نهج التجميع الطيفي لمعادلة كورتويغ-دي فريس-بورجرز ذات الكسر الزمني عبر متعددات حدود تشيبيشيف من النوع الأول
الملخص
تم حل مشكلة كورتويغ-دي فريس-برجرز ذات الكسر الزمني (TFKdVB) عددياً في هذه الدراسة. يستخدم النهج طريقة التراص لمتعددات شبيشيف من النوع الأول المنقولة (SFKCPs). من خلال استخدام صيغة كابوتو لتقريب المشتقات ذات الكسر الزمني وفرض شروط الحدود، نصل إلى حل طيفي. تم تقديم أمثلة عددية لتوضيح دقة وفعالية النهج المقترح.
1. المقدمة
- تم تقديم خلفية نظرية جديدة لمجموعات SFKCPs.
- اشتقاق نظريات جديدة للمشتقات الصحيحة والكسرية لمجموعات SFKCPs المعدلة. تعتبر هذه النظريات أدوات مهمة لمعالجة TFKdVB.
- من خلال اختيار مجموعات SFKCPs المعدلة كدوال أساسية، تجعل بعض مصطلحات الأوضاع المحتفظ بها تنتج تقريبًا بدقة واعدة.
- تتطلب الحصول على الحل التقريبي المطلوب عددًا أقل من الحسابات.
2. المقدمات والصيغ الأساسية
2.1 معنى المشتق الكسرى وفقًا لكابوتو
المشغل
2.2 بعض خصائص متعددة الحدود شيفي الشيفي المحولة
علاوة على ذلك، فإن صيغة الانعكاس هي [29]
العبارة 1 [31] من أجل
3. تقنية التراص لمعادلة TFKdVB
3.1 دوال التجربة
النظرية 1 المشتق الكسرى من الرتبة التالية
3.2 حل التراكيب لمعادلة TFKdVB
بموجب النظرية 1، واللما 2، وتعريف دوال الأساس المحددة في (23)، يمكن للمرء أن يقول
حل الناتج
4. أمثلة توضيحية
|
|
|
|
|
|
| 0.1 |
|
|
|
|
| 0.2 |
|
|
|
|
| 0.3 |
|
|
|
|
| 0.4 |
|
|
|
|
| 0.5 |
|
|
0 | 0 |
| 0.6 |
|
|
|
|
| 0.7 |
|
|
|
|
| 0.8 |
|
|
|
|
| 0.9 |
|
|
0 |
|

|
|
|
|
|
|
| 0.1 |
|
|
|
|
| 0.2 |
|
|
|
|
| 0.3 |
|
|
|
|
| 0.4 |
|
|
|
|
| 0.5 |
|
|
|
|
| 0.6 |
|
|
|
|
| 0.7 |
|
|
|
|
| 0.8 |
|
|
|
|
| 0.9 |
|
|
|
|
|
|
0.4 | 0.8 |
| الطريقة في [32] عند
|
|
|
| الطريقة في [32] عند
|
|
|
| طريقتنا في
|
|
|
|
|
0.25 | 0.5 | 0.75 |
| الطريقة في [33] عند
|
|
|
|
| طريقتنا في
|
|
|
|
|
|
الطريقة في [34] عند
|
طريقتنا في
|
| 0.25 |
|
|
| 0.125 |
|
|
| 0.0625 |
|
|


|
|
|
|
|
|
|
| 0.4 |
|
|
|
|
|
| 0.8 |
|
|
|
|
|
| 0.9 |
|
|
|
|
|



|
|
|
|
|
|
| 0.1 |
|
|
|
|
| 0.2 |
|
|
|
|
| 0.3 |
|
|
|
|
| 0.4 |
|
|
|
|
| 0.5 |
|
|
|
|
| 0.6 |
|
|
|
|
| 0.7 |
|
|
|
|
| 0.8 |
|
|
|
|
| 0.9 |
|
|
|
|
5. ملاحظات ختامية
تضارب المصالح
References
[2] Su CH, Gardner CS. Korteweg-de Vries equation and generalizations III. Derivation of the Korteweg-de Vries equation and Burgers equation. Journal of Mathematical Physics. 1969; 10(3): 536-539. Available from: https: //doi.org/10.1063/1.1664873.
