DOI: https://doi.org/10.1007/s11423-024-10366-w
تاريخ النشر: 2024-04-01
أداة تصنيف لتعزيز التعلم الذاتي المنظم باستخدام الذكاء الاصطناعي التوليدي من خلال تطبيق نظرية تحديد الذات: حالة ChatGPT
© المؤلف(ون) 2024
الملخص
يوفر الذكاء الاصطناعي التوليدي مثل ChatGPT بيئة تعلم فورية وفردية، وقد يكون له القدرة على تحفيز التعلم الذاتي المنظم للطلاب (SRL) بشكل أكثر فعالية من التقنيات غير المعتمدة على الذكاء الاصطناعي. ومع ذلك، فإن تأثير ChatGPT على تحفيز الطلاب وSRL ورضا الاحتياجات غير واضح. يمكن تفسير التحفيز وعملية SRL باستخدام نظرية تحديد الذات (SDT) والمراحل الثلاث للتفكير المسبق والأداء والتأمل الذاتي، على التوالي. وبناءً عليه، تم استخدام تصميم دلفي في هذه الدراسة لتحديد كيف تلبي أنشطة التعلم المعتمدة على ChatGPT كل حاجة من احتياجات SDT للطلاب، وتعزز كل مرحلة من مراحل SRL من منظور المعلم. شاركنا 36 معلمًا في SDT لديهم خبرة واسعة في التعلم المعزز بالتكنولوجيا لتطوير أداة تصنيف لأنشطة التعلم التي تؤثر على رضا احتياجات الطلاب ومراحل SRL باستخدام ChatGPT. تعاوننا مع المعلمين في ثلاث جولات للتحقيق وتحديد الأنشطة، وقمنا بمراجعة التسميات والوصف والتفسيرات. النتيجة الرئيسية هي أنه تم تطوير أداة تصنيف لـ 20 نشاطًا تعليميًا باستخدام ChatGPT. تقترح الأداة كيف يمكن لـ ChatGPT تلبية احتياجات SDT بشكل أفضل، وتعزز المراحل الثلاث لـ SRL. يمكن أن تساعد هذه الأداة الباحثين في تكرار وتنفيذ ودمج ChatGPT الناجح في مشاريع البحث والتطوير في التعليم. يمكن أن تلهم الأداة المعلمين لتعديل الأنشطة باستخدام الذكاء الاصطناعي التوليدي لتعليمهم الخاص، وتوجه صانعي السياسات حول كيفية تطوير إرشادات للذكاء الاصطناعي في التعليم.
تقدم أيضًا أفكارًا للمعلمين وصانعي السياسات حول كيفية التدريس باستخدام ChatGPT ووضع سياسات للذكاء الاصطناعي في التعليم، على التوالي.
الخلفية النظرية
SRL وتحفيز المتعلمين
الدعم الرقمي القائم على SDT من خلال ChatGPT كـ GenAI
التعلم الذاتي المنظم مع ChatGPT كـ GenAI
ثغرات البحث
هذه الدراسة والطريقة
هدف البحث
- ما هي أنشطة التعلم التي يمكن أن تعزز العمليات الثلاث للتعلم الذاتي المنظم: التفكير المسبق، الأداء، والتأمل الذاتي؟
- ما هي أنشطة التعلم التي يمكن أن تلبي الاحتياجات الثلاثة لنظرية SDT: الاستقلالية، والكفاءة، والإشباع؟
تصميم البحث
المشاركون
إجراءات البحث
بأنشطة التعلم وطلبنا منهم تحديد ما إذا كانت هناك أي أنشطة تبدو مكررة. للمساعدة في تطوير قائمة أكثر شمولاً، تمت دعوة المعلمين أيضًا لاقتراح أي أنشطة أخرى يعتقدون أنها مفقودة من القائمة. بعد كل جولة من عملية دلفي، قمنا بتنقيح أنشطة التعلم استجابةً لتعليقات المعلمين. حيثما كانت توصيات العمل تتضمن تغييرات كبيرة (مثل أوصاف وظائف مختلفة تمامًا)، اعتُبر النشاط التعليمي المنقح نشاطًا جديدًا. استجابةً لتعليقات المعلمين بعد كل جولة من عملية دلفي، أجرينا تعديلات على أنشطة التعلم. اعتُبرت أنشطة التعلم المنقحة جديدة في الجولة التالية. أرسلنا للمعلمين أحدث قائمة بالأنشطة، مع معلومات حول كيفية تأثيرها على مراحل SRL واحتياجات SDT، في الجولتين 2 و3.
