DOI: https://doi.org/10.1038/s41598-025-91634-4
PMID: https://pubmed.ncbi.nlm.nih.gov/40021737
تاريخ النشر: 2025-02-28
تقارير علمية
مفتوح
الدور الوسيط للرضا في العلاقة بين الفائدة المدركة، وسهولة الاستخدام المدركة، ونية الطلاب السلوكية لاستخدام ChatGPT
الملخص
ChatGPT هو نموذج لغوي متقدم للغاية يمكن أن يحدث ثورة في تجارب التعلم للطلاب من خلال تقديم المساعدة والمعلومات التي يحتاجونها. نظرًا للاتجاه المتزايد للمؤسسات التعليمية في دمج تقنيات الذكاء الاصطناعي في عمليات التعليم والتعلم، من الضروري فهم العوامل التي ستؤدي إلى قبول واستخدام هذه التقنيات من قبل الطلاب. باستخدام نموذج قبول التكنولوجيا، درست هذه الدراسة الدور الوسيط للرضا في العلاقة بين الفائدة المدركة (PU)، والسهولة المدركة (PEU)، ونية السلوك لاستخدام ChatGPT في تعلم الطلاب. استخدمت هذه الدراسة نهج البحث الكمي، وتم جمع البيانات من 297 طالبًا باستخدام استبيان منظم. تم إجراء التحليل باستخدام نمذجة المعادلات الهيكلية (SEM) في AMOS الإصدار 26. أشارت النتائج إلى أن الفائدة المدركة (PU) والسهولة المدركة (PEU) أثرت بشكل كبير على رضا الطلاب. كما أثرت الفائدة المدركة (PU) بشكل كبير على نوايا السلوك لاستخدام ChatGPT. ومع ذلك، لم يكن للسهولة المدركة (PEU) تأثير مباشر على نية السلوك للطلاب لاستخدام ChatGPT. كان للرضا تأثير كبير على نية السلوك للطلاب لاستخدام ChatGPT. علاوة على ذلك، تم تأكيد الرضا كوسيط جزئي كبير بين الفائدة المدركة (PU) ونية السلوك، وكذلك كوسيط كامل للعلاقة بين السهولة المدركة (PEU) ونية السلوك. تؤكد هذه النتائج على الحاجة لجعل ChatGPT أكثر فائدة في البيئات الأكاديمية لتسهيل زيادة التفاعل بين الطلاب وتحقيق نتائج تعلم أفضل. تعزز هذه الدراسة الأدبيات حول قبول التكنولوجيا في سياق التعليم، خاصة فيما يتعلق بتطبيق أدوات الذكاء الاصطناعي في فضاءات التعلم.
أدى إطلاق ChatGPT واعتماده السريع إلى جذب انتباه الطلاب والمعلمين على مستوى العالم. في السياق التعليمي، يشعر بعض المعلمين بالتفاؤل بشأن تأثيراته التآزرية على التعلم، بينما يشارك آخرون الغموض بشأن المخاوف من أن وجوده قد يعيق الفوائد التعليمية أو ينشر معلومات مضللة.
مراجعة الأدبيات
نموذج قبول التكنولوجيا (TAM)
نموذج تأكيد التوقعات (ECM)
تطوير الفرضيات
فائدة متصورة
لـ H3- PU تأثير كبير على رضا الطلاب.
سهولة الاستخدام المدركة
لـ H4- PEU تأثير كبير على رضا الطلاب.
الرضا
H5 – الرضا يتوسط العلاقة بين الاستخدام المتوقع ونية الطلاب.
H6 – الرضا يتوسط العلاقة بين سهولة الاستخدام المدركة ونية الطلاب.
H7 – الرضا له تأثير كبير على نية الطلاب.
النموذج المقترح (الشكل 1) موضح أدناه:

المنهجية
تصميم البحث
الأدوات
جمع البيانات
تحليل البيانات
جوانب النموذج المقترح. وهذا يجعل SEM مناسبًا بشكل خاص لاختبار العلاقات المفترضة بين البنى في هذه الدراسة، حيث توفر هذه التقنية تحليلًا أكثر شمولاً من أي من الطرق المستخدمة بشكل فردي.
النتائج
المعلومات الديموغرافية
CFA
تقدير موحد
تقدير غير موحد
وزن الانحدار وتحليل التأثيرات المباشرة
تحليل الوساطة
| تردد | نسبة مئوية | ||
| جنس | ذكر | 168 | ٥٦.٦ |
| أنثى | ١٢٩ | ٤٣.٤ | |
| الكليات | علوم الحاسوب والهندسة | ١١٨ | ٣٩.٧ |
| الفنون | 66 | ٢٢.٢ | |
| علم | ٣٨ | 12.8 | |
| إدارة الأعمال | ٣٢ | 10.8 | |
| التعليم | 23 | ٧.٧ | |
| الطب | 11 | 3.7 | |
| الصحة العامة ومعلومات الصحة | 9 | 3.0 | |
| إجمالي | 297 | 100.0 | |

TLI=. 967
NFI=. 956
|F|=. 974
RMSEA = 0.068
| سي آر | AVE | MSV | ماكس آر (H) | الرضا | PU | بيو | ذكاء الأعمال | |
| الرضا | 0.943 | 0.769 | 0.669 | 0.949 | 0.877 | |||
| PU | 0.934 | 0.780 | 0.669 | 0.940 | 0.818 | 0.883 | ||
| بيو | 0.924 | 0.753 | 0.578 | 0.930 | 0.756 | 0.760 | 0.868 | |
| ذكاء الأعمال | 0.946 | 0.854 | 0.610 | 0.955 | 0.753 | 0.781 | 0.689 | 0.924 |
نقاش


| لا. | الفرضيات | التقدير | S.E. | C.R. |
|
Sig | القرار |
| H1 |
|
0.476 | 0.089 | 5.378 | *** | ذو دلالة | مدعوم |
| H2 | BI<–PEU | 0.148 | 0.077 | 1.921 | 0.055 | غير ذي دلالة | مرفوض |
| H3 | الرضا<–PU | 0.597 | 0.067 | 8.917 | *** | ذو دلالة | مدعوم |
| H4 | الرضا<–PEU | 0.340 | 0.068 | 5.033 | *** | ذو دلالة | مدعوم |
| H7 | BI<–الرضا | 0.302 | 0.083 | 3.631 | *** | ذو دلالة | مدعوم |
| العلاقة | التأثير المباشر | التأثير غير المباشر | الحد الأدنى | الحد الأقصى |
|
الاستنتاج | ||
| PU > Sat > BI | 0.476 (0.000) ذو دلالة | 0.180 | 0.069 | 0.318 | 0.002 | وساطة جزئية | ||
| PEU > Sat > BI |
|
0.103 | 0.034 | 0.217 | 0.002 | وساطة كاملة |
والتي بدورها يمكن أن ترفع من نية المستخدمين المستمرة فيما يتعلق بتقدير التقنيات الجديدة. أكدت هذه النتيجة دراسة لـ
الآثار النظرية
التداعيات العملية
القيود ونطاق البحث المستقبلي
التعليم على العلاقات الموصوفة في هذه الدراسة. نتيجة لذلك، قد لا تعكس النتائج الديناميات الموجودة في مجموعات الطلاب الأكثر تنوعًا أو العالمية.