[3] Wang Q. Homotopy perturbation method for fractional KdV-Burgers equation. Chaos, Solitons & Fractals. 2008; 35(5): 843-850. Available from: https://doi.org/10.1016/j.chaos.2006.05.074.
[4] Golmankhaneh AK, Baleanu D. Homotopy perturbation method for solving a system of Schrödinger-Korteweg-de Vries equations. Romanian Reports in Physics. 2011; 63(3): 609-623.
[5] Bhrawy AH, Zaky MA, Baleanu D. New numerical approximations for space-time fractional Burgers’ equations via a Legendre spectral-collocation method. Romanian Reports in Physics. 2015; 67: 340-349.
[6] Atta AG, Abd-Elhameed WM, Moatimid GM, Youssri YH. Novel spectral schemes to fractional problems with nonsmooth solutions. Mathematical Methods in the Applied Sciences. 2023; 46(13): 14745-14764. Available from: https://doi.org/10.1002/mma.9343.
[7] Bose CSV, Udhayakumar R, Muthukumaran V, Al-Omari S. A study on approximate controllability of Ψ-Caputo fractional differential equations with impulsive effects. Contemporary Mathematics. 2024; 5(1): 175-198. Available from: https://doi.org/10.37256/cm.5120243539.
[8] Bose CSV, Udhayakumar R. Approximate controllability of
[9] Atta AG, Youssri YH. Shifted second-kind Chebyshev spectral collocation-based technique for time-fractional KdV-Burgers’ equation. Iranian Journal of Mathematical Chemistry. 2023; 14(4): 207-224. Available from: https: //doi.org/10.22052/ijmc.2023.252824.1710.
[10] Inc M, Parto-Haghighi M, Akinlar MA, Chu YM. New numerical solutions of fractional-order Korteweg-de Vries equation. Results in Physics. 2020; 19: 103326. Available from: https://doi.org/10.1016/j.rinp.2020.103326.
[11] Shi Y, Xu B, Guo Y. Numerical solution of Korteweg-de Vries-Burgers equation by the compact-type CIP method. Advances in Difference Equations. 2015; 2015: 1-9. Available from: https://doi.org/10.1186/s13662-015-0682-5.
[12] Yousif MA, Guirao JL, Mohammed PO, Chorfi N, Baleanu D. A computational study of time-fractional gas dynamics models by means of conformable finite difference method. AIMS Mathematics. 2024; 9(7): 19843-19858. Available from: https://doi.org/10.3934/math.2024969.
[13] Yousif MA, Hamasalh FK. Conformable non-polynomial spline method: A robust and accurate numerical technique. Ain Shams Engineering Journal. 2024; 15(2): 102415. Available from: https://doi.org/10.1016/j.asej.2023.102415.
[14] Mohammed PO, Agarwal RP, Brevik I, Abdelwahed M, Kashuri A, Yousif MA. On multiple-type wave solutions for the nonlinear coupled time-fractional Schrödinger model. Symmetry. 2024; 16(5): 553. Available from: https: //doi.org/10.3390/sym16050553.
[15] Abd-Elhameed WM, Youssri HY, Atta AG. Tau algorithm for fractional delay differential equations utilizing seventhkind Chebyshev polynomials. Journal of Mathematical Modeling. 2024; 12(2): 277-299. Available from: https: //doi.org/10.22124/jmm.2024.25844.2295.
[16] Youssri HY, Atta AG. Modal spectral Tchebyshev Petrov-Galerkin stratagem for the time-fractional nonlinear Burgers’ equation. Iranian Journal of Numerical Analysis and Optimization. 2024; 14(1): 172-199. Available from: https://doi.org/10.22067/ijnao.2023.83389.1292.
[17] Youssri YH, Ismail MI, Atta AG. Chebyshev Petrov-Galerkin procedure for the time-fractional heat equation with nonlocal conditions. Physica Scripta. 2023; 99(1): 015251. Available from: https://doi.org/10.1088/1402-4896/ ad1700.
[18] Youssri YH, Atta AG, Moustafa MO, Abu Waar ZY. Explicit collocation algorithm for the nonlinear fractional Duffing equation via third-kind Chebyshev polynomials. Iranian Journal of Numerical Analysis and Optimization. 2025; 2025: 1543. Available from: https://doi.org/10.22067/ijnao.2025.90483.1543.