معايير التوافق
النتائج
الجولة 1 و2
الجولة 3
نقاش
أنشطة التعلم | الوصف | |
عندما يقوم المعلمون بتصميم أنشطة التعلم، يستخدم الطلاب ChatGPT لـ … | ||
#1 | البحث عن المعلومات | اسمح للطلاب بالحصول على مصدر معلومات أكثر تعقيدًا من المعلومات من محرك بحث. يُنظر إلى ChatGPT على أنه محرك بحث ذكي. |
#2 | احصل على أمثلة | اسمح للطلاب بالحصول على المزيد من الأمثلة لموضوع أو مشكلة |
#3 | تحقق من إجاباتهم | اطلب من الطلاب مقارنة إجاباتهم أو حلولهم بتلك المقدمة من ChatGPT |
#4 | قم بإنشاء أسئلة مراجعة للتحقق من فهمهم | اطلب من الطلاب وضع أسئلة مراجعة ليجيبوا عليها من أجل التحقق من فهمهم |
#5 | إنشاء مشاكل جديدة للتدريب | اطلب من الطلاب إنشاء مسائل، مثل أسئلة الرياضيات أو مقاطع القراءة، للتدريب والممارسة |
#6 | إنشاء مسائل تحدي | اطلب من الطلاب إنشاء مسائل صعبة لتعزيز إنجازاتهم والحفاظ على تواضعهم |
#7 | احصل على رؤى حول المشكلات المعقدة | شجع الطلاب على الحصول على وجهة نظر جديدة أو مختلفة في حل المشكلات المعقدة |
#8 | اطلب أفكار لتحسينهم | اطلب من الطلاب تحسين أعمالهم، مثل طرق أخرى لحل مسائل الرياضيات، بالإضافة إلى التعديلات والاقتراحات الكتابية. |
#9 | قم بعمل قوائم أو مخططات | اسمح للطلاب بعمل قائمة لحل مشكلة أو إعداد مخطط لتقرير أو مقال |
#10 | تلخيص عملهم الخاص | اطلب من الطلاب تلخيص عملهم وتحقق مما إذا كان الملخص جيدًا |
#11 | اطلب التعريفات | اطلب من الطلاب الحصول على تعريفات لمصطلح على مستويات مختلفة |
#12 | قم بإنشاء أسئلة للنقاشات | احصل على أفكار من خلال طرح أسئلة لمناقشات الفصل عند الحاجة |
#13 | قم بإنشاء أسئلة للمقالات | احصل على أفكار من خلال طرح أسئلة لكتابة المقالات عند الحاجة |
#14 | الحصول على تعليقات حول عملهم | اطلب من الطلاب الحصول على تعليقات حول أعمالهم الأصلية |
#15 | مارس التغذية الراجعة من الأقران | اطلب من الطلاب ممارسة التعليقات المتبادلة من خلال تقديم ملاحظات على المخرجات من ChatGPT |
#16 | استعد لمحادثات صعبة | شجع الطلاب على إجراء محادثات صعبة مع ChatGPT |
#17 | تصور مشكلة | شجع الطلاب على تصور المحتوى القائم على النص |
عندما يقوم المعلمون بتصميم أنشطة التعلم، يُتوقع من الطلاب أن … | ||
#18 | توقع مخرجات ChatGPT | توقع الرد الذي تتوقعه من ChatGPT |
#19 | تقييم مخرجات ChatGPT | شجع الطلاب على تقييم المخرجات من ChatGPT |
#20 | مناظرة مع شات جي بي تي | شجع الطلاب على مناقشة موضوع مع ChatGPT |
أنشطة التعلم | الاستقلالية | كفاءة | الترابط | تفكير مسبق | أداء | التأمل الذاتي | |
عندما يقوم المعلمون بتصميم أنشطة التعلم، يستخدم الطلاب ChatGPT لـ … | |||||||
#1 | البحث عن المعلومات | إكس | إكس | ||||
#2 | احصل على أمثلة | إكس | إكس | ||||
#3 | تحقق من إجاباتهم | إكس | إكس | ||||
#4 | قم بإنشاء أسئلة مراجعة للتحقق من فهمهم | إكس | إكس | ||||
#5 | إنشاء مشاكل جديدة للتدريب | إكس | إكس | ||||
#6 | إنشاء مسائل تحدي | إكس | إكس | ||||
#7 | احصل على رؤى حول المشكلات المعقدة | إكس | إكس | ||||
#8 | اطلب أفكار لتحسينهم | إكس | إكس | ||||
#9 | قم بعمل قوائم أو مخططات | إكس | إكس | ||||
#10 | تلخيص عملهم الخاص | إكس | إكس | ||||
#11 | اطلب التعريفات | إكس | إكس | ||||
#12 | قم بإنشاء أسئلة للنقاشات | إكس | إكس | ||||
#13 | قم بإنشاء أسئلة للمقالات | إكس | إكس | ||||
#14 | الحصول على تعليقات حول عملهم | إكس | إكس | ||||
#15 | ممارسة التغذية الراجعة من الأقران | إكس | إكس | ||||
#16 | استعد لمحادثات صعبة | إكس | إكس | ||||
#17 | تصور مشكلة | إكس | إكس | ||||
عندما يقوم المعلمون بتصميم أنشطة التعلم، يُتوقع من الطلاب أن … | |||||||
#18 | توقع مخرجات ChatGPT | إكس | إكس | ||||
#19 | تقييم مخرجات ChatGPT | إكس | إكس | ||||
#20 | نقاش مع شات جي بي تي | إكس | إكس |
القيود واقتراحات البحث المستقبلي
ببساطة على التدريس في الفصول الدراسية لأن الأهداف والسياقات تختلف. في الدراسات المستقبلية، يجب أن تتضمن أداة تصنيف جديدة دعم احتياجات المعلم.
