DOI: https://doi.org/10.22436/jmcs.034.04.04
تاريخ النشر: 2024-04-05
نتائج الوجود والقابلية للتحكم في معادلات فولتيرا-فريدولم التكاملية التفاضلية الكسرية المحايدة
الملخص
تتناول هذه الورقة البحثية التحقيق في معادلة فولتيرا-فريدولم التكاملية التفاضلية المعززة بمشتقات كابوتو الكسرية الخاضعة لظروف ترتيب محددة. تؤسس الدراسة بشكل صارم وجود الحلول من خلال تطبيق نظرية نقطة الثبات لشودر. علاوة على ذلك، تشمل المعادلات التكاملية التفاضلية المحايدة لفولتيرا-فريدولم، مما يوسع من قابلية تطبيق النتائج. بالإضافة إلى ذلك، تستكشف الورقة مفهوم القابلية للتحكم في الحلول التي تم الحصول عليها، مقدمة رؤى قيمة حول كيفية تصرف هذه الحلول على مدى فترات زمنية ممتدة.
©2024 جميع الحقوق محفوظة.
1. المقدمة
تحليل معادلات بلوتش المنفصلة من الرتبة الكسرية [33]، ونتائج التذبذب لمعادلات الفرق ذات التأخير نصف الخطية من الرتبة الثانية [22]. تقدم مساهمات سانترا وسكابيلا توضيحات حول الشروط الضرورية والكافية لتذبذب المعادلات التفاضلية من الرتبة الثانية مع تأخيرات مختلطة [44]، بينما يستكشف معاذ وآخرون السلوك اللانهائي لمعادلات التفاضل المحايدة غير القياسية من الرتبة الزوجية [35]. تساهم هذه الدراسات بشكل كبير في فهم ظواهر التذبذب في المعادلات التفاضلية، مما يمهد الطريق لمزيد من الاستكشاف والتطبيق في مجالات علمية متنوعة.
2. المقدمات
التعريف 2.2 ([50]). المشتق ريمان-ليوفيلي من الرتبة
3. معادلة فولتر-فريدولم التكاملية التفاضلية
3.1. نتائج الوجود
(A1) اعتبر الدوال المستمرة
(A3) الدالة
(A4) الثوابت
الخطوة 1:
الخطوة 2: تمتلك المجموعة
اعتبر
3.2. نتائج قابلية التحكم
التعريف 3.3. يُعتبر النظام الكسرية الموصوف بالمعادلات (3.4)-(3.5) قابلًا للتحكم على الفترة
(A5) المشغل الخطي المحدود
بالإضافة إلى ذلك، توجد ثوابت موجبة
برهان. اعتبر مجموعة الدوال
الخطوة 1:
اعتبر
تحديد وجود نقطة ثابتة
4. معادلة فولتر-فريدولم المتكاملة التفاضلية المحايدة
4.1. نتائج الوجود
(ب1) اعتبر الدوال المستمرة
(B4) الثوابت
برهان. يمكن إثبات ذلك بسهولة من خلال استخدام المشغل التكامل (2.1) على كلا جانبي المعادلة (4.1)، مما يؤدي إلى المعادلة التكاملية (4.3).