[19] Hughes TJR. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. New York: Dover Publications; 2012.
[20] Boyd JP. Spectral Methods for Partial Differential Equations. Philadelphia, Pennsylvania, United States: SIAM; 2001.
[21] Atta AG, Soliman JF, Elsaeed EW, Elsaeed MW, Youssri YH. Spectral collocation algorithm for the fractional Bratu equation via hexic shifted Chebyshev polynomials. Computational Methods for Differential Equations. 2024; 2024: 2621. Available from: https://doi.org/10.22034/cmde.2024.61045.2621.
[22] Atta AG, Abd-Elhameed WM, Youssri YH. Approximate collocation solution for the time-fractional Newell-Whitehead-Segel equation. Journal of Applied and Computational Mechanics. 2024; 2024: 4686. Available from: https://doi.org/10.22055/jacm.2024.47269.4686.
[23] Abd-Elhameed WM, Ahmed HM, Zaky MA, Hafez RM. A new shifted generalized Chebyshev approach for multidimensional sinh-Gordon equation. Physica Scripta. 2024; 99(9): 095269. Available from: https://dx.doi.org/10. 1088/1402-4896/ad6fe3.
[24] Ahmed HM, Abd-Elhameed WM. Spectral solutions of specific singular differential equations using a unified spectral Galerkin-collocation algorithm. Journal of Nonlinear Mathematical Physics. 2024; 31(1): 42. Available from: https://doi.org/10.1007/s44198-024-00194-0.
[25] Ahmed HM, Hafez RM, Abd-Elhameed WM. A computational strategy for nonlinear time-fractional generalized Kawahara equation using new eighth-kind Chebyshev operational matrices. Physica Scripta. 2024; 99(4): 045250. Available from: https://dx.doi.org/10.1088/1402-4896/ad3482.
[26] Abd-Elhameed WM, Ahmed HM. Spectral solutions for the time-fractional heat differential equation through a novel unified sequence of Chebyshev polynomials. AIMS Mathematics. 2024; 9(1): 2137-2166. Available from: https://doi.org/10.3934/math.2024107.
[27] Abdelghany EM, Abd-Elhameed WM, Moatimid GM, Youssri HY, Atta AG. A Tau approach for solving timefractional heat equation based on the shifted sixth-kind Chebyshev polynomials. Symmetry. 2023; 15(3): 594. Available from: https://doi.org/10.3390/sym15030594.
[28] Podlubny I. Fractional Differential Equations. PA, USA: Elsevier; 1998.
[29] Youssri YH, Atta AG. Double TChebyshev spectral tau algorithm for solving KdV equation, with soliton application. In: Solitons. New York, NY: Springer; 2022. p.451-467. Available from: https://doi.org/10.1007/ 978-1-0716-2457-9_771.
[30] Abd-Elhameed WM, Machado JAT, Youssri YH. Hypergeometric fractional derivatives formula of shifted Chebyshev polynomials: tau algorithm for a type of fractional delay differential equations. International Journal of Nonlinear Sciences and Numerical Simulation. 2022; 23(7-8): 1253-1268. Available from: https://doi.org/10.1515/ ijnsns-2020-0124.
[31] Askey R. Orthogonal Polynomials and Special Functions. PA, USA: SIAM; 1975.
[32] Cen D, Wang Z, Mo Y. Second order difference schemes for time-fractional KdV-Burgers’ equation with initial singularity. Applied Mathematics Letters. 2021; 112: 106829. Available from: https://doi.org/10.1016/j.aml.2020. 106829.
[33] Karaagac B, Esen A, Owolabi KM, Pindza E. A collocation method for solving time fractional nonlinear Kortewegde Vries-Burgers equation arising in shallow water waves. International Journal of Modern Physics C. 2023; 34(7): 2350096. Available from: https://doi.org/10.1142/S0129183123500961.
[34] Vivas-Cortez M, Yousif MA, Mahmood BA, Mohammed PO, Chorfi N, Lupas AA. High-accuracy solutions to the time-fractional KdV-Burgers equation using rational non-polynomial splines. Symmetry. 2024; 17(1): 16. Available from: https://doi.org/10.3390/sym17010016.
