice. J. Feline Med. Surg. 25(9), 1098612-231194423 (2023).
- Reid, J., Scott, E., Calvo, G. & Nolan, A. Definitive glasgow acute pain scale for cats: Validation and intervention level. Veterin. Record. [SPACE], https://doi.org/10.1136/vr. 104208 (2017).
- Shipley, H., Guedes, A., Graham, L., Goudie-DeAngelis, E. & Wendt-Hornickle, E. Preliminary appraisal of the reliability and validity of the colorado state university feline acute pain scale. J. Feline Med. Surg. 21(4), 335-339 (2019).
- Weber, G., Morton, J. & Keates, H. Postoperative pain and perioperative analgesic administration in dogs: Practices, attitudes and beliefs of Queensland veterinarians. Aust. Vet. J. 90(5), 186-193 (2012).
- Williams, V., Lascelles, B. & Robson, M. Current attitudes to, and use of, peri-operative analgesia in dogs and cats by veterinarians in New Zealand. N. Z. Vet. J. 53(3), 193-202 (2005).
- Bell, A., Helm, J. & Reid, J. Veterinarians’ attitudes to chronic pain in dogs. Veter. Record 175(17), 428-428 (2014).
- Kilkenny, C., Browne, W., Cuthill, I. C., Emerson, M. & Altman, D. G. Animal research: Reporting in vivo experiments: The arrive guidelines. Br. J. Pharmacol. 160(7), 1577 (2010).
- Banks, R. The Four Rs of research. Contemp. Top. Lab. Anim. Sci. 34(1), 50-51 (1995).
- Russell, W.M.S. & Burch, R.L. The principles of humane experimental technique. Methuen, (1959).
- Teixeira, P. et al. Ovariectomy by laparotomy, a video-assisted approach or a complete laparoscopic technique in santa ines sheep. Small Rumin. Res. 99(2-3), 199-202 (2011).
- McLennan, K. M. et al. Development of a facial expression scale using footrot and mastitis as models of pain in sheep. Appl. Anim. Behav. Sci. 176, 19-26. https://doi.org/10.1016/j.applanim.2016.01.007 (2016).
- Vikramkumar, Vijaykumar, B., Trilochan: Bayes and naive bayes classifier. arXiv:abs/1404.0933 (2014).
- Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., et al. Learning transferable visual models from natural language supervision. In: International conference on machine learning, pp. 8748-8763 (2021). PMLR.
- Li, J. et al. Feature selection: A data perspective. ACM Comput. Surv. (CSUR) 50(6), 1-45 (2017).
- DeLong, E. R., DeLong, D. M. & Clarke-Pearson, D. L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 44(3), 837-845 (1988).
- Lu, Y., Mahmoud, M. & Robinson, P. Estimating sheep pain level using facial action unit detection. In: 2017 12th IEEE International conference on automatic face & gesture recognition (FG 2017), IEEE, pp. 394-399 (2017).
- Evangelista, M. C., Monteiro, B. P. & Steagall, P. V. Measurement properties of grimace scales for pain assessment in nonhuman mammals: A systematic review. Pain 163(6), 697-714 (2022).
- Tomacheuski, R. M., Monteiro, B. P., Evangelista, M. C., Luna, S. P. L. & Steagall, P. V. Measurement properties of pain scoring instruments in farm animals: A systematic review using the cosmin checklist. PLoS ONE 18(1), 0280830 (2023).
Acknowledgements
Author contributions
Additional information
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
© The Author(s) 2025
Department of Information Systems, University of Haifa, Haifa, Israel. School of Veterinary Medicine and Animal Science, Sao Paolo State University (Unesp), São Paulo, Brazil. Department of Population Pathobiology, North Carolina State University, Raleigh, USA. Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, UK. email: feighels@gmail.com; annazam@is.haifa.ac.il; annazam@gmail.com
