DOI: https://doi.org/10.1007/s13540-024-00246-8
تاريخ النشر: 2024-02-22
عن مبدأ التركيز-الانضغاط في فضاءات سوبوليف ذات الأس exponent المتغير غير المتجانس وتطبيقاته
الملخص
نحصل على تضمينات حرجة ومبدأ التركيز-الكثافة لمساحات سوبوليف ذات الأس exponent المتغير غير المتجانس. كأحد تطبيقات هذه النتائج، نؤكد وجود ونعثر على عدد لا نهائي من الحلول غير التافهة لفئة من المعادلات الإهليلجية غير الخطية الحرجة التي تتضمن أسسًا متغيرة وبارامترات حقيقية. مع الأساس الذي تم وضعه في هذا العمل، هناك إمكانية للتوسعات المستقبلية، لا سيما في توسيع مبدأ التركيز-الكثافة إلى مساحات سوبوليف من الرتبة الكسرية غير المتجانسة ذات الأس exponent المتغير في المجالات المحدودة. يمكن أن تجد هذه التوسعة تطبيقات في حل مشكلة بريز-نيرنبيرغ الكسرية المعممة.
1. المقدمة
مبدأ التركيز-الكثافة إلى مساحات سوبوليف من الرتبة الكسرية غير المتجانسة ذات الأس المتغير في المجالات المحدودة في المستقبل. تحمل هذه التوسعة إمكانية تطبيقات في حل مشكلة بريز-نيرنبيرغ الكسرية المعممة غير المتجانسة.
النظرية 2. افترض أن الافتراضات (
2. الإطار الوظيفي
الاقتراح 2 (دينغ وآخرون [21، نظرية 8.4.2.]، إدموندز وراكوسنيك [22، نظرية 1.1]). اعتبر
برهان. لن
2) من الجدير بالذكر أنه عندما
3) قام جي [34] بإجراء دراسة حول المعادلات غير المتجانسة في الحالة تحت الحرجة، باستخدام “الأس exponent الحرج”.
-
محدود. -
في الفضاء الثنائي .
ثم.
3. تمديد لمبدأ تركيز-تراص الأسود
قبل أن نقدم برهان النظرية 6، نتذكر بعض النتائج المساعدة التي حصل عليها بوندر وسيلفا [8].
4. فئة من المعادلات البيضاوية غير الخطية غير المتجانسة ذات النمو الحرج
طوال هذا المقال، ولأغراض التبسيط، نشير إلى فضاء الأس المتغير غير المتجانس
الوظيفة الطاقية المرتبطة بالمشكلة (1.1) تعرف بـ
لإثبات النظرية 1، سنطبق نظرية مرور الجبال 4. سنبدأ باللمسات التالية.
برهان. لن
اللمّا 5. دع
الادعاء 1.
من خلال تطبيق اللمحة 4، نعلم أن
من ناحية أخرى، من خلال استخدام الافتراض (
منذ،
5. براهين النظريتين 1 و 2
References
[2] Alves, C.O., El Hamidi, A.: Existence of solution for a anisotropic equation with critical exponent. Differential and Integral Equations 21(1-2), 25-40 (2008)
[3] Alves C.O., Ferreira M.C.: Existence of solutions for a class of
[4] Ambrosetti, A., Rabinowitz, P. H.: Dual variational methods in critical point theory and applications. Journal of Functional Analysis 14(4), 349-381 (1973)
[5] Antontsev, S., Diaz, J.I., Shmarev, S.: Energy methods for free boundary problems:applications to nonlinear PDEs and fluid mechanics. Progress in nonlinear differential equations and their applications. Applied Mechanics Reviews 55(4), B74-B75 (2002)
[6] Antontsev, S.N., Rodrigues, J.F.: On stationary thermorheological viscous flows. Annali dell’Universita di Ferrara. Sezione VII. Scienze Matematiche 52(1), 19-36 (2006)
[7] Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier, New York (1972)
[8] Bonder, J.F., Silva, A.: Concentration-compactness principal for variable exponent space and applications. Electronic Journal of Differential Equations 2010(141), 1-18 (2010)
[9] Boureanu, M.M., Matei, A., Sofonea, A.: Nonlinear problems with
[10] Boureanu, M.M., Rădulescu, V.D.: Anisotropic Neumann problems in Sobolev spaces with variable exponent. Nonlinear Analysis: Theory, Methods and Applications 75 (12), 4471-4482 (2012)
[11] Boureanu, M.M., Udrea, D.N.: Existence and multiplicity results for elliptic problems with
[12] Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Communications on Pure and Applied Mathematics 36(4), 437-47 (1963)
[13] Chaker, J., Kim, M., Weidner, M.: The concentration-compactness principle for the nonlocal anisotropic
[14] Chems Eddine, N.: Existence and multiplicity of solutions for Kirchhoff-type potential systems with variable critical growth exponent. Applicable Analysis 102(4), 1250-1270 (2023)