- Copyright (C)2025 Laila A. Alnaser, et al.
DOI: https://doi.org/10.37256/cm. 6220255948
This is an open-access article distributed under a CC BY license
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/
DOI: https://doi.org/10.37256/cm.6220255948
Publication Date: 2025-02-28
A Spectral Collocation Approach for Time-Fractional Korteweg-de Vries-Burgers Equation via First-Kind Chebyshev Polynomials
Abstract
The time-fractional Korteweg-de Vries-Burgers (TFKdVB) problem is solved numerically in this study. The approach makes use of the shifted first-kind Chebyshev polynomials (SFKCPs) collocation method. By utilizing Caputo’s formulation to approximate the time-fractional derivatives and impose boundary conditions, we arrive at a spectral solution. Numerical examples are presented to illustrate the precision and effectiveness of the suggested approach.
1. Introduction
- A new theoretical background to the SFKCPs are presented.
- Deriving new theorems of integer and fractional derivatives for the modified sets of SFKCPs. These theorems are considered important tools for treating TFKdVB.
- By choosing modified sets of SFKCPs as basis functions, some terms of the retained modes make it produce approximations with promising precision.
- Fewer calculations are required to obtain the approximate solution desired.
2. Preliminaries and fundamental formulae
2.1 The caputo sense of the fractional derivative
The operator
2.2 Few properties of the shifted Chebyshev polynomials
Moreover, the inversion formula is [29]
Lemma 1 [31] For
3. Collocation technique for TFKdVB equation
3.1 Trial functions
Theorem 1 The following fractional derivative of order
3.2 Collocation solution for the TFKdVB equation
By virtue of Theorem 1, Lemma 2 and the definition of basis functions defined in (23), one has
Solving the resulting
4. Illustrative examples
|
|
|
|
|
|
| 0.1 |
|
|
|
|
| 0.2 |
|
|
|
|
| 0.3 |
|
|
|
|
| 0.4 |
|
|
|
|
| 0.5 |
|
|
0 | 0 |
| 0.6 |
|
|
|
|
| 0.7 |
|
|
|
|
| 0.8 |
|
|
|
|
| 0.9 |
|
|
0 |
|

|
|
|
|
|
|
| 0.1 |
|
|
|
|
| 0.2 |
|
|
|
|
| 0.3 |
|
|
|
|
| 0.4 |
|
|
|
|
| 0.5 |
|
|
|
|
| 0.6 |
|
|
|
|
| 0.7 |
|
|
|
|
| 0.8 |
|
|
|
|
| 0.9 |
|
|
|
|
|
|
0.4 | 0.8 |
| Method in [32] at
|
|
|
| Method in [32] at
|
|
|
| Our method at
|
|
|
|
|
0.25 | 0.5 | 0.75 |
| Method in [33] at
|
|
|
|
| Our method at
|
|
|
|
|
|
Method in [34] at
|
Our method at
|
| 0.25 |
|
|
| 0.125 |
|
|
| 0.0625 |
|
|


|
|
|
|
|
|
|
| 0.4 |
|
|
|
|
|
| 0.8 |
|
|
|
|
|
| 0.9 |
|
|
|
|
|



|
|
|
|
|
|
| 0.1 |
|
|
|
|
| 0.2 |
|
|
|
|
| 0.3 |
|
|
|
|
| 0.4 |
|
|
|
|
| 0.5 |
|
|
|
|
| 0.6 |
|
|
|
|
| 0.7 |
|
|
|
|
| 0.8 |
|
|
|
|
| 0.9 |
|
|
|
|
5. Concluding remarks
Conflict of interest
References
[2] Su CH, Gardner CS. Korteweg-de Vries equation and generalizations III. Derivation of the Korteweg-de Vries equation and Burgers equation. Journal of Mathematical Physics. 1969; 10(3): 536-539. Available from: https: //doi.org/10.1063/1.1664873.
[3] Wang Q. Homotopy perturbation method for fractional KdV-Burgers equation. Chaos, Solitons & Fractals. 2008; 35(5): 843-850. Available from: https://doi.org/10.1016/j.chaos.2006.05.074.