الخاتمة
توفر البيانات
تم النشر عبر الإنترنت: 28 فبراير 2025
References
- Fütterer, T. et al. ChatGPT in education: Global reactions to AI innovations. Sci. Rep. 13 (1), 15310. https://doi.org/10.1038/s4159 8-023-42227-6 (2023).
- Rehman, A., Behera, R. K., Islam, M. S., Abbasi, F. A. & Imtiaz, A. Assessing the usage of ChatGPT on life satisfaction among higher education students: The moderating role of subjective health. Technol. Soc. 78, 102655. https://doi.org/10.1016/j.techsoc. 20 24.102655 (2024).
- Rejeb, A., Rejeb, K., Appolloni, A., Treiblmaier, H. & Iranmanesh, M. Exploring the impact of ChatGPT on education: A web mining and machine learning approach. Int. J. Manag. Educ. 22 (1), 100932. https://doi.org/10.1016/j.ijme.2024.100932 (2024).
- Rospigliosi, P. A. Artificial intelligence in teaching and learning: What questions should we ask of ChatGPT? Interact. Learn. Environ. 31 (1), 1-3. https://doi.org/10.1080/10494820.2023.2180191 (2023).
- Vázquez-Cano, E., Ramirez-Hurtado, J. M., Saez-Lopez, J. M. & Lopez-Meneses, E. ChatGPT: The brightest student in the class. Think. Skills Creat. 49 https://doi.org/10.1016/j.tsc.2023.101380 (2023).
- Bin-Hady, W. R. A., Al-Kadi, A., Hazaea, A. & Ali, J. K. M. Exploring the dimensions of ChatGPT in english Language learning: A global perspective. Libr. Hi Tech. ahead-of-print https://doi.org/10.1108/LHT-05-2023-0200 (2023).
- Barrot, J. S. ChatGPT as a Language learning tool: An emerging technology report. Technol. Knowl. Learn. 29 (2), 1151-1156 (2024).
- Yan, D. Impact of ChatGPT on learners in a L2 writing practicum: An exploratory investigation. Educ. Inform. Technol. 28 (11), 13943-13967. https://doi.org/10.1007/s10639-023-11742-4 (2023).
- Farhi, F. et al. Analyzing the students’ views, concerns, and perceived ethics about ChatGPT usage. Comput. Educ. Artif. Intell. https://doi.org/10.1016/j.caeai.2023.100180 (2023).
- Kasneci, E. et al. ChatGPT for good? On opportunities and challenges of large Language models for education. Learn. Individual Differ. 103, 102274. https://doi.org/10.1016/j.lindif.2023.102274 (2023).
- Li, Y., Sadiq, G., Qambar, G. & Zheng, P. The impact of students’ use of ChatGPT on their research skills: The mediating effects of autonomous motivation, engagement, and self-directed learning. Educ. Inform. Technol. 1-32. https://doi.org/10.1007/s10639-02 4-12981-9 (2024).
- Songkram, N., Chootongchai, S., Keereerat, C. & Songkram, N. Potential of ChatGPT in academic research: Exploring innovative thinking skills. Interact. Learn. Environ. 1-23. https://doi.org/10.1080/10494820.2024.2375342 (2024).
- Xu, Y., Goedegebuure, R. & Van der Heijden, B. Customer perception, customer satisfaction, and customer loyalty within Chinese securities business: Towards a mediation model for predicting customer behavior. J. Relat. Mark. 5 (4), 79-104. https://doi.org/10 .1300/j366v05n04_06 (2007).
- Almulla, M. A. Investigating influencing factors of learning satisfaction in AI ChatGPT for research: University students perspective. Heliyon. (2024). https://doi.org/10.1016/j.heliyon.2024.e32220
- Sarkar, S., Chauhan, S. & Khare, A. A meta-analysis of antecedents and consequences of trust in mobile commerce. Int. J. Inf. Manag. 50, 286-301. https://doi.org/10.1016/j.ijinfomgt.2019.08.008 (2020).
- Yang, H. E. & Wu, C. C. Effects of image interactivity technology adoption on e-shoppers’ BIs with risk as moderator. Prod. Plann. Control. 20 (4), 370-382. https://doi.org/10.1080/09537280902843755 (2009).
- Chen, X. et al. Factors affecting cryptocurrency adoption in digital business transactions: The mediating role of customer satisfaction. Technol. Soc. 70, 102059. https://doi.org/10.1016/j.techsoc.2022.102059 (2022).
- Rieke, T. & Martins, H. The relationship between motives for using a Chatbot and satisfaction with Chatbot characteristics: An exploratory study. In SHS Web of Conferences (Vol. 160, p. 01007). EDP Sciences. (2023). https://doi.org/10.1051/shsconf/2023160 01007
- Ngo, T. T. A., Tran, T. T., An, G. K. & Nguyen, P. T. ChatGPT for educational purposes: Investigating the impact of knowledge management factors on student satisfaction and continuous usage. IEEE Trans. Learn. Technol. https://doi.org/10.1109/TLT.2024. 3383773 (2024a).