الخاتمة
التمويل: تم تمويل هذه الدراسة من قبل منح البحث العامة (رمز المشروع: 14610522).
توفر البيانات: تتوفر مجموعات البيانات المستخدمة في الدراسة الحالية من المؤلف المراسل عند الطلب المعقول.
الإعلانات
References
Baidoo-Anu, D., & Ansah, L. O. (2023). Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. Journal of AI, 7(1), 52-62.
Bruso, J., Stefaniak, J., & Bol, L. (2020). An examination of personality traits as a predictor of the use of self-regulated learning strategies and considerations for online instruction. Educational Technology Research and Development, 68, 2659-2683. https://doi.org/10.1007/s11423-020-09797-y
Butz, N. T., & Stupnisky, R. H. (2017). Improving student relatedness through an online discussion intervention: The application of self-determination theory in synchronous hybrid programs. Computers & Education, 114, 117-138. https://doi.org/10.1016/j.compedu.2017.06.006
Chang, C. H., & Kidman, G. (2023). The rise of generative artificial intelligence (AI) language modelschallenges and opportunities for geographical and environmental education. International Research in Geographical and Environmental Education, 32(2), 85-89. https://doi.org/10.1080/10382046. 2023.2194036
Chiu, T. K. F. (2021). Digital support for student engagement in blended learning based on self-determination theory. Computers in Human Behavior, 124, 106909. https://doi.org/10.1016/j.chb.2021. 106909
Chiu, T. K. F. (2022). Applying the Self-determination Theory (SDT) to explain student engagement in online learning during the COVID-19 pandemic. Journal of Research on Technology in Education, 54(sup1), 14-30. https://doi.org/10.1080/15391523.2021.1891998
Chiu, T. K. F. (2023). The impact of Generative AI (GenAI) on practices, policies and research direction in education: A case of ChatGPT and Midjourney. Interactive Learning Environments, Advanced Publication. https://doi.org/10.1080/10494820.2023.2253861
Chiu, T. K. F. (2024). Future research recommendations for transforming higher education with Generative AI. Computer & Education: Artificial Intelligence, 6, 100197. https://doi.org/10.1016/j.caeai. 2023.100197
Chiu, T. K. F., Moorhouse, B. L., Chai, C. S., & Ismailov, M. (2023). Teacher support and student motivation to learn with artificial intelligence (AI) chatbot. Interactive Learning Environments, Advanced Online Publication. https://doi.org/10.1080/10494820.2023.2172044
Dalkey, N., & Helmer, O. (1963). An experimental application of the Delphi method to the use of experts. Management Science, 9(3), 458-467. https://doi.org/10.1287/mnsc.9.3.458
Diamond, I. R., Grant, R. C., Feldman, B. M., Pencharz, P. B., Ling, S. C., Moore, A. M., & Wales, P. W. (2014). Defining consensus: A systematic review recommends methodologic criteria for reporting of Delphi studies. Journal of Clinical Epidemiology, 67(4), 401-409. https://doi.org/10.1016/j. jclinepi.2013.12.002
Dörrenbächer, L., & Perels, F. (2016). Self-regulated learning profiles in college students: Their relationship to achievement, personality, and the effectiveness of an intervention to foster self-regulated learning. Learning and Individual Differences, 51, 229-241. https://doi.org/10.1016/j.lindif.2016. 09.015
Gill, S. S., Xu, M., Patros, P., Wu, H., Kaur, R., Kaur, K., & Buyya, R. (2024). Transformative effects of ChatGPT on modern education: Emerging Era of AI Chatbots. Internet of Things and CyberPhysical Systems, 4, 19-23. https://doi.org/10.1016/j.iotcps.2023.06.002
Guay, F. (2022). Applying self-determination theory to education: Regulations types, psychological needs, and autonomy supporting behaviors. Canadian Journal of School Psychology, 37(1), 75-92. https://doi.org/10.1177/08295735211055355
Iyengar, S. S., & Lepper, M. R. (1999). Rethinking the value of choice: A cultural perspective on intrinsic motivation. Journal of Personality and Social Psychology, 76(3), 349-366. https://doi.org/10. 1037/0022-3514.76.3.349
Jorm, A. F. (2015). Using the Delphi expert consensus method in mental health research. The Australian and New Zealand Journal of Psychiatry, 49(10), 887-897. https://doi.org/10.1177/0004867415600891
Kasneci, E., Seßler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., & Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103, 102274. https://doi.org/10.1016/j.lindif.2023.102274