الخطوة 2: المجموعة
اعتبر
4.2. نتائج القابلية للتحكم
التعريف 4.3. يُعتبر النظام الكسري الموصوف بالمعادلات (4.4)-(4.5) قابلاً للتحكم خلال الفترة
(B5) المشغل الخطي المحدود
بالإضافة إلى ذلك، توجد ثوابت إيجابية
الخطوة 1:
الخطوة 2: تمتلك المجموعة
اعتبر أن
5. الخاتمة
شكر وتقدير
References
[2] B. Ahmad, S. Sivasundaram, Some existence results for fractional integro-differential equations with nonlinear conditions, Commun. Appl. Anal., 12 (2008), 107-112. 1
[3] J. Alzabut, S. R. Grace, J. M. Jonnalagadda, S. S. Santra, B. Abdalla, Higher-order Nabla Difference Equations of Arbitrary Order with Forcing, Positive and Negative Terms: Non-oscillatory Solutions, Axioms, 12 (2023), 1-14. 1
[4] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, arXiv preprint arXiv:1602.03408, 20 (2016), 763-769 1
[5] M. Bohner, T. Li, Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coefficient, Appl. Math. Lett., 37 (2014), 72-76. 1
[6] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73-85. 1
[7] D. N. Chalishajar, Controllability of mixed Volterra-Fredholm-type integro-differential systems in Banach space, J. Franklin Inst., 344 (2007), 12-21. 1, 3.2
[8] A. Columbu, S. Frassu, G. Viglialoro, Properties of given and detected unbounded solutions to a class of chemotaxis models, Stud. Appl. Math., 151 (2023), 1349-1379. 1
[9] Z. Dahmani, A. Taeb, New existence and uniqueness results for high dimensional fractional differential systems, Facta Univ. Ser. Math. Inform., 30 (2015), 281-293. 1
[10] C. Dineshkumar, V. Vijayakumar, R. Udhayakumar, A. Shukla, K. S. Nisar, Controllability discussion for fractional stochastic Volterra-Fredholm integro-differential systems of order
[11] M. Fečkan, J. Wang, M. Pospíšil, Fractional-order equations and inclusions, De Gruyter, Berlin, (2017). 1
[12] A. Ganesh, S. Deepa, D. Baleanu, S. S. Santra, O. Moaaz, V. Govindan, R. Ali, Hyers-Ulam-Mittag-Leffler stability of fractional differential equations with two Caputo derivative using fractional Fourier transform, AIMS Math., 7 (2022), 1791-1810.
[13] T. Gunasekar, P. Raghavendran, The Mohand Transform Approach to Fractional Integro-Differential Equations, J. Comput. Anal. Appl., 33 (2024), 358-371. 2.7
[14] T. Gunasekar, J. Thiravidarani, M. Mahdal, P. Raghavendran, A. Venkatesan, M. Elangovan, Study of Non-Linear Impulsive Neutral Fuzzy Delay Differential Equations with Non-Local Conditions, Mathematics, 11 (2023), 1-16. 2
[15] H. HamaRashid, H. M. Srivastava, M. Hama, P. O. Mohammed, M. Y. Almusawa, D. Baleanu, Novel algorithms to approximate the solution of nonlinear integro-differential equations of Volterra-Fredholm integro type, AIMS Math., 8 (2023), 14572-14591. 2
[16] A. Hamoud, Existence and uniqueness of solutions for fractional neutral Volterra-Fredholm integro differential equations, Adv. Theory Nonlinear Anal. Appl., 4 (2020), 321-331. 1
[17] A. A. Hamoud, K. P. Ghadle, Some new uniqueness results of solutions for fractional Volterra-Fredholm integrodifferential equations, Iran. J. Math. Sci. Inform., 17 (2022), 135-144. 1, 2
[18] A. Hamoud, N. Mohammed, K. Ghadle, Existence and uniqueness results for Volterra-Fredholm integro differential equations, Adv. Theory Nonlinear Anal. Appl., 4 (2020), 361-372. 1
[19] S. Harikrishnan, D. Vivek, E. M. Elsayed, Existence and Stability of Integro Differential Equation with Generalized Proportional Fractional Derivative, Izv. Nats. Akad. Nauk Armenii Mat., 58 (2023), 24-35. 2.7
[20] K. Hattaf, A new generalized definition of fractional derivative with non-singular kernel, Computation, 8 (2020), 1-9. 1
[21] E. Hernández M., D. O. Regan, Controllability of Volterra-Fredholm type systems in Banach spaces, J. Franklin Inst., 346 (2009), 95-101. 1
[22] C. Jayakumar, S. S. Santra, D. Baleanu, R. Edwan, V. Govindan, A. Murugesan, M. Altanji, Oscillation Result for Half-Linear Delay Difference Equations of Second Order, Math. Biosci. Eng., 19 (2022), 3879-3891. 1
[23] V. Jurdjevic, J. P. Quinn, Controllability and stability, J. Differential Equations, 28 (1978), 381-389. 1, 3.2
[24] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam, (2006). 1, 2, 2.1, 2.4, 2.5
[25] T. Li, S. Frassu, G. Viglialoro, Combining effects ensuring boundedness in an attraction a repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., 74 (2023), 109-121. 1
[26] T. Li, N. Pintus, G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 70 (2019), 18 pages. 1
[27] T. Li, Y. V. Rogovchenko, Oscillation of second-order neutral differential equations, Math. Nachr., 288 (2015), 1150-1162. 1
[28] T. Li, Y. V. Rogovchenko, Oscillation criteria for second-order superlinear Emden a Fowler neutral differential equations, Monatsh. Math., 184 (2017), 489-500.