- Caratiquit, K. D. & Caratiquit, L. J. C. ChatGPT as an academic support tool on the academic performance among students: The mediating role of learning motivation. J. Social Humanity Educ. 4 (1), 21-33. https://doi.org/10.35912/jshe.v4i1.1558 (2023).
- Chawla, U., Mohnot, R. & Singh, H. V. Unleashing the potential: An empirical study on student application of ChatGPT in education using serial mediation modeling. Educ. Inform. Technol. 1-35. https://doi.org/10.1007/s10639-024-12702-2 (2024).
- Kelly, S., Kaye, S. A. & Oviedo-Trespalacios, O. What factors contribute to the acceptance of artificial intelligence? A systematic review. Telemat. Inform. 77 https://doi.org/10.1016/j.tele.2022.101925 (2023).
- Davis, F. D. PU, PEU, and user acceptance of information technology. MIS Q. 319-340. https://doi.org/10.2307/249008 (1989).
- Gao, L. & Bai, X. A unified perspective on the factors influencing consumer acceptance of internet of things technology. Asia Pac. J. Mark. Logist. 26 (2), 211-231. https://doi.org/10.1108/APJML-06-2013-0061 (2014).
- Gangwar, H., Date, H. & Ramaswamy, R. Understanding determinants of cloud computing adoption using an integrated TAMTOE model. J. Enterp. Inform. Manag. 28 (1), 107-130. https://doi.org/10.1108/JEIM-08-2013-0065 (2015).
- Jang, J., Ko, Y., Shin, W. S. & Han, I. Augmented reality and virtual reality for learning: An examination using an extended technology acceptance model. IEEE Access. 9, 6798-6809. https://doi.org/10.1109/ACCESS.2020.3048708 (2021).
- Liu, N. & Ye, Z. Empirical research on the blockchain adoption-based on TAM. Appl. Econ. 53 (37), 4263-4275. https://doi.org/l 0.1080/00036846.2021.1898535 (2021).
- Wang, C., Ahmad, S. F., Ayassrah, A. Y. B. A., Awwad, E. M., Irshad, M., Ali, Y. A. & Han, H. (2023). An empirical evaluation of technology acceptance model for Artificial Intelligence in E-commerce. Heliyon 9 (8).https://doi.org/10.1016/j.heliyon.2023.e183 49.
- Saif, N. et al. Chat-GPT; validating technology acceptance model (TAM) in education sector via ubiquitous learning mechanism. Comput. Hum. Behav. 154, 108097. https://doi.org/10.1016/j.chb. 2023.108097 (2024).
- Dahri, N. A., Yahaya, N., Al-Rahmi, W. M., Aldraiweesh, A., Alturki, U., Almutairy,S. & Soomro, R. B. (2024). Extended TAM based acceptance of AI-Powered ChatGPT for supporting metacognitive self-regulated learning in education: A mixed-methods study.Heliyon 10 (8). https://doi.org/10.1016/j.heliyon.2024.e29317.
- Bhattacherjee, A. Understanding information systems continuance: An expectation-confirmation model. MIS Q. 351-370. https:/ /doi.org/10.2307/3250921 (2001).
- Sharabati, A. A. A. et al. The impact of TikTok user satisfaction on continuous intention to use the application. J. Open. Innovation: Technol. Market Complex. 8 (3). https://doi.org/10.3390/joitmc8030125 (2022).
- Ngo, T. T. A., An, G. K., Nguyen, P. T. & Tran, T. T. Unlocking educational potential: Exploring students’ satisfaction and sustainable engagement with ChatGPT using the ECM model. J. Inform. Technol. Educ. Res. 23 https://doi.org/10.28945/5344 (2024).
- Al-Sharafi, M. A. et al. Understanding the impact of knowledge management factors on the sustainable use of AI-based chatbots for educational purposes using a hybrid SEM-ANN approach. Interact. Learn. Environ. 31 (10), 7491-7510. https://doi.org/10.108 0/10494820.2022.2075014 (2023).
- Pereira, R. & Tam, C. Impact of enjoyment on the usage continuance intention of video-on-demand services. Inf. Manag. 58 (7). https://doi.org/10.1016/j.im.2021.103501 (2021).
- Ge, Y., Qi, H. & Qu, W. The factors impacting the use of navigation systems: A study based on the technology acceptance model. Transp. Res. Part. F: Traffic Psychol. Behav. 93, 106-117. https://doi.org/10.1016/j.trf.2023.01.005 (2023).
- Malinka, K., Peresíni, M., Firc, A., Hujnák, O. & Janus, F. On the educational impact of ChatGPT: Is artificial intelligence ready to obtain a university degree? In Proceedings of the 2023 Conference on Innovation and Technology in Computer Science Education V. 1 (pp. 47-53). (2023). https://doi.org/10.1145/3587102.3588827
- Romero-Rodríguez, J. M., Ramírez-Montoya, M. S., Buenestado-Fernández, M. & Lara-Lara, F. Use of ChatGPT at university as a tool for complex thinking: Students’ PU. J. New. Approach. Educ. Res. 12 (2), 323-339. https://doi.org/10.7821/naer.2023.7.1458 (2023).
- Strzelecki, A. To use or not to use ChatGPT in higher education? A study of students’ acceptance and use of technology. Interact. Learn. Environ. 1-14. https://doi.org/10.1080/10494820.2023.2209881 (2023).
- Camilleri, M. A. Factors affecting performance expectancy and intentions to use ChatGPT: Using SmartPLS to advance an information technology acceptance framework. Technol. Forecast. Soc. Chang. 201, 123247. https://doi.org/10.1016/j.techfore. 202 4.123247 (2024).
- Tiwari, C. K., Bhat, M. A., Khan, S. T., Subramaniam, R. & Khan, M. A. I. What drives students toward ChatGPT? An investigation of the factors influencing adoption and usage of ChatGPT. Interact. Technol. Smart Educ. 21 (3), 333-355. https://doi.org/10.1108 /ITSE-04-2023-0061 (2024).