[15] Chems Eddine, N., Nguyen, P.D., Ragusa, M.A.: Existence and multiplicity of solutions for a class of critical anisotropic elliptic equations of Schrödinger-Kirchhoff-type. Mathematical Methods in the Applied Sciences 46(16), 16782-16801 (2023)
[16] Chems Eddine, N., Ragusa, M.A.: Generalized critical Kirchhoff-type potential systems with Neumann boundary conditions. Applicable Analysis 101(11), 3958-3988 (2022)
[17] Chen, Y.M., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM Journal on Applied Mathematics 66(4), 1383-1406 (2006)
[18] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue Spaces Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis, Birkauser (2013)
[19] Di Benedetto, E.: Degenerate Parabolic Equations. Springer-Verlag, New York (1993)
[20] Diening, L.: Theorical and numerical results for electrorheological fluids. Ph.D. Thesis, University of Freiburg, Germany (2002)
[21] Diening, L., Harjulehto, P. , Hästö, P. , Ružicka, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, 2017, Springer-Verlag, Heidelberg (2011)
[22] Edmunds, D.E., Rakosnik, J.: Sobolev embeddings with variable exponent. Studia Mathematica 3(143), 267-293 (2000)
[23] El Hamidi, A., Rakotoson, J. M.: Extremal functions for the anisotropic Sobolev inqualities. Annales de l’I.H.P. Analyse non linéaire 24(5), 741-756 (2007)
[24] Fan, X.: Anisotropic variable exponent Sobolev spaces and
[25] Fan, X., Zhao, D.: On the spaces
[26] Figueiredo, G., Júnior, J.R.S., Suárez, A.: Multiplicity results for an anisotropic equation with subcritical or critical growth. Advanced Nonlinear Studies 15(2), 377-394 (2015)
[27] Figueiredo, G.M., Silva, J.R.: A critical anisotropic problem with discontinuous nonlinearities. Nonlinear Analysis: Real World Applications 47(4), 364-372 (2019)
[28] Fonseca, I., Leoni, G.: Modern Methods in the Calculus of Variations:
[29] Fu, Y.Q.: The principle of concentration compactness in
[30] Fu, Y., Zhang, X.: Multiple solutions for a class of
[31] Ho, K., Kim, Y.H.: The concentration-compactness principles for
[32] Ho, K., Sim, I.: On degenerate
[33] Hurtado, E.J., Miyagaki, O.H., Rodrigues, R.S.: Existence and asymptotic behaviour for a Kirchhoff type equation with variable critical growth exponent. Milan Journal of Mathematics 77(4), 71-102 (2017)
[34] Ji, C.: An eigenvalue of an anisotropic quasilinear elliptic equation with variable exponent and Neumann boundary condition. Nonlinear Analysis: Theory, Methods and Applications 71(10), 4507-4514 (2009)
[35] Kováčik, O., Rákosník, J.: On spaces
[36] Lions, P.L.: The concentration-compactness principle in calculus of variation, the limit case, part 2. Revista Matemática Iberoamericana 1(1), 145-201 (1985)
[37] Mihăilescu, M., Pucci, P. , Rădulescu, V.D.: Nonhomogeneous boundary value problems in anisotropic Sobolev spaces. Comptes Rendus Mathematique 345(10), 561-566 (2007)
[38] Mihăilescu, M., Pucci, P., Rădulescu, V.D.: Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent. Journal of Mathematical Analysis and Applications 340(1), 687-698 (2008)
[39] Mosconi, S., Squassina, M.: Nonlocal problems at nearly critical growth. Nonlinear Analysis: Theory, Methods and Applications 136, 84-101 (2016)
[40] Ourraoui, A., Ragusa, M.A.: An existence result for a class of
[41] Palatucci, G., Pisante, A.: Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces. Calculus of Variations and Partial Differential Equations 50, 799-829 (2014)
[42] Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conference Series in Mathematics 65, American Mathematical Society (1986)