[29] T. Li, Y. V. Rogovchenko, On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations, Appl. Math. Lett., 105 (2020), 7 pages. 1
[30] T. Li, G. Viglialoro, Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime, Differential Integral Equations, 34 (2021), 315-336. 1
[31] F. Masood, O. Moaaz, S. S. Santra, U. Fernandez-Gamiz, H. A. El-Metwally, Oscillation theorems for fourth-order quasi-linear delay differential equations, AIMS Math., 8 (2023), 16291-16307.
[32] F. Masood, O. Moaaz, S. S. Santra, U. Fernandez-Gamiz, H. El-Metwally, On the monotonic properties and oscillatory behavior of solutions of neutral differential equations, Demonstr. Math., 56 (2023), 23 pages.
[33] M. Meganathan, S. S. Santra, L. A. Jayanathan, D. Baleanu, Numerical analysis of fractional order discrete Bloch equations, J. Math. Comput. Sci., 32 (2023), 222-228. 1
[34] O. Moaaz, E. M. Elabbasy, A. Muhib, Oscillation criteria for even-order neutral differential equations with distributed deviating arguments, Adv. Difference Equ., 2019 (2019), 10 pages. 1
[35] O. Moaaz, A. Muhib, T. Abdeljawad, S. S. Santra, M. Anis, Asymptotic behavior of even-order noncanonical neutral differential equations, Demonstr. Math., 55 (2022), 28-39. 1
[36] A. Ndiaye, F. Mansal, Existence and Uniqueness Results of Volterra-Fredholm Integro-Differential Equations via Caputo Fractional Derivative, J. Math., 2021 (2021), 8 pages. 1
[37] P. Raghavendran, T. Gunasekar, H. Balasundaram, S. S. Santra, D. Majumder, D. Baleanu, Solving fractional integrodifferential equations by Aboodh transform, J. Math. Comput. Sci., 32 (2024), 229-240. 1, 2
[38] D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions, SIAM Rev., 20 (1978), 639-739. 1, 3.2
[39] S. Sangeetha, S. K. Thamilvanan, S. S. Santra, S. Noeiaghdam, M. Abdollahzadeh, Property
[40] S. S. Santra, Oscillation Criteria for Nonlinear Neutral Differential Equations of First Order with Several Delays, Mathematica, 57 (2015), 75-89. 1
[41] S. S. Santra, Necessary and sufficient conditions for oscillation of second-order differential equation with several delays, Stud. Univ. Babeş-Bolyai Math., 68 (2023), 319-330.
[42] S. S. Santra, P. Mondal, M. E. Samei, H. Alotaibi, M. Altanji, T. Botmart, Study on the oscillation of solution to second-order impulsive systems, AIMS Math., 8 (2023), 22237-22255. 1
[43] S. S. Santra, S. Priyadharshini, V. Sadhasivam, J. Kavitha, U. Fernandez-Gamiz, S. Noeiaghdam, K. M. Khedher, On the oscillation of a certain class of conformable Emden-Fowler type elliptic partial differential equations, AIMS Math., 8 (2023), 12622-12636.
[44] S. S. Santra, A. Scapellato, Necessary and sufficient conditions for the oscillation of second-order differential equations with mixed several delays, J. Fixed Point Theory Appl., 24 (2022), 1-11. 1
[45] D. R. Smart, Fixed Point Theorems, Cup Archive, (1980). 2.7
[46] A. Toma, O. Postavaru, A numerical method to solve fractional Fredholm-Volterra integro-differential equations, Alex. Eng. J., 68 (2023), 469-478. 1
[47] A. K. Tripathy, S. S. Santra, Necessary and sufficient conditions for oscillations to a second-order neutral differential equations with impulses, Kragujevac J. Math., 47 (2023), 81-93. 1
[48] X. Wang, L. Wang, Q. Zeng, Fractional differential equations with integral boundary conditions, J. Nonlinear Sci. Appl., 8 (2015), 309-314.