- Al-Rahmi, W. M. et al. Integrating technology acceptance model with innovation diffusion theory: An empirical investigation on students’ intention to use E-learning systems. IEEE Access. 7, 26797-26809. https://doi.org/10.1109/ACCESS.2019.2899368 (2019).
- Na, S., Heo, S., Han, S., Shin, Y. & Roh, Y. Acceptance model of artificial intelligence (AI)-based technologies in construction firms: Applying the technology acceptance model (TAM) in combination with the technology-Organisation-Environment (TOE) framework. Buildings 12 (2), 90. https://doi.org/10.3390/buildings12020090 (2022).
- Kuhail, M. A., Alturki, N., Alramlawi, S. & Alhejori, K. Interacting with educational chatbots: A systematic review. Educ. Inform. Technol. 28 (1), 973-1018. https://doi.org/10.1007/s10639-022-11177-3 (2023).
- Alqahtani, M. A., Alamri, M. M., Sayaf, A. M. & Al-Rahmi, W. M. Exploring student satisfaction and acceptance of e-learning technologies in Saudi higher education. Front. Psychol. 13, 939336 (2022).
- Rahman, M. M. & Watanobe, Y. ChatGPT for education and research: Opportunities, threats, and strategies. Appl. Sci. 13 (9), 5783. https://doi.org/10.3390/app13095783 (2023).
- Creswell, J. W. Research design: Qualitative, quantitative, and mixed-methods approaches 2nd edn (Sage, 2003).
- Son, J. Back translation as a Documentation tool. Translation & interpreting. Int. J. Transl. Interpret. Res. 10 (2), 89-100. https://d oi.org/10.3316/informit. 864953916346703 (2018).
- Byrne, B. M. Structural equation modeling with AMOS: Basic concepts, applications, and programming (multivariate applications series). New. York: Taylor Francis Group. 396 (1), 7384 (2010).
- De Carvalho, J. & Chima, F. O. Applications of structural equation modeling in social sciences research. Am. Int. J. Contemp. Res. 4 (1), 6-11 (2014).
- Awang, P. SEM made simple: A gentle approach to learning structural equation modeling (MPWS Rich Publication, 2015).
- Hair, J. F. Jr, Black, W. C., Babin, B. J., Anderson, R. E. & Tatham, R. L. Multivariate data analysis (PrenticeHall, 2010).
- Rahlina, N. A., Awangb, Z., Afthanorhanc, A. & Aimrand, N. The Art of covariance based analysis in behaviour-based safety performance study using confirmatory factor analysis: Evidence from SMES. Measurement, 7(10). (2019).
- Lowry, P. B. & Gaskin, J. Partial least squares (PLS) structural equation modeling (SEM) for Building and testing behavioral causal theory: When to choose it and how to use it. IEEE Trans. Prof. Commun. 57 (2), 123-146. https://doi.org/10.1109/TPC.2014.2312 452 (2014).
- Sarstedt, M. et al. Progress in partial least squares structural equation modeling use in marketing research in the last decade. Psychol. Mark. 39 (5), 1035-1064. https://doi.org/10.1002/mar. 21640 (2022).
- Cohen, J. Statistical power for the behavioural sciences. Hilsdale. NY: Lawrence Erlbaum. 58 (1), 7-19 (1988).
- Almogren, A. S., Al-Rahmi, W. M. & Dahri, N. A. Exploring factors influencing the acceptance of ChatGPT in higher education: A smart education perspective. Heliyon https://doi.org/10.1016/j.heliyon.2024.e31887 (2024).
- Ma, J. et al. Exploring user adoption of ChatGPT: A technology acceptance model perspective. Int. J. Hum.-Comput. Interact., 1-15. (2024).
- Han, J. H. & Sa, H. J. Acceptance of and satisfaction with online educational classes through the technology acceptance model (TAM): The COVID-19 situation in Korea. Asia Pac. Educ. Rev. 23 (3), 403-415. https://doi.org/10.1007/s12564-021-09716-7 (2022).
- Widiar, G., Yuniarinto, A. & Yulianti, I. PEU’s effects on behavioral intention mediated by PU and trust. Interdiscip. Soc. Stud. 2 (4), 1829-1844. https://doi.org/10.55324/iss.v2i4.397 (2023).
- Xing, J. & Jiang, Q. Factors influencing user experience in AI chat systems-a satisfaction study based on factor analysis and linear regression. Kybernetes https://doi.org/10.1108/K-10-2023-2237 (2024).
- Kashive, N., Powale, L. & Kashive, K. Understanding user perception toward artificial intelligence (AI) enabled e-learning. Int. J. Inform. Learn. Technol. 38 (1), 1-19. https://doi.org/10.1108/IJILT-05-2020-0090 (2020).
- Liaw, S. S. & Huang, H. M. Perceived satisfaction, PU and interactive learning environments as predictors to self-regulation in e-learning environments. Comput. Educ. 60 (1), 14-24. https://doi.org/10.1016/j.compedu.2012.07.015 (2013).
- Yu, C., Yan, J. & Cai, N. ChatGPT in higher education: Factors influencing ChatGPT user satisfaction and continued use intention. In Frontiers in education. Front. Media SA. 9, 1354929. https://doi.org/10.3389/feduc.2024.1354929 (2024).
- Mohammadi, H. Social and individual antecedents of m-learning adoption in Iran. Comput. Hum. Behav. 49, 191-207. https://do i.org/10.1016/j.chb.2015.03.006 (2015).
- Arunachalam, T. An investigation on the role of PEU perceived use and self-efficacy in determining continuous usage intention towards an e-learning system. Online J. Distance Educ. e-Learn. 7 (4), 268-276 (2019).
- Peng, M. Y. P. & Yan, X. Exploring the influence of determinants on behavior intention to use of multiple media kiosks through technology readiness and acceptance model. Front. Psychol. 13, 852394. https://doi.org/10.3389/fpsyg. 2022.852394 (2022).
- Rawashdeh, A. M., Elayan, M. B., Alhyasat, W. & Shamout, M. D. Electronic human resources management PU, PEU and continuance usage intention: The mediating role of user satisfaction in Jordanian hotels sector. Int. J. Qual. Res. 15 (2), 679 (2021).