Keeney, S., Hasson, F., & McKenna, H. (2006). Consulting the oracle: Ten lessons from using the Delphi technique in nursing research. Journal of Advanced Nursing, 53(2), 205-212. https://doi.org/10. 1111/j.1365-2648.2006.03716.x
Luo, Y., Lin, J., & Yang, Y. (2021). Students’ motivation and continued intention with online self-regulated learning: A self-determination theory perspective. Zeitschrift Für Erziehungswissenschaft, 24(6), 1379-1399. https://doi.org/10.1007/s11618-021-01042-3
Manganelli, L., Thibault-Landry, A., Forest, J., & Carpentier, J. (2018). Self-determination theory can help you generate performance and well-being in the workplace: A review of the literature. Advances in Developing Human Resources, 20(2), 227-240. https://doi.org/10.1177/1523422318 757
Molenaar, I., de Mooij, S., Azevedo, R., Bannert, M., Järvelä, S., & Gašević, D. (2023). Measuring selfregulated learning and the role of AI: Five years of research using multimodal multichannel data. Computers in Human Behavior, 139, 107540. https://doi.org/10.1016/j.chb.2022.107540
Molina, F., Molina, M. D., & Molina, C. (2022). Motivating learning through digital apps: The importance of relatedness satisfaction. International Journal of Human-Computer Interaction. https:// doi.org/10.1080/10447318.2022.2097777
Olivier, E., Galand, B., Morin, A. J., & Hospel, V. (2021). Need-supportive teaching and student engagement in the classroom: Comparing the additive, synergistic, and global contributions. Learning and Instruction, 71, 101389. https://doi.org/10.1016/j.learninstruc.2020.101389
Pataranutaporn, P., Danry, V., Leong, J., Punpongsanon, P., Novy, D., Maes, P., & Sra, M. (2021). AIgenerated characters for supporting personalized learning and well-being. Nature Machine Intelligence, 3(12), 1013-1022. https://doi.org/10.1038/s42256-021-00417-9
Peverly, S. T., Brobst, K. E., Graham, M., & Shaw, R. (2003). College adults are not good at self-regulation: A study on the relationship of self-regulation, note taking, and test taking. Journal of Educational Psychology, 95(2), 335-346. https://doi.org/10.1037/0022-0663.95.2.335
Pintrich, P. R. (2000). Multiple goals, multiple pathways: The role of goal orientation in learning and achievement. Journal of Educational Psychology, 92(3), 544-555. https://doi.org/10.1037/00220663.92.3.544
Rospigliosi, P. A. (2023). Artificial intelligence in teaching and learning: What questions should we ask of ChatGPT? Interactive Learning Environments, 31(1), 1-3. https://doi.org/10.1080/10494820. 2023.2180191
Ryan, R. M., & Deci, E. L. (2020). Intrinsic and extrinsic motivation from a self-determination theory perspective: Definitions, theory, practices, and future directions. Contemporary Educational Psychology, 61, 101860. https://doi.org/10.1016/j.cedpsych.2020.101860
Sitzmann, T., & Ely, K. (2011). A meta-analysis of self-regulated learning in work-related training and educational attainment: What we know and where we need to go. Psychological Bulletin, 137(3), 421-422. https://doi.org/10.1037/a0022777
Teixeira, P. J., Marques, M. M., Silva, M. N., Brunet, J., Duda, J., Haerens, L., La Guardia, J., Lindwall, M., Lonsdale, C., & Markland, D. (2020). A classification of motivation and behavior change techniques used in self-determination theory-based interventions in health contexts. Motivation Science, 6(4), 438-455. https://doi.org/10.1037/mot0000172
Valle, N., Brishke, J., Shenkman, E., & Ritzhaupt, A. D. (2022). Design, development and evaluation of the Citizen Science Cancer Curriculum (CSCC): A design and development case study. TechTrends, 66(4), 666-680. https://doi.org/10.1007/s11528-022-00737-6
Wu, T. T., Lee, H. Y., Li, P. H., Huang, C. N., & Huang, Y. M. (2023). Promoting self-regulation progress and knowledge construction in blended learning via ChatGPT-based learning aid. Journal
of Educational Computing Research, Advanced Online Publication. https://doi.org/10.1177/07356 331231191125
Xia, Q., Chiu, T. K. F., Chai, C. S., & Xie, K. (2023). The mediating effects of needs satisfaction on the relationships between prior knowledge and self-regulated learning through artificial intelligence chatbot. British Journal of Educational Technology, 54(4), 967-986. https://doi.org/10.1111/bjet. 13305