[43] Rădulescu, V.D., Repovš, D.D.: Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis. CRC Press, Boca Raton, FL. (2015)
[44] Ružička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Springer-Verlag, Berlin (2002)
[45] Servadei, R., Valdinoci, E.: A Brezis-Nirenberg result for non-local critical equations in low dimension. Communications on Pure and Applied Analysis 12(6), 2445-2464 (2013)
[46] Servadei, R., Valdinoci, E.: The Brezis-Nirenberg result for the fractional Laplacian. Transactions of the American Mathematical Society 367(1), 67-102 (2015)
[47] Simmonds, A.J.: Electro-rheological valves in a hydraulic circuit. IEE Proceedings-D, 138, 400-404 (1991)
[48] Stanway, R., Sproston, J.L., El-Wahed, A.K.: Applications of electrorheological fluids in vibration control:a survey. Smart Materials and Structures 5, 464-482 (1996)
[49] Zhikov, V.V.: Averaging of functionals in the calculus of variations and elasticity. Mathematics of the USSR-Izvestiya 29, 33-66 (1987)
Laboratory of Mathematical Analysis and Applications, Department of Mathematics, Faculty of Sciences, Mohammed V University, Rabat, Morocco.
Maria Alessandra Ragusa
Dipartimento di Matematica e Informatica, NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, Universitá di Catania, Catania, Italy.
Faculty of Fundamental Science, Industrial University, Ho Chi Minh City, Vietnam.
Email address: maragusa@dmi.unict.it
Dušan D. Repovš
Faculty of Education, University of Ljubljana, Ljubljana, Slovenia.
Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia.
Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia.
Email address: dusan.repovs@guest.arnes.si
- 2020 Mathematics Subject Classification. 35B33, 35D30, 35J20, 35J60, 46E35.
Key words and phrases. Sobolev embeddings, Concentration-compactness principle, Anisotropic variable exponent Sobolev spaces, -Laplacian.
*Corresponding author.
DOI: https://doi.org/10.1007/s13540-024-00246-8
Publication Date: 2024-02-22
ON THE CONCENTRATION-COMPACTNESS PRINCIPLE FOR ANISOTROPIC VARIABLE EXPONENT SOBOLEV SPACES AND ITS APPLICATIONS
Abstract
We obtain critical embeddings and the concentration-compactness principle for the anisotropic variable exponent Sobolev spaces. As an application of these results,we confirm the existence of and find infinitely many nontrivial solutions for a class of nonlinear critical anisotropic elliptic equations involving variable exponents and two real parameters. With the groundwork laid in this work, there is potential for future extensions, particularly in extending the concentration-compactness principle to anisotropic fractional order Sobolev spaces with variable exponents in bounded domains. This extension could find applications in solving the generalized fractional Brezis-Nirenberg problem.
1. Introduction
concentration-compactness principle to anisotropic fractional order Sobolev spaces with variable exponents in bounded domains in the future. Such an extension holds the potential for applications in solving the anisotropic generalized fractional Brezis-Nirenberg problem.
Theorem 2. Suppose that assumptions (
2. Functional framework
Proposition 2 (Diening et al. [21, Theorem 8.4.2.], Edmunds and Rakosnik [22, Theorem 1.1]). Consider
Proof. Let
2) It is worth noting that when
3) Ji [34] conducted a study of anisotropic equations in the subcritical case, using the “critical exponent”
-
is bounded. -
in the dual space .
Then.
3. An extension of the Lions concentration-compactness principle
Before we give the proof of Theorem 6, we recall some auxiliary results obtained by Bonder and Silva [8].