- Qazi, S. et al. AI-Driven learning management systems: Modern developments, challenges and future trends during the age of ChatGPT. Computers Mater. Continua. 80 (2). https://doi.org/10.32604/cmc. 2024.048893 (2024).
- De Winter, J. C., Dodou, D. & Stienen, A. H. ChatGPT in education: Empowering educators through methods for recognition and assessment. In Informatics (Vol. 10, No. 4, p. 87). MDPI. (2023). https://doi.org/10.3390/informatics10040087
مساهمات المؤلفين
الإعلانات
المصالح المتنافسة
الموافقة المستنيرة
معلومات إضافية
معلومات إعادة الطبع والتصاريح متاحة على www.nature.com/reprints.
ملاحظة الناشر تظل Springer Nature محايدة فيما يتعلق بالمطالبات القضائية في الخرائط المنشورة والانتماءات المؤسسية.
© المؤلفون 2025
قسم تكنولوجيا التعليم، كلية التربية، جامعة حائل، جامعة حائل، حائل، المملكة العربية السعودية. قسم التجارة، كلية لويولا، تشيناي، الهند. قسم دراسات الإدارة، المعهد الهندي للتكنولوجيا، مدراس، تشيناي، الهند. البريد الإلكتروني: eldhob5101@gmail.com
DOI: https://doi.org/10.1038/s41598-025-91634-4
PMID: https://pubmed.ncbi.nlm.nih.gov/40021737
Publication Date: 2025-02-28
scientific reports
OPEN
The mediating role of satisfaction in the relationship between perceived usefulness, perceived ease of use and students’ behavioural intention to use ChatGPT
Abstract
ChatGPT is a highly sophisticated AI language model that can revolutionize students’ learning experiences by providing much-needed assistance and information. Given the growing trend of educational institutions integrating AI technologies into their teaching and learning processes, it is crucial to understand the factors that would lead to the acceptance and use of these technologies by students. Using a technology acceptance model, this study investigated the mediating role of satisfaction in the relationship between PU, PEU, and behavioral intention to use ChatGPT for student learning. This study used a quantitative research approach, and data were gathered from 297 students using a structured questionnaire. The analysis was conducted using structural equation modelling (SEM) in AMOS Version 26. The results indicated that PU and ease PEU significantly influenced student satisfaction. PU significantly influenced behavioral intentions to use ChatGPT. However, PEU had no direct impact on students’ behavioral intention to use ChatGPT. Satisfaction had a significant influence on students’ behavioral intention to use ChatGPT. Moreover, satisfaction was confirmed as a significant partial mediator between PU and behavioral intention, as well as a full mediator of the relationship between PEU and behavioral intention. These findings underscore the need to make ChatGPT more useful in academic environments to facilitate increased engagement among students and achieve better learning outcomes. This study enhances the literature on technology acceptance in the context of education, particularly regarding the application of AI tools in learning spaces.
The launch and swift adoption of ChatGPT captured the attention of students and educators globally. In educational context, some educators are positive about its synergistic effects on learning, while others share ambiguity about fears that its existence may hinder educational benefits or spread misinformation
Literature review
Technology acceptance model (TAM)
Expectation-confirmation model (ECM)
Hypotheses development
Perceived usefulness
H3- PU has a significant influence on student satisfaction.
Perceived ease of use
H4- PEU has a significant influence on student satisfaction.
Satisfaction
H5 – Satisfaction mediates the relationship between PU and students’ BI.
H6 – Satisfaction mediates the relationship between PEU and students’ BI.
H7 – Satisfaction has a significant influence on students’ BI.
The proposed model (Fig. 1) is outlined below:

Methodology
Research design
Instruments
Data collection
Data analysis
aspects of the proposed model. This makes SEM particularly suitable for testing the hypothesized relationships between constructs in this study, as the technique provides a more comprehensive analysis than any of the methods used individually.
Results
Demographic information
CFA
Standardized estimate
Unstandardized estimate
Regression weight and analysis of direct effects
Mediation analysis
| Frequency | Percent | ||
| Gender | Male | 168 | 56.6 |
| Female | 129 | 43.4 | |
| Colleges | Computer Science and Engineering | 118 | 39.7 |
| Arts | 66 | 22.2 | |
| Science | 38 | 12.8 | |
| Business Administration | 32 | 10.8 | |
| Education | 23 | 7.7 | |
| Medicine | 11 | 3.7 | |
| Public Health and Health Informatics | 9 | 3.0 | |
| Total | 297 | 100.0 | |

TLI=. 967
NFI=. 956
|F|=. 974
RMSEA=. 068
| CR | AVE | MSV | MaxR(H) | Satisfaction | PU | PEU | BI | |
| Satisfaction | 0.943 | 0.769 | 0.669 | 0.949 | 0.877 | |||
| PU | 0.934 | 0.780 | 0.669 | 0.940 | 0.818 | 0.883 | ||
| PEU | 0.924 | 0.753 | 0.578 | 0.930 | 0.756 | 0.760 | 0.868 | |
| BI | 0.946 | 0.854 | 0.610 | 0.955 | 0.753 | 0.781 | 0.689 | 0.924 |
Discussion


| No. | Hypotheses | Estimate | S.E. | C.R. |
|
Sig | Decision |
| H1 |
|
0.476 | 0.089 | 5.378 | *** | Significant | Supported |
| H2 | BI<–PEU | 0.148 | 0.077 | 1.921 | 0.055 | Insignificant | Rejected |
| H3 | Satisfaction<–PU | 0.597 | 0.067 | 8.917 | *** | Significant | Supported |
| H4 | Satisfaction<–PEU | 0.340 | 0.068 | 5.033 | *** | Significant | Supported |
| H7 | BI<–Satisfaction | 0.302 | 0.083 | 3.631 | *** | Significant | Supported |
| Relationship | Direct Effect | Indirect Effect | Lower Bound | Upper Bound |
|
Conclusion | ||
| PU > Sat > BI | 0.476 (0.000) Sig | 0.180 | 0.069 | 0.318 | 0.002 | Partial Mediation | ||
| PEU > Sat > BI |
|
0.103 | 0.034 | 0.217 | 0.002 | Full mediation |
which, in turn, can raise users’ continuing intention concerning the appreciation of new technologies. This result confirmed a study of
Theoretical implications
Practical implications
Limitations and scope for future research
education would affect the relationships described in this study. The consequence of this is that the results might not reflect the dynamics found in higher diverse or global student populations.