Xia, Q., Chiu, T. K. F., Lee, M., Temitayo, I., Dai, Y., & Chai, C. S. (2022). A self-determination theory design approach for inclusive and diverse artificial intelligence (AI) K-12 education. Computers & Education, 189, 104582. https://doi.org/10.1016/j.compedu.2022.104582
Zimmerman, B. J. (2011). Motivational sources and outcomes of self-regulated learning and performance. Handbook of self-regulation of learning and performance. Routledge.
Zimmerman, B. J., & Moylan, A. R. (2009). Self-regulation: Where metacognition and motivation intersect. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Handbook of metacognition in education (pp. 299-315). Routledge.
- Thomas K. F. Chiu
tchiu@cuhk.edu.hk
Department of Curriculum and Instruction, Faculty of Education, Centre for Learning Sciences and Technologies, The Chinese University of Hong Kong, Shatin, Hong Kong, China
DOI: https://doi.org/10.1007/s11423-024-10366-w
Publication Date: 2024-04-01
A classification tool to foster self-regulated learning with generative artificial intelligence by applying self-determination theory: a case of ChatGPT
© The Author(s) 2024
Abstract
Generative AI such as ChatGPT provides an instant and individualized learning environment, and may have the potential to motivate student self-regulated learning (SRL), more effectively than other non-AI technologies. However, the impact of ChatGPT on student motivation, SRL, and needs satisfaction is unclear. Motivation and the SRL process can be explained using self-determination theory (SDT) and the three phases of forethought, performance, and self-reflection, respectively. Accordingly, a Delphi design was employed in this study to determine how ChatGPT-based learning activities satisfy students’ each SDT need, and foster each SRL phase from a teacher perspective. We involved 36 SDT school teachers with extensive expertise in technology enhanced learning to develop a classification tool for learning activities that affect student needs satisfaction and SRL phases using ChatGPT. We collaborated with the teachers in three rounds to investigate and identify the activities, and we revised labels, descriptions, and explanations. The major finding is that a classification tool for 20 learning activities using ChatGPT was developed. The tool suggests how ChatGPT better satisfy SDT-based needs, and fosters the three SRL phrases. This classification tool can assist researchers in replicating, implementing, and integrating successful ChatGPT in education research and development projects. The tool can inspire teachers to modify the activities using generative AI for their own teaching, and inform policymakers on how to develop guidelines for AI in education.
also give teachers and policymakers ideas on how to teach with ChatGPT and make policies for AI in education, respectively.
Theoretical background
SRL and learner motivation
Digital SDT based support from with ChatGPT as GenAI
SRL with ChatGPT as GenAI
Research gaps
This study and method
Research goal
- What learning activities can foster the three SRL processes of forethought, performance, and self-reflection?
- What learning activities can satisfy the three SDT needs for autonomy, competence, and satisfaction?
Research design
Participants
Research procedures
list of learning activities and asked them to determine whether any activities looked to be duplicates. To assist in developing a more thorough list, the teachers were also invited to suggest any other activities they believed were missing from the list. After each round of the Delphi process, we refined the learning activities in response to the teachers’ feedback. Where action recommendations involved major changes (e.g., substantially different function descriptions), the revised learning activity was considered a new activity. In response to teacher comments following each round of the Delphi process, we made modifications to the learning activities. Revised learning activities were regarded as new ones in the next round. We sent the teachers the most recent list of activities, together with information on how they affect SRL phases and SDT needs, in Rounds 2 and 3.