4. A CLASS OF NONLINEAR ANISOTROPIC ELLIPTIC EQUATIONS WITH CRITICAL GROWTH
Throughout this article, for simplicity, we denote the anisotropic variable exponent space
The energy functional associated with problem (1.1) is defined by
To prove Theorem 1, we shall apply the Mountain Pass Theorem 4. We shall begin with the following lemmas.
Proof. Let
Lemma 5. Let
Claim 1.
By applying Lemma 4, we know that
On the other hand, by using assumption (
Since,
5. Proofs of Theorems 1 and 2
References
[2] Alves, C.O., El Hamidi, A.: Existence of solution for a anisotropic equation with critical exponent. Differential and Integral Equations 21(1-2), 25-40 (2008)
[3] Alves C.O., Ferreira M.C.: Existence of solutions for a class of
[4] Ambrosetti, A., Rabinowitz, P. H.: Dual variational methods in critical point theory and applications. Journal of Functional Analysis 14(4), 349-381 (1973)
[5] Antontsev, S., Diaz, J.I., Shmarev, S.: Energy methods for free boundary problems:applications to nonlinear PDEs and fluid mechanics. Progress in nonlinear differential equations and their applications. Applied Mechanics Reviews 55(4), B74-B75 (2002)
[6] Antontsev, S.N., Rodrigues, J.F.: On stationary thermorheological viscous flows. Annali dell’Universita di Ferrara. Sezione VII. Scienze Matematiche 52(1), 19-36 (2006)
[7] Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier, New York (1972)
[8] Bonder, J.F., Silva, A.: Concentration-compactness principal for variable exponent space and applications. Electronic Journal of Differential Equations 2010(141), 1-18 (2010)
[9] Boureanu, M.M., Matei, A., Sofonea, A.: Nonlinear problems with
[10] Boureanu, M.M., Rădulescu, V.D.: Anisotropic Neumann problems in Sobolev spaces with variable exponent. Nonlinear Analysis: Theory, Methods and Applications 75 (12), 4471-4482 (2012)
[11] Boureanu, M.M., Udrea, D.N.: Existence and multiplicity results for elliptic problems with
[12] Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Communications on Pure and Applied Mathematics 36(4), 437-47 (1963)
[13] Chaker, J., Kim, M., Weidner, M.: The concentration-compactness principle for the nonlocal anisotropic
[14] Chems Eddine, N.: Existence and multiplicity of solutions for Kirchhoff-type potential systems with variable critical growth exponent. Applicable Analysis 102(4), 1250-1270 (2023)
[15] Chems Eddine, N., Nguyen, P.D., Ragusa, M.A.: Existence and multiplicity of solutions for a class of critical anisotropic elliptic equations of Schrödinger-Kirchhoff-type. Mathematical Methods in the Applied Sciences 46(16), 16782-16801 (2023)
[16] Chems Eddine, N., Ragusa, M.A.: Generalized critical Kirchhoff-type potential systems with Neumann boundary conditions. Applicable Analysis 101(11), 3958-3988 (2022)
[17] Chen, Y.M., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM Journal on Applied Mathematics 66(4), 1383-1406 (2006)
[18] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue Spaces Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis, Birkauser (2013)
[19] Di Benedetto, E.: Degenerate Parabolic Equations. Springer-Verlag, New York (1993)
[20] Diening, L.: Theorical and numerical results for electrorheological fluids. Ph.D. Thesis, University of Freiburg, Germany (2002)
[21] Diening, L., Harjulehto, P. , Hästö, P. , Ružicka, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, 2017, Springer-Verlag, Heidelberg (2011)
[22] Edmunds, D.E., Rakosnik, J.: Sobolev embeddings with variable exponent. Studia Mathematica 3(143), 267-293 (2000)
[23] El Hamidi, A., Rakotoson, J. M.: Extremal functions for the anisotropic Sobolev inqualities. Annales de l’I.H.P. Analyse non linéaire 24(5), 741-756 (2007)
[24] Fan, X.: Anisotropic variable exponent Sobolev spaces and
[25] Fan, X., Zhao, D.: On the spaces
[26] Figueiredo, G., Júnior, J.R.S., Suárez, A.: Multiplicity results for an anisotropic equation with subcritical or critical growth. Advanced Nonlinear Studies 15(2), 377-394 (2015)