Conclusion
Data availability
Published online: 28 February 2025
References
- Fütterer, T. et al. ChatGPT in education: Global reactions to AI innovations. Sci. Rep. 13 (1), 15310. https://doi.org/10.1038/s4159 8-023-42227-6 (2023).
- Rehman, A., Behera, R. K., Islam, M. S., Abbasi, F. A. & Imtiaz, A. Assessing the usage of ChatGPT on life satisfaction among higher education students: The moderating role of subjective health. Technol. Soc. 78, 102655. https://doi.org/10.1016/j.techsoc. 20 24.102655 (2024).
- Rejeb, A., Rejeb, K., Appolloni, A., Treiblmaier, H. & Iranmanesh, M. Exploring the impact of ChatGPT on education: A web mining and machine learning approach. Int. J. Manag. Educ. 22 (1), 100932. https://doi.org/10.1016/j.ijme.2024.100932 (2024).
- Rospigliosi, P. A. Artificial intelligence in teaching and learning: What questions should we ask of ChatGPT? Interact. Learn. Environ. 31 (1), 1-3. https://doi.org/10.1080/10494820.2023.2180191 (2023).
- Vázquez-Cano, E., Ramirez-Hurtado, J. M., Saez-Lopez, J. M. & Lopez-Meneses, E. ChatGPT: The brightest student in the class. Think. Skills Creat. 49 https://doi.org/10.1016/j.tsc.2023.101380 (2023).
- Bin-Hady, W. R. A., Al-Kadi, A., Hazaea, A. & Ali, J. K. M. Exploring the dimensions of ChatGPT in english Language learning: A global perspective. Libr. Hi Tech. ahead-of-print https://doi.org/10.1108/LHT-05-2023-0200 (2023).
- Barrot, J. S. ChatGPT as a Language learning tool: An emerging technology report. Technol. Knowl. Learn. 29 (2), 1151-1156 (2024).
- Yan, D. Impact of ChatGPT on learners in a L2 writing practicum: An exploratory investigation. Educ. Inform. Technol. 28 (11), 13943-13967. https://doi.org/10.1007/s10639-023-11742-4 (2023).
- Farhi, F. et al. Analyzing the students’ views, concerns, and perceived ethics about ChatGPT usage. Comput. Educ. Artif. Intell. https://doi.org/10.1016/j.caeai.2023.100180 (2023).
- Kasneci, E. et al. ChatGPT for good? On opportunities and challenges of large Language models for education. Learn. Individual Differ. 103, 102274. https://doi.org/10.1016/j.lindif.2023.102274 (2023).
- Li, Y., Sadiq, G., Qambar, G. & Zheng, P. The impact of students’ use of ChatGPT on their research skills: The mediating effects of autonomous motivation, engagement, and self-directed learning. Educ. Inform. Technol. 1-32. https://doi.org/10.1007/s10639-02 4-12981-9 (2024).
- Songkram, N., Chootongchai, S., Keereerat, C. & Songkram, N. Potential of ChatGPT in academic research: Exploring innovative thinking skills. Interact. Learn. Environ. 1-23. https://doi.org/10.1080/10494820.2024.2375342 (2024).
- Xu, Y., Goedegebuure, R. & Van der Heijden, B. Customer perception, customer satisfaction, and customer loyalty within Chinese securities business: Towards a mediation model for predicting customer behavior. J. Relat. Mark. 5 (4), 79-104. https://doi.org/10 .1300/j366v05n04_06 (2007).
- Almulla, M. A. Investigating influencing factors of learning satisfaction in AI ChatGPT for research: University students perspective. Heliyon. (2024). https://doi.org/10.1016/j.heliyon.2024.e32220
- Sarkar, S., Chauhan, S. & Khare, A. A meta-analysis of antecedents and consequences of trust in mobile commerce. Int. J. Inf. Manag. 50, 286-301. https://doi.org/10.1016/j.ijinfomgt.2019.08.008 (2020).
- Yang, H. E. & Wu, C. C. Effects of image interactivity technology adoption on e-shoppers’ BIs with risk as moderator. Prod. Plann. Control. 20 (4), 370-382. https://doi.org/10.1080/09537280902843755 (2009).
- Chen, X. et al. Factors affecting cryptocurrency adoption in digital business transactions: The mediating role of customer satisfaction. Technol. Soc. 70, 102059. https://doi.org/10.1016/j.techsoc.2022.102059 (2022).
- Rieke, T. & Martins, H. The relationship between motives for using a Chatbot and satisfaction with Chatbot characteristics: An exploratory study. In SHS Web of Conferences (Vol. 160, p. 01007). EDP Sciences. (2023). https://doi.org/10.1051/shsconf/2023160 01007
- Ngo, T. T. A., Tran, T. T., An, G. K. & Nguyen, P. T. ChatGPT for educational purposes: Investigating the impact of knowledge management factors on student satisfaction and continuous usage. IEEE Trans. Learn. Technol. https://doi.org/10.1109/TLT.2024. 3383773 (2024a).
- Caratiquit, K. D. & Caratiquit, L. J. C. ChatGPT as an academic support tool on the academic performance among students: The mediating role of learning motivation. J. Social Humanity Educ. 4 (1), 21-33. https://doi.org/10.35912/jshe.v4i1.1558 (2023).
- Chawla, U., Mohnot, R. & Singh, H. V. Unleashing the potential: An empirical study on student application of ChatGPT in education using serial mediation modeling. Educ. Inform. Technol. 1-35. https://doi.org/10.1007/s10639-024-12702-2 (2024).
- Kelly, S., Kaye, S. A. & Oviedo-Trespalacios, O. What factors contribute to the acceptance of artificial intelligence? A systematic review. Telemat. Inform. 77 https://doi.org/10.1016/j.tele.2022.101925 (2023).