Consensus criteria
Results
Round 1 and 2
Round 3
Discussion
Learning Activities | Descriptions | |
When teachers design learning activities, students use ChatGPT to … | ||
#1 | Search information | Allow students to get a more complex source of information than information from a search engine. ChatGPT is viewed as a smart search engine |
#2 | Get examples | Allow students to get more examples for a topic or problem |
#3 | Check their answers | Ask students to compare their answers or solutions to those provided by ChatGPT |
#4 | Generate review questions to check for their understanding | Ask students to generate review questions for them to answer in order to check for their understanding |
#5 | Create new problems for practice | Ask students to create problems, such as mathematics questions or reading passages, for drilling and practice |
#6 | Create challenging problems | Ask students to create challenging problems to amplify their achievements and keep them humble |
#7 | Get insight into complex problems | Encourage students to get a new or different perspective on solving complex problems |
#8 | Ask ideas for their improvement | Ask students to improve their work, e.g., other ways of solving mathematics problems, as well as writing edits and suggestions |
#9 | Make lists or outlines | Allow students to make a list for solving a problem or generate an outline for a report or an article |
#10 | Summarize their own work | Ask students to summarize their work and check whether the summary is good |
#11 | Ask for definitions | Ask students to get definitions of a term at various levels |
#12 | Generate questions for discussions | Get ideas from generating questions for classroom discussions when needed |
#13 | Generate questions for essays | Get ideas from generating questions for writing essays when needed |
#14 | Get feedback for their work | Ask students to get feedback on their original work |
#15 | Practice peer feedback | Ask students to practice peer feedback by giving comments on the outputs from ChatGPT |
#16 | Prepare for tough conversations | Encourage students to have tough conversations with ChatGPT |
#17 | Visualize a problem | Encourage students to visualize text-based content |
When teachers design learning activities, students are expected to … | ||
#18 | Anticipate ChatGPT’s outputs | Anticipate the response you would expect from ChatGPT |
#19 | Grade ChatGPT’s outputs | Encourage students to grade outputs from ChatGPT |
#20 | Debate with ChatGPT | Encourage students to debate a topic with ChatGPT |
Learning Activities | Autonomy | Competence | Relatedness | Forethought | Performance | Self-reflection | |
When teachers design learning activities, students use ChatGPT to … | |||||||
#1 | Search information | X | X | ||||
#2 | Get examples | X | X | ||||
#3 | Check their answers | X | X | ||||
#4 | Generate review questions to check for their understanding | X | X | ||||
#5 | Create new problems for practice | X | X | ||||
#6 | Create challenging problems | X | X | ||||
#7 | Get insight into complex problems | X | X | ||||
#8 | Ask ideas for their improvement | X | X | ||||
#9 | Make lists or outlines | X | X | ||||
#10 | Summarize their own work | X | X | ||||
#11 | Ask for definitions | X | X | ||||
#12 | Generate questions for discussions | X | X | ||||
#13 | Generate questions for essays | X | X | ||||
#14 | Get feedback for their work | X | X | ||||
#15 | Practice peer feedback | X | X | ||||
#16 | Prepare for tough conversations | X | X | ||||
#17 | Visualize a problem | X | X | ||||
When teachers design learning activities, students are expected to … | |||||||
#18 | Anticipate ChatGPT’s outputs | X | X | ||||
#19 | Grade ChatGPT’s outputs | X | X | ||||
#20 | Debate with ChatGPT | X | X |
Limitations and future research suggestions
may not simply apply to classroom instruction because the aims and contexts differ. In future studies, a new classification tool should include teacher needs support.
Conclusion
Funding This study is funded by General Research Grants (Project Code: 14610522).
Data availability The datasets used for the current study are available from the corresponding author on reasonable request.
Declarations
References
Baidoo-Anu, D., & Ansah, L. O. (2023). Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. Journal of AI, 7(1), 52-62.