[49] J. Wu, Y. Liu, Existence and uniqueness of solutions for the fractional integro-differential equations in Banach spaces, Electron. J. Differential Equations, 2009 (2009), 1-8. 1
[50] Y. Zhou, J. Wang, L. Zhang, Basic theory of fractional differential equations, World Scientific Publishing Co., Hackensack, NJ, (2017). 1, 2, 2.2, 2.3, 2.6
- *Corresponding author
Email addresses: tguna84@gmail.com or m23air514@iitj.ac.in (Tharmalingam Gunasekar), rockypraba55@gmail.com (Prabakaran Raghavendran), shyam01.math@gmail.com or shyamsundar.santra@jiscollege.ac.in (Shyam Sundar Santra), msajd@qu.edu.sa (Mohammad Sajid)
doi: 10.22436/jmcs.034.04.04
DOI: https://doi.org/10.22436/jmcs.034.04.04
Publication Date: 2024-04-05
Existence and controllability results for neutral fractional Volterra-Fredholm integro-differential equations
Abstract
This paper delves into the investigation of a Volterra-Fredholm integro-differential equation enhanced with Caputo fractional derivatives subject to specific order conditions. The study rigorously establishes the existence of solutions through the application of the Schauder fixed-point theorem. Furthermore, it encompasses neutral Volterra-Fredholm integro-differential equations, thereby extending the applicability of the findings. In addition, the paper explores the concept of controllability for the obtained solutions, offering valuable insights into how these solutions behave over extended time periods.
©2024 All rights reserved.
1. Introduction
ysis of fractional order discrete Bloch equations [33], and oscillation results for half-linear delay difference equations of second order [22]. Contributions by Santra and Scapellato offer insights into necessary and sufficient conditions for the oscillation of second-order differential equations with mixed several delays [44], while Moaaz et al. investigate the asymptotic behavior of even-order noncanonical neutral differential equations [35]. Collectively, these studies contribute significantly to understanding oscillation phenomena in differential equations, paving the way for further exploration and application in various scientific domains.
2. Preliminaries
Definition 2.2 ([50]). The Riemann-Liouville derivative of order
3. Volterra-Fredholm integro-differential equation
3.1. Existence results
(A1) Consider continuous functions
(A3) The function
(A4) The constants
Step 1:
Step 2: The set
Consider
3.2. Controllability results
Definition 3.3. The fractional system described by equations (3.4)-(3.5) is considered controllable over the interval
(A5) The bounded linear operator
Additionally, there exist positive constants
Proof. Consider the set of functions
Step 1:
Consider
ascertain the existence of a fixed point
4. Neutral Volterra-Fredholm integro-differential equation
4.1. Existence results
(B1) Consider continuous functions
(B4) The constants
Proof. This can be readily demonstrated by utilizing the integral operator (2.1) on both sides of equation (4.1), resulting in the integral equation (4.3).
Step 2: The set
Consider
4.2. Controllability results
Definition 4.3. The fractional system described by equations (4.4)-(4.5) is considered controllable over the interval
(B5) The bounded linear operator
Additionally, there exist positive constants
Step 1:
Step 2: The set
Consider
5. Conclusion
Acknowledgement
References
[2] B. Ahmad, S. Sivasundaram, Some existence results for fractional integro-differential equations with nonlinear conditions, Commun. Appl. Anal., 12 (2008), 107-112. 1
[3] J. Alzabut, S. R. Grace, J. M. Jonnalagadda, S. S. Santra, B. Abdalla, Higher-order Nabla Difference Equations of Arbitrary Order with Forcing, Positive and Negative Terms: Non-oscillatory Solutions, Axioms, 12 (2023), 1-14. 1
[4] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, arXiv preprint arXiv:1602.03408, 20 (2016), 763-769 1
[5] M. Bohner, T. Li, Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coefficient, Appl. Math. Lett., 37 (2014), 72-76. 1
[6] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73-85. 1
[7] D. N. Chalishajar, Controllability of mixed Volterra-Fredholm-type integro-differential systems in Banach space, J. Franklin Inst., 344 (2007), 12-21. 1, 3.2
[8] A. Columbu, S. Frassu, G. Viglialoro, Properties of given and detected unbounded solutions to a class of chemotaxis models, Stud. Appl. Math., 151 (2023), 1349-1379. 1
[9] Z. Dahmani, A. Taeb, New existence and uniqueness results for high dimensional fractional differential systems, Facta Univ. Ser. Math. Inform., 30 (2015), 281-293. 1
[10] C. Dineshkumar, V. Vijayakumar, R. Udhayakumar, A. Shukla, K. S. Nisar, Controllability discussion for fractional stochastic Volterra-Fredholm integro-differential systems of order
[11] M. Fečkan, J. Wang, M. Pospíšil, Fractional-order equations and inclusions, De Gruyter, Berlin, (2017). 1
[12] A. Ganesh, S. Deepa, D. Baleanu, S. S. Santra, O. Moaaz, V. Govindan, R. Ali, Hyers-Ulam-Mittag-Leffler stability of fractional differential equations with two Caputo derivative using fractional Fourier transform, AIMS Math., 7 (2022), 1791-1810.