- Davis, F. D. PU, PEU, and user acceptance of information technology. MIS Q. 319-340. https://doi.org/10.2307/249008 (1989).
- Gao, L. & Bai, X. A unified perspective on the factors influencing consumer acceptance of internet of things technology. Asia Pac. J. Mark. Logist. 26 (2), 211-231. https://doi.org/10.1108/APJML-06-2013-0061 (2014).
- Gangwar, H., Date, H. & Ramaswamy, R. Understanding determinants of cloud computing adoption using an integrated TAMTOE model. J. Enterp. Inform. Manag. 28 (1), 107-130. https://doi.org/10.1108/JEIM-08-2013-0065 (2015).
- Jang, J., Ko, Y., Shin, W. S. & Han, I. Augmented reality and virtual reality for learning: An examination using an extended technology acceptance model. IEEE Access. 9, 6798-6809. https://doi.org/10.1109/ACCESS.2020.3048708 (2021).
- Liu, N. & Ye, Z. Empirical research on the blockchain adoption-based on TAM. Appl. Econ. 53 (37), 4263-4275. https://doi.org/l 0.1080/00036846.2021.1898535 (2021).
- Wang, C., Ahmad, S. F., Ayassrah, A. Y. B. A., Awwad, E. M., Irshad, M., Ali, Y. A. & Han, H. (2023). An empirical evaluation of technology acceptance model for Artificial Intelligence in E-commerce. Heliyon 9 (8).https://doi.org/10.1016/j.heliyon.2023.e183 49.
- Saif, N. et al. Chat-GPT; validating technology acceptance model (TAM) in education sector via ubiquitous learning mechanism. Comput. Hum. Behav. 154, 108097. https://doi.org/10.1016/j.chb. 2023.108097 (2024).
- Dahri, N. A., Yahaya, N., Al-Rahmi, W. M., Aldraiweesh, A., Alturki, U., Almutairy,S. & Soomro, R. B. (2024). Extended TAM based acceptance of AI-Powered ChatGPT for supporting metacognitive self-regulated learning in education: A mixed-methods study.Heliyon 10 (8). https://doi.org/10.1016/j.heliyon.2024.e29317.
- Bhattacherjee, A. Understanding information systems continuance: An expectation-confirmation model. MIS Q. 351-370. https:/ /doi.org/10.2307/3250921 (2001).
- Sharabati, A. A. A. et al. The impact of TikTok user satisfaction on continuous intention to use the application. J. Open. Innovation: Technol. Market Complex. 8 (3). https://doi.org/10.3390/joitmc8030125 (2022).
- Ngo, T. T. A., An, G. K., Nguyen, P. T. & Tran, T. T. Unlocking educational potential: Exploring students’ satisfaction and sustainable engagement with ChatGPT using the ECM model. J. Inform. Technol. Educ. Res. 23 https://doi.org/10.28945/5344 (2024).
- Al-Sharafi, M. A. et al. Understanding the impact of knowledge management factors on the sustainable use of AI-based chatbots for educational purposes using a hybrid SEM-ANN approach. Interact. Learn. Environ. 31 (10), 7491-7510. https://doi.org/10.108 0/10494820.2022.2075014 (2023).
- Pereira, R. & Tam, C. Impact of enjoyment on the usage continuance intention of video-on-demand services. Inf. Manag. 58 (7). https://doi.org/10.1016/j.im.2021.103501 (2021).
- Ge, Y., Qi, H. & Qu, W. The factors impacting the use of navigation systems: A study based on the technology acceptance model. Transp. Res. Part. F: Traffic Psychol. Behav. 93, 106-117. https://doi.org/10.1016/j.trf.2023.01.005 (2023).
- Malinka, K., Peresíni, M., Firc, A., Hujnák, O. & Janus, F. On the educational impact of ChatGPT: Is artificial intelligence ready to obtain a university degree? In Proceedings of the 2023 Conference on Innovation and Technology in Computer Science Education V. 1 (pp. 47-53). (2023). https://doi.org/10.1145/3587102.3588827
- Romero-Rodríguez, J. M., Ramírez-Montoya, M. S., Buenestado-Fernández, M. & Lara-Lara, F. Use of ChatGPT at university as a tool for complex thinking: Students’ PU. J. New. Approach. Educ. Res. 12 (2), 323-339. https://doi.org/10.7821/naer.2023.7.1458 (2023).
- Strzelecki, A. To use or not to use ChatGPT in higher education? A study of students’ acceptance and use of technology. Interact. Learn. Environ. 1-14. https://doi.org/10.1080/10494820.2023.2209881 (2023).
- Camilleri, M. A. Factors affecting performance expectancy and intentions to use ChatGPT: Using SmartPLS to advance an information technology acceptance framework. Technol. Forecast. Soc. Chang. 201, 123247. https://doi.org/10.1016/j.techfore. 202 4.123247 (2024).
- Tiwari, C. K., Bhat, M. A., Khan, S. T., Subramaniam, R. & Khan, M. A. I. What drives students toward ChatGPT? An investigation of the factors influencing adoption and usage of ChatGPT. Interact. Technol. Smart Educ. 21 (3), 333-355. https://doi.org/10.1108 /ITSE-04-2023-0061 (2024).
- Al-Rahmi, W. M. et al. Integrating technology acceptance model with innovation diffusion theory: An empirical investigation on students’ intention to use E-learning systems. IEEE Access. 7, 26797-26809. https://doi.org/10.1109/ACCESS.2019.2899368 (2019).
- Na, S., Heo, S., Han, S., Shin, Y. & Roh, Y. Acceptance model of artificial intelligence (AI)-based technologies in construction firms: Applying the technology acceptance model (TAM) in combination with the technology-Organisation-Environment (TOE) framework. Buildings 12 (2), 90. https://doi.org/10.3390/buildings12020090 (2022).
- Kuhail, M. A., Alturki, N., Alramlawi, S. & Alhejori, K. Interacting with educational chatbots: A systematic review. Educ. Inform. Technol. 28 (1), 973-1018. https://doi.org/10.1007/s10639-022-11177-3 (2023).