Bruso, J., Stefaniak, J., & Bol, L. (2020). An examination of personality traits as a predictor of the use of self-regulated learning strategies and considerations for online instruction. Educational Technology Research and Development, 68, 2659-2683. https://doi.org/10.1007/s11423-020-09797-y
Butz, N. T., & Stupnisky, R. H. (2017). Improving student relatedness through an online discussion intervention: The application of self-determination theory in synchronous hybrid programs. Computers & Education, 114, 117-138. https://doi.org/10.1016/j.compedu.2017.06.006
Chang, C. H., & Kidman, G. (2023). The rise of generative artificial intelligence (AI) language modelschallenges and opportunities for geographical and environmental education. International Research in Geographical and Environmental Education, 32(2), 85-89. https://doi.org/10.1080/10382046. 2023.2194036
Chiu, T. K. F. (2021). Digital support for student engagement in blended learning based on self-determination theory. Computers in Human Behavior, 124, 106909. https://doi.org/10.1016/j.chb.2021. 106909
Chiu, T. K. F. (2022). Applying the Self-determination Theory (SDT) to explain student engagement in online learning during the COVID-19 pandemic. Journal of Research on Technology in Education, 54(sup1), 14-30. https://doi.org/10.1080/15391523.2021.1891998
Chiu, T. K. F. (2023). The impact of Generative AI (GenAI) on practices, policies and research direction in education: A case of ChatGPT and Midjourney. Interactive Learning Environments, Advanced Publication. https://doi.org/10.1080/10494820.2023.2253861
Chiu, T. K. F. (2024). Future research recommendations for transforming higher education with Generative AI. Computer & Education: Artificial Intelligence, 6, 100197. https://doi.org/10.1016/j.caeai. 2023.100197
Chiu, T. K. F., Moorhouse, B. L., Chai, C. S., & Ismailov, M. (2023). Teacher support and student motivation to learn with artificial intelligence (AI) chatbot. Interactive Learning Environments, Advanced Online Publication. https://doi.org/10.1080/10494820.2023.2172044
Dalkey, N., & Helmer, O. (1963). An experimental application of the Delphi method to the use of experts. Management Science, 9(3), 458-467. https://doi.org/10.1287/mnsc.9.3.458
Diamond, I. R., Grant, R. C., Feldman, B. M., Pencharz, P. B., Ling, S. C., Moore, A. M., & Wales, P. W. (2014). Defining consensus: A systematic review recommends methodologic criteria for reporting of Delphi studies. Journal of Clinical Epidemiology, 67(4), 401-409. https://doi.org/10.1016/j. jclinepi.2013.12.002
Dörrenbächer, L., & Perels, F. (2016). Self-regulated learning profiles in college students: Their relationship to achievement, personality, and the effectiveness of an intervention to foster self-regulated learning. Learning and Individual Differences, 51, 229-241. https://doi.org/10.1016/j.lindif.2016. 09.015
Gill, S. S., Xu, M., Patros, P., Wu, H., Kaur, R., Kaur, K., & Buyya, R. (2024). Transformative effects of ChatGPT on modern education: Emerging Era of AI Chatbots. Internet of Things and CyberPhysical Systems, 4, 19-23. https://doi.org/10.1016/j.iotcps.2023.06.002
Guay, F. (2022). Applying self-determination theory to education: Regulations types, psychological needs, and autonomy supporting behaviors. Canadian Journal of School Psychology, 37(1), 75-92. https://doi.org/10.1177/08295735211055355
Iyengar, S. S., & Lepper, M. R. (1999). Rethinking the value of choice: A cultural perspective on intrinsic motivation. Journal of Personality and Social Psychology, 76(3), 349-366. https://doi.org/10. 1037/0022-3514.76.3.349
Jorm, A. F. (2015). Using the Delphi expert consensus method in mental health research. The Australian and New Zealand Journal of Psychiatry, 49(10), 887-897. https://doi.org/10.1177/0004867415600891
Kasneci, E., Seßler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., & Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103, 102274. https://doi.org/10.1016/j.lindif.2023.102274
Keeney, S., Hasson, F., & McKenna, H. (2006). Consulting the oracle: Ten lessons from using the Delphi technique in nursing research. Journal of Advanced Nursing, 53(2), 205-212. https://doi.org/10. 1111/j.1365-2648.2006.03716.x
Luo, Y., Lin, J., & Yang, Y. (2021). Students’ motivation and continued intention with online self-regulated learning: A self-determination theory perspective. Zeitschrift Für Erziehungswissenschaft, 24(6), 1379-1399. https://doi.org/10.1007/s11618-021-01042-3