[13] T. Gunasekar, P. Raghavendran, The Mohand Transform Approach to Fractional Integro-Differential Equations, J. Comput. Anal. Appl., 33 (2024), 358-371. 2.7
[14] T. Gunasekar, J. Thiravidarani, M. Mahdal, P. Raghavendran, A. Venkatesan, M. Elangovan, Study of Non-Linear Impulsive Neutral Fuzzy Delay Differential Equations with Non-Local Conditions, Mathematics, 11 (2023), 1-16. 2
[15] H. HamaRashid, H. M. Srivastava, M. Hama, P. O. Mohammed, M. Y. Almusawa, D. Baleanu, Novel algorithms to approximate the solution of nonlinear integro-differential equations of Volterra-Fredholm integro type, AIMS Math., 8 (2023), 14572-14591. 2
[16] A. Hamoud, Existence and uniqueness of solutions for fractional neutral Volterra-Fredholm integro differential equations, Adv. Theory Nonlinear Anal. Appl., 4 (2020), 321-331. 1
[17] A. A. Hamoud, K. P. Ghadle, Some new uniqueness results of solutions for fractional Volterra-Fredholm integrodifferential equations, Iran. J. Math. Sci. Inform., 17 (2022), 135-144. 1, 2
[18] A. Hamoud, N. Mohammed, K. Ghadle, Existence and uniqueness results for Volterra-Fredholm integro differential equations, Adv. Theory Nonlinear Anal. Appl., 4 (2020), 361-372. 1
[19] S. Harikrishnan, D. Vivek, E. M. Elsayed, Existence and Stability of Integro Differential Equation with Generalized Proportional Fractional Derivative, Izv. Nats. Akad. Nauk Armenii Mat., 58 (2023), 24-35. 2.7
[20] K. Hattaf, A new generalized definition of fractional derivative with non-singular kernel, Computation, 8 (2020), 1-9. 1
[21] E. Hernández M., D. O. Regan, Controllability of Volterra-Fredholm type systems in Banach spaces, J. Franklin Inst., 346 (2009), 95-101. 1
[22] C. Jayakumar, S. S. Santra, D. Baleanu, R. Edwan, V. Govindan, A. Murugesan, M. Altanji, Oscillation Result for Half-Linear Delay Difference Equations of Second Order, Math. Biosci. Eng., 19 (2022), 3879-3891. 1
[23] V. Jurdjevic, J. P. Quinn, Controllability and stability, J. Differential Equations, 28 (1978), 381-389. 1, 3.2
[24] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam, (2006). 1, 2, 2.1, 2.4, 2.5
[25] T. Li, S. Frassu, G. Viglialoro, Combining effects ensuring boundedness in an attraction a repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., 74 (2023), 109-121. 1
[26] T. Li, N. Pintus, G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 70 (2019), 18 pages. 1
[27] T. Li, Y. V. Rogovchenko, Oscillation of second-order neutral differential equations, Math. Nachr., 288 (2015), 1150-1162. 1
[28] T. Li, Y. V. Rogovchenko, Oscillation criteria for second-order superlinear Emden a Fowler neutral differential equations, Monatsh. Math., 184 (2017), 489-500.
[29] T. Li, Y. V. Rogovchenko, On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations, Appl. Math. Lett., 105 (2020), 7 pages. 1
[30] T. Li, G. Viglialoro, Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime, Differential Integral Equations, 34 (2021), 315-336. 1
[31] F. Masood, O. Moaaz, S. S. Santra, U. Fernandez-Gamiz, H. A. El-Metwally, Oscillation theorems for fourth-order quasi-linear delay differential equations, AIMS Math., 8 (2023), 16291-16307.