[4] Golmankhaneh AK, Baleanu D. Homotopy perturbation method for solving a system of Schrödinger-Korteweg-de Vries equations. Romanian Reports in Physics. 2011; 63(3): 609-623.
[5] Bhrawy AH, Zaky MA, Baleanu D. New numerical approximations for space-time fractional Burgers’ equations via a Legendre spectral-collocation method. Romanian Reports in Physics. 2015; 67: 340-349.
[6] Atta AG, Abd-Elhameed WM, Moatimid GM, Youssri YH. Novel spectral schemes to fractional problems with nonsmooth solutions. Mathematical Methods in the Applied Sciences. 2023; 46(13): 14745-14764. Available from: https://doi.org/10.1002/mma.9343.
[7] Bose CSV, Udhayakumar R, Muthukumaran V, Al-Omari S. A study on approximate controllability of Ψ-Caputo fractional differential equations with impulsive effects. Contemporary Mathematics. 2024; 5(1): 175-198. Available from: https://doi.org/10.37256/cm.5120243539.
[8] Bose CSV, Udhayakumar R. Approximate controllability of
[9] Atta AG, Youssri YH. Shifted second-kind Chebyshev spectral collocation-based technique for time-fractional KdV-Burgers’ equation. Iranian Journal of Mathematical Chemistry. 2023; 14(4): 207-224. Available from: https: //doi.org/10.22052/ijmc.2023.252824.1710.
[10] Inc M, Parto-Haghighi M, Akinlar MA, Chu YM. New numerical solutions of fractional-order Korteweg-de Vries equation. Results in Physics. 2020; 19: 103326. Available from: https://doi.org/10.1016/j.rinp.2020.103326.
[11] Shi Y, Xu B, Guo Y. Numerical solution of Korteweg-de Vries-Burgers equation by the compact-type CIP method. Advances in Difference Equations. 2015; 2015: 1-9. Available from: https://doi.org/10.1186/s13662-015-0682-5.
[12] Yousif MA, Guirao JL, Mohammed PO, Chorfi N, Baleanu D. A computational study of time-fractional gas dynamics models by means of conformable finite difference method. AIMS Mathematics. 2024; 9(7): 19843-19858. Available from: https://doi.org/10.3934/math.2024969.
[13] Yousif MA, Hamasalh FK. Conformable non-polynomial spline method: A robust and accurate numerical technique. Ain Shams Engineering Journal. 2024; 15(2): 102415. Available from: https://doi.org/10.1016/j.asej.2023.102415.
[14] Mohammed PO, Agarwal RP, Brevik I, Abdelwahed M, Kashuri A, Yousif MA. On multiple-type wave solutions for the nonlinear coupled time-fractional Schrödinger model. Symmetry. 2024; 16(5): 553. Available from: https: //doi.org/10.3390/sym16050553.
[15] Abd-Elhameed WM, Youssri HY, Atta AG. Tau algorithm for fractional delay differential equations utilizing seventhkind Chebyshev polynomials. Journal of Mathematical Modeling. 2024; 12(2): 277-299. Available from: https: //doi.org/10.22124/jmm.2024.25844.2295.
[16] Youssri HY, Atta AG. Modal spectral Tchebyshev Petrov-Galerkin stratagem for the time-fractional nonlinear Burgers’ equation. Iranian Journal of Numerical Analysis and Optimization. 2024; 14(1): 172-199. Available from: https://doi.org/10.22067/ijnao.2023.83389.1292.
[17] Youssri YH, Ismail MI, Atta AG. Chebyshev Petrov-Galerkin procedure for the time-fractional heat equation with nonlocal conditions. Physica Scripta. 2023; 99(1): 015251. Available from: https://doi.org/10.1088/1402-4896/ ad1700.
[18] Youssri YH, Atta AG, Moustafa MO, Abu Waar ZY. Explicit collocation algorithm for the nonlinear fractional Duffing equation via third-kind Chebyshev polynomials. Iranian Journal of Numerical Analysis and Optimization. 2025; 2025: 1543. Available from: https://doi.org/10.22067/ijnao.2025.90483.1543.
[19] Hughes TJR. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. New York: Dover Publications; 2012.