Manganelli, L., Thibault-Landry, A., Forest, J., & Carpentier, J. (2018). Self-determination theory can help you generate performance and well-being in the workplace: A review of the literature. Advances in Developing Human Resources, 20(2), 227-240. https://doi.org/10.1177/1523422318 757
Molenaar, I., de Mooij, S., Azevedo, R., Bannert, M., Järvelä, S., & Gašević, D. (2023). Measuring selfregulated learning and the role of AI: Five years of research using multimodal multichannel data. Computers in Human Behavior, 139, 107540. https://doi.org/10.1016/j.chb.2022.107540
Molina, F., Molina, M. D., & Molina, C. (2022). Motivating learning through digital apps: The importance of relatedness satisfaction. International Journal of Human-Computer Interaction. https:// doi.org/10.1080/10447318.2022.2097777
Olivier, E., Galand, B., Morin, A. J., & Hospel, V. (2021). Need-supportive teaching and student engagement in the classroom: Comparing the additive, synergistic, and global contributions. Learning and Instruction, 71, 101389. https://doi.org/10.1016/j.learninstruc.2020.101389
Pataranutaporn, P., Danry, V., Leong, J., Punpongsanon, P., Novy, D., Maes, P., & Sra, M. (2021). AIgenerated characters for supporting personalized learning and well-being. Nature Machine Intelligence, 3(12), 1013-1022. https://doi.org/10.1038/s42256-021-00417-9
Peverly, S. T., Brobst, K. E., Graham, M., & Shaw, R. (2003). College adults are not good at self-regulation: A study on the relationship of self-regulation, note taking, and test taking. Journal of Educational Psychology, 95(2), 335-346. https://doi.org/10.1037/0022-0663.95.2.335
Pintrich, P. R. (2000). Multiple goals, multiple pathways: The role of goal orientation in learning and achievement. Journal of Educational Psychology, 92(3), 544-555. https://doi.org/10.1037/00220663.92.3.544
Rospigliosi, P. A. (2023). Artificial intelligence in teaching and learning: What questions should we ask of ChatGPT? Interactive Learning Environments, 31(1), 1-3. https://doi.org/10.1080/10494820. 2023.2180191
Ryan, R. M., & Deci, E. L. (2020). Intrinsic and extrinsic motivation from a self-determination theory perspective: Definitions, theory, practices, and future directions. Contemporary Educational Psychology, 61, 101860. https://doi.org/10.1016/j.cedpsych.2020.101860
Sitzmann, T., & Ely, K. (2011). A meta-analysis of self-regulated learning in work-related training and educational attainment: What we know and where we need to go. Psychological Bulletin, 137(3), 421-422. https://doi.org/10.1037/a0022777
Teixeira, P. J., Marques, M. M., Silva, M. N., Brunet, J., Duda, J., Haerens, L., La Guardia, J., Lindwall, M., Lonsdale, C., & Markland, D. (2020). A classification of motivation and behavior change techniques used in self-determination theory-based interventions in health contexts. Motivation Science, 6(4), 438-455. https://doi.org/10.1037/mot0000172
Valle, N., Brishke, J., Shenkman, E., & Ritzhaupt, A. D. (2022). Design, development and evaluation of the Citizen Science Cancer Curriculum (CSCC): A design and development case study. TechTrends, 66(4), 666-680. https://doi.org/10.1007/s11528-022-00737-6
Wu, T. T., Lee, H. Y., Li, P. H., Huang, C. N., & Huang, Y. M. (2023). Promoting self-regulation progress and knowledge construction in blended learning via ChatGPT-based learning aid. Journal
of Educational Computing Research, Advanced Online Publication. https://doi.org/10.1177/07356 331231191125
Xia, Q., Chiu, T. K. F., Chai, C. S., & Xie, K. (2023). The mediating effects of needs satisfaction on the relationships between prior knowledge and self-regulated learning through artificial intelligence chatbot. British Journal of Educational Technology, 54(4), 967-986. https://doi.org/10.1111/bjet. 13305
Xia, Q., Chiu, T. K. F., Lee, M., Temitayo, I., Dai, Y., & Chai, C. S. (2022). A self-determination theory design approach for inclusive and diverse artificial intelligence (AI) K-12 education. Computers & Education, 189, 104582. https://doi.org/10.1016/j.compedu.2022.104582
Zimmerman, B. J. (2011). Motivational sources and outcomes of self-regulated learning and performance. Handbook of self-regulation of learning and performance. Routledge.
Zimmerman, B. J., & Moylan, A. R. (2009). Self-regulation: Where metacognition and motivation intersect. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Handbook of metacognition in education (pp. 299-315). Routledge.
- Thomas K. F. Chiu
tchiu@cuhk.edu.hk
Department of Curriculum and Instruction, Faculty of Education, Centre for Learning Sciences and Technologies, The Chinese University of Hong Kong, Shatin, Hong Kong, China