[27] Figueiredo, G.M., Silva, J.R.: A critical anisotropic problem with discontinuous nonlinearities. Nonlinear Analysis: Real World Applications 47(4), 364-372 (2019)
[28] Fonseca, I., Leoni, G.: Modern Methods in the Calculus of Variations:
[29] Fu, Y.Q.: The principle of concentration compactness in
[30] Fu, Y., Zhang, X.: Multiple solutions for a class of
[31] Ho, K., Kim, Y.H.: The concentration-compactness principles for
[32] Ho, K., Sim, I.: On degenerate
[33] Hurtado, E.J., Miyagaki, O.H., Rodrigues, R.S.: Existence and asymptotic behaviour for a Kirchhoff type equation with variable critical growth exponent. Milan Journal of Mathematics 77(4), 71-102 (2017)
[34] Ji, C.: An eigenvalue of an anisotropic quasilinear elliptic equation with variable exponent and Neumann boundary condition. Nonlinear Analysis: Theory, Methods and Applications 71(10), 4507-4514 (2009)
[35] Kováčik, O., Rákosník, J.: On spaces
[36] Lions, P.L.: The concentration-compactness principle in calculus of variation, the limit case, part 2. Revista Matemática Iberoamericana 1(1), 145-201 (1985)
[37] Mihăilescu, M., Pucci, P. , Rădulescu, V.D.: Nonhomogeneous boundary value problems in anisotropic Sobolev spaces. Comptes Rendus Mathematique 345(10), 561-566 (2007)
[38] Mihăilescu, M., Pucci, P., Rădulescu, V.D.: Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent. Journal of Mathematical Analysis and Applications 340(1), 687-698 (2008)
[39] Mosconi, S., Squassina, M.: Nonlocal problems at nearly critical growth. Nonlinear Analysis: Theory, Methods and Applications 136, 84-101 (2016)
[40] Ourraoui, A., Ragusa, M.A.: An existence result for a class of
[41] Palatucci, G., Pisante, A.: Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces. Calculus of Variations and Partial Differential Equations 50, 799-829 (2014)
[42] Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conference Series in Mathematics 65, American Mathematical Society (1986)
[43] Rădulescu, V.D., Repovš, D.D.: Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis. CRC Press, Boca Raton, FL. (2015)
[44] Ružička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Springer-Verlag, Berlin (2002)
[45] Servadei, R., Valdinoci, E.: A Brezis-Nirenberg result for non-local critical equations in low dimension. Communications on Pure and Applied Analysis 12(6), 2445-2464 (2013)
[46] Servadei, R., Valdinoci, E.: The Brezis-Nirenberg result for the fractional Laplacian. Transactions of the American Mathematical Society 367(1), 67-102 (2015)
[47] Simmonds, A.J.: Electro-rheological valves in a hydraulic circuit. IEE Proceedings-D, 138, 400-404 (1991)
[48] Stanway, R., Sproston, J.L., El-Wahed, A.K.: Applications of electrorheological fluids in vibration control:a survey. Smart Materials and Structures 5, 464-482 (1996)
[49] Zhikov, V.V.: Averaging of functionals in the calculus of variations and elasticity. Mathematics of the USSR-Izvestiya 29, 33-66 (1987)
Laboratory of Mathematical Analysis and Applications, Department of Mathematics, Faculty of Sciences, Mohammed V University, Rabat, Morocco.
Maria Alessandra Ragusa
Dipartimento di Matematica e Informatica, NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, Universitá di Catania, Catania, Italy.
Faculty of Fundamental Science, Industrial University, Ho Chi Minh City, Vietnam.
Email address: maragusa@dmi.unict.it
Dušan D. Repovš
Faculty of Education, University of Ljubljana, Ljubljana, Slovenia.
Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia.
Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia.
Email address: dusan.repovs@guest.arnes.si
- 2020 Mathematics Subject Classification. 35B33, 35D30, 35J20, 35J60, 46E35.
Key words and phrases. Sobolev embeddings, Concentration-compactness principle, Anisotropic variable exponent Sobolev spaces, -Laplacian.
*Corresponding author.