- Alqahtani, M. A., Alamri, M. M., Sayaf, A. M. & Al-Rahmi, W. M. Exploring student satisfaction and acceptance of e-learning technologies in Saudi higher education. Front. Psychol. 13, 939336 (2022).
- Rahman, M. M. & Watanobe, Y. ChatGPT for education and research: Opportunities, threats, and strategies. Appl. Sci. 13 (9), 5783. https://doi.org/10.3390/app13095783 (2023).
- Creswell, J. W. Research design: Qualitative, quantitative, and mixed-methods approaches 2nd edn (Sage, 2003).
- Son, J. Back translation as a Documentation tool. Translation & interpreting. Int. J. Transl. Interpret. Res. 10 (2), 89-100. https://d oi.org/10.3316/informit. 864953916346703 (2018).
- Byrne, B. M. Structural equation modeling with AMOS: Basic concepts, applications, and programming (multivariate applications series). New. York: Taylor Francis Group. 396 (1), 7384 (2010).
- De Carvalho, J. & Chima, F. O. Applications of structural equation modeling in social sciences research. Am. Int. J. Contemp. Res. 4 (1), 6-11 (2014).
- Awang, P. SEM made simple: A gentle approach to learning structural equation modeling (MPWS Rich Publication, 2015).
- Hair, J. F. Jr, Black, W. C., Babin, B. J., Anderson, R. E. & Tatham, R. L. Multivariate data analysis (PrenticeHall, 2010).
- Rahlina, N. A., Awangb, Z., Afthanorhanc, A. & Aimrand, N. The Art of covariance based analysis in behaviour-based safety performance study using confirmatory factor analysis: Evidence from SMES. Measurement, 7(10). (2019).
- Lowry, P. B. & Gaskin, J. Partial least squares (PLS) structural equation modeling (SEM) for Building and testing behavioral causal theory: When to choose it and how to use it. IEEE Trans. Prof. Commun. 57 (2), 123-146. https://doi.org/10.1109/TPC.2014.2312 452 (2014).
- Sarstedt, M. et al. Progress in partial least squares structural equation modeling use in marketing research in the last decade. Psychol. Mark. 39 (5), 1035-1064. https://doi.org/10.1002/mar. 21640 (2022).
- Cohen, J. Statistical power for the behavioural sciences. Hilsdale. NY: Lawrence Erlbaum. 58 (1), 7-19 (1988).
- Almogren, A. S., Al-Rahmi, W. M. & Dahri, N. A. Exploring factors influencing the acceptance of ChatGPT in higher education: A smart education perspective. Heliyon https://doi.org/10.1016/j.heliyon.2024.e31887 (2024).
- Ma, J. et al. Exploring user adoption of ChatGPT: A technology acceptance model perspective. Int. J. Hum.-Comput. Interact., 1-15. (2024).
- Han, J. H. & Sa, H. J. Acceptance of and satisfaction with online educational classes through the technology acceptance model (TAM): The COVID-19 situation in Korea. Asia Pac. Educ. Rev. 23 (3), 403-415. https://doi.org/10.1007/s12564-021-09716-7 (2022).
- Widiar, G., Yuniarinto, A. & Yulianti, I. PEU’s effects on behavioral intention mediated by PU and trust. Interdiscip. Soc. Stud. 2 (4), 1829-1844. https://doi.org/10.55324/iss.v2i4.397 (2023).
- Xing, J. & Jiang, Q. Factors influencing user experience in AI chat systems-a satisfaction study based on factor analysis and linear regression. Kybernetes https://doi.org/10.1108/K-10-2023-2237 (2024).
- Kashive, N., Powale, L. & Kashive, K. Understanding user perception toward artificial intelligence (AI) enabled e-learning. Int. J. Inform. Learn. Technol. 38 (1), 1-19. https://doi.org/10.1108/IJILT-05-2020-0090 (2020).
- Liaw, S. S. & Huang, H. M. Perceived satisfaction, PU and interactive learning environments as predictors to self-regulation in e-learning environments. Comput. Educ. 60 (1), 14-24. https://doi.org/10.1016/j.compedu.2012.07.015 (2013).
- Yu, C., Yan, J. & Cai, N. ChatGPT in higher education: Factors influencing ChatGPT user satisfaction and continued use intention. In Frontiers in education. Front. Media SA. 9, 1354929. https://doi.org/10.3389/feduc.2024.1354929 (2024).
- Mohammadi, H. Social and individual antecedents of m-learning adoption in Iran. Comput. Hum. Behav. 49, 191-207. https://do i.org/10.1016/j.chb.2015.03.006 (2015).
- Arunachalam, T. An investigation on the role of PEU perceived use and self-efficacy in determining continuous usage intention towards an e-learning system. Online J. Distance Educ. e-Learn. 7 (4), 268-276 (2019).
- Peng, M. Y. P. & Yan, X. Exploring the influence of determinants on behavior intention to use of multiple media kiosks through technology readiness and acceptance model. Front. Psychol. 13, 852394. https://doi.org/10.3389/fpsyg. 2022.852394 (2022).
- Rawashdeh, A. M., Elayan, M. B., Alhyasat, W. & Shamout, M. D. Electronic human resources management PU, PEU and continuance usage intention: The mediating role of user satisfaction in Jordanian hotels sector. Int. J. Qual. Res. 15 (2), 679 (2021).
- Qazi, S. et al. AI-Driven learning management systems: Modern developments, challenges and future trends during the age of ChatGPT. Computers Mater. Continua. 80 (2). https://doi.org/10.32604/cmc. 2024.048893 (2024).
- De Winter, J. C., Dodou, D. & Stienen, A. H. ChatGPT in education: Empowering educators through methods for recognition and assessment. In Informatics (Vol. 10, No. 4, p. 87). MDPI. (2023). https://doi.org/10.3390/informatics10040087
Author contributions
Declarations
Competing interests
Informed consent
Additional information
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
© The Author(s) 2025
Department of Educational Technology, College of Education, University of Ha’il, University of Ha’il, Ha’il, Saudi Arabia. Department of Commerce, Loyola College, Chennai, India. Department of Management Studies, Indian Institute of Technology, Madras, Chennai, India. email: eldhob5101@gmail.com