[32] F. Masood, O. Moaaz, S. S. Santra, U. Fernandez-Gamiz, H. El-Metwally, On the monotonic properties and oscillatory behavior of solutions of neutral differential equations, Demonstr. Math., 56 (2023), 23 pages.
[33] M. Meganathan, S. S. Santra, L. A. Jayanathan, D. Baleanu, Numerical analysis of fractional order discrete Bloch equations, J. Math. Comput. Sci., 32 (2023), 222-228. 1
[34] O. Moaaz, E. M. Elabbasy, A. Muhib, Oscillation criteria for even-order neutral differential equations with distributed deviating arguments, Adv. Difference Equ., 2019 (2019), 10 pages. 1
[35] O. Moaaz, A. Muhib, T. Abdeljawad, S. S. Santra, M. Anis, Asymptotic behavior of even-order noncanonical neutral differential equations, Demonstr. Math., 55 (2022), 28-39. 1
[36] A. Ndiaye, F. Mansal, Existence and Uniqueness Results of Volterra-Fredholm Integro-Differential Equations via Caputo Fractional Derivative, J. Math., 2021 (2021), 8 pages. 1
[37] P. Raghavendran, T. Gunasekar, H. Balasundaram, S. S. Santra, D. Majumder, D. Baleanu, Solving fractional integrodifferential equations by Aboodh transform, J. Math. Comput. Sci., 32 (2024), 229-240. 1, 2
[38] D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions, SIAM Rev., 20 (1978), 639-739. 1, 3.2
[39] S. Sangeetha, S. K. Thamilvanan, S. S. Santra, S. Noeiaghdam, M. Abdollahzadeh, Property
[40] S. S. Santra, Oscillation Criteria for Nonlinear Neutral Differential Equations of First Order with Several Delays, Mathematica, 57 (2015), 75-89. 1
[41] S. S. Santra, Necessary and sufficient conditions for oscillation of second-order differential equation with several delays, Stud. Univ. Babeş-Bolyai Math., 68 (2023), 319-330.
[42] S. S. Santra, P. Mondal, M. E. Samei, H. Alotaibi, M. Altanji, T. Botmart, Study on the oscillation of solution to second-order impulsive systems, AIMS Math., 8 (2023), 22237-22255. 1
[43] S. S. Santra, S. Priyadharshini, V. Sadhasivam, J. Kavitha, U. Fernandez-Gamiz, S. Noeiaghdam, K. M. Khedher, On the oscillation of a certain class of conformable Emden-Fowler type elliptic partial differential equations, AIMS Math., 8 (2023), 12622-12636.
[44] S. S. Santra, A. Scapellato, Necessary and sufficient conditions for the oscillation of second-order differential equations with mixed several delays, J. Fixed Point Theory Appl., 24 (2022), 1-11. 1
[45] D. R. Smart, Fixed Point Theorems, Cup Archive, (1980). 2.7
[46] A. Toma, O. Postavaru, A numerical method to solve fractional Fredholm-Volterra integro-differential equations, Alex. Eng. J., 68 (2023), 469-478. 1
[47] A. K. Tripathy, S. S. Santra, Necessary and sufficient conditions for oscillations to a second-order neutral differential equations with impulses, Kragujevac J. Math., 47 (2023), 81-93. 1
[48] X. Wang, L. Wang, Q. Zeng, Fractional differential equations with integral boundary conditions, J. Nonlinear Sci. Appl., 8 (2015), 309-314.
[49] J. Wu, Y. Liu, Existence and uniqueness of solutions for the fractional integro-differential equations in Banach spaces, Electron. J. Differential Equations, 2009 (2009), 1-8. 1
[50] Y. Zhou, J. Wang, L. Zhang, Basic theory of fractional differential equations, World Scientific Publishing Co., Hackensack, NJ, (2017). 1, 2, 2.2, 2.3, 2.6
- *Corresponding author
Email addresses: tguna84@gmail.com or m23air514@iitj.ac.in (Tharmalingam Gunasekar), rockypraba55@gmail.com (Prabakaran Raghavendran), shyam01.math@gmail.com or shyamsundar.santra@jiscollege.ac.in (Shyam Sundar Santra), msajd@qu.edu.sa (Mohammad Sajid)
doi: 10.22436/jmcs.034.04.04