[20] Boyd JP. Spectral Methods for Partial Differential Equations. Philadelphia, Pennsylvania, United States: SIAM; 2001.
[21] Atta AG, Soliman JF, Elsaeed EW, Elsaeed MW, Youssri YH. Spectral collocation algorithm for the fractional Bratu equation via hexic shifted Chebyshev polynomials. Computational Methods for Differential Equations. 2024; 2024: 2621. Available from: https://doi.org/10.22034/cmde.2024.61045.2621.
[22] Atta AG, Abd-Elhameed WM, Youssri YH. Approximate collocation solution for the time-fractional Newell-Whitehead-Segel equation. Journal of Applied and Computational Mechanics. 2024; 2024: 4686. Available from: https://doi.org/10.22055/jacm.2024.47269.4686.
[23] Abd-Elhameed WM, Ahmed HM, Zaky MA, Hafez RM. A new shifted generalized Chebyshev approach for multidimensional sinh-Gordon equation. Physica Scripta. 2024; 99(9): 095269. Available from: https://dx.doi.org/10. 1088/1402-4896/ad6fe3.
[24] Ahmed HM, Abd-Elhameed WM. Spectral solutions of specific singular differential equations using a unified spectral Galerkin-collocation algorithm. Journal of Nonlinear Mathematical Physics. 2024; 31(1): 42. Available from: https://doi.org/10.1007/s44198-024-00194-0.
[25] Ahmed HM, Hafez RM, Abd-Elhameed WM. A computational strategy for nonlinear time-fractional generalized Kawahara equation using new eighth-kind Chebyshev operational matrices. Physica Scripta. 2024; 99(4): 045250. Available from: https://dx.doi.org/10.1088/1402-4896/ad3482.
[26] Abd-Elhameed WM, Ahmed HM. Spectral solutions for the time-fractional heat differential equation through a novel unified sequence of Chebyshev polynomials. AIMS Mathematics. 2024; 9(1): 2137-2166. Available from: https://doi.org/10.3934/math.2024107.
[27] Abdelghany EM, Abd-Elhameed WM, Moatimid GM, Youssri HY, Atta AG. A Tau approach for solving timefractional heat equation based on the shifted sixth-kind Chebyshev polynomials. Symmetry. 2023; 15(3): 594. Available from: https://doi.org/10.3390/sym15030594.
[28] Podlubny I. Fractional Differential Equations. PA, USA: Elsevier; 1998.
[29] Youssri YH, Atta AG. Double TChebyshev spectral tau algorithm for solving KdV equation, with soliton application. In: Solitons. New York, NY: Springer; 2022. p.451-467. Available from: https://doi.org/10.1007/ 978-1-0716-2457-9_771.
[30] Abd-Elhameed WM, Machado JAT, Youssri YH. Hypergeometric fractional derivatives formula of shifted Chebyshev polynomials: tau algorithm for a type of fractional delay differential equations. International Journal of Nonlinear Sciences and Numerical Simulation. 2022; 23(7-8): 1253-1268. Available from: https://doi.org/10.1515/ ijnsns-2020-0124.
[31] Askey R. Orthogonal Polynomials and Special Functions. PA, USA: SIAM; 1975.
[32] Cen D, Wang Z, Mo Y. Second order difference schemes for time-fractional KdV-Burgers’ equation with initial singularity. Applied Mathematics Letters. 2021; 112: 106829. Available from: https://doi.org/10.1016/j.aml.2020. 106829.
[33] Karaagac B, Esen A, Owolabi KM, Pindza E. A collocation method for solving time fractional nonlinear Kortewegde Vries-Burgers equation arising in shallow water waves. International Journal of Modern Physics C. 2023; 34(7): 2350096. Available from: https://doi.org/10.1142/S0129183123500961.
[34] Vivas-Cortez M, Yousif MA, Mahmood BA, Mohammed PO, Chorfi N, Lupas AA. High-accuracy solutions to the time-fractional KdV-Burgers equation using rational non-polynomial splines. Symmetry. 2024; 17(1): 16. Available from: https://doi.org/10.3390/sym17010016.
- Copyright (C)2025 Laila A. Alnaser, et al.
DOI: https://doi.org/10.37256/cm. 6220255948
This is an open-access article distributed under a CC BY license
